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The flickering of buoyant diffusion flames is associated with the periodic shedding of
toroidal vortices that are formed under gravity-induced shearing at the flame surface.
Numerous experimental investigations have confirmed the scaling, f ∝ D−1/2, where f
is the flickering frequency and D is the diameter of the fuel inlet. However, the connection
between the toroidal vortex dynamics and the scaling has not been clearly understood. By
incorporating the finding of Gharib et al. (1998) that the detachment of a continuously
growing vortex ring is inevitable and can be dictated by a universal constant that is
essentially a non-dimensional circulation of the vortex, we theoretically established the
connection between the periodicity of the toroidal vortices and the flickering of a buoyant
diffusion flame with small Froude number. The scaling theory for flickering frequency was
validated by the existing experimental data of pool flames and jet diffusion flames.

Key words: buoyant diffusion flames, flame instability, flickering frequency, toroidal
vortex, vortex formation/detachment.

1. Introduction

Diffusion flames are ubiquitous in domestic and industrial applications that have been
shaping the human civilization, including energy production, propulsion, and fire protec-
tion. Diffusion flames, if being away from extinction, are controlled by the convection and
diffusion of species in the flow field where the flame is embedded, and are less affected
by chemical reactions, which usually happen within a short period of time and inside a
limited space (Burke & Schumann 1928; Liñán et al. 2015). In practice, diffusion flames
tend to become unstable under the effect of buoyancy (Chen et al. 1989; Cox 1995; Coats
1996; Lingens et al. 1996; Tieszen et al. 1996; Malalasekera et al. 1996; Joulain 1998;
Jiang & Luo 2000; Tieszen 2001; Liñán et al. 2005; Carpio et al. 2012; Zhu et al. 2018).
A prominent phenomenon related to the stability of a buoyant diffusion flame is the flame
flickering (Chamberlin & Rose 1948) or puffing, which describes the vibratory motion of
the luminous flame, especially on its the upper part, and has been a constant subject of
interest for several decades.
Early studies (McCamy 1956; Byram & Nelson 1970; Portscht 1975; Sibulkin & Hansen

1975; Detriche & Lanore 1980; Zukoski et al. 1985) experimentally found that flame flick-
ering is a periodic phenomenon. The frequency associated with the periodicity, termed
flickering frequency f in this context, is related to the fuel inlet diameter D as f ∝ D−1/2
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Figure 1. Flow visualizations of laminar jet diffusion flames (Chen et al. 1989) show the
synchronization between the flame structures and the toroidal vortices.

with a proportionality factor of around 1.5 given by Trefethen & Panton (1990) and Cete-
gen & Ahmed (1993). Slightly different values of the factor have been reported by others
(Byram & Nelson 1970; Detriche & Lanore 1980; Malalasekera et al. 1996; Joulain 1998).
Based on dimensional analysis, Byram & Nelson (1970) derived f ∝ (g/D)1/2, where g
is the gravitational acceleration constant. This scaling law is equivalent to the Strouhal-
Froude number correlation, St ∝ Fr−1/2, by Hamins et al. (1992) and Malalasekera et al.
(1996). The same scaling law was reproduced by Bejan (1991) with the use of buckling
theory of inviscid streams. Cetegen & Ahmed (1993) extended the scaling law to account
for the initial fuel momentum of buoyant jet diffusion flames by including the Richardson
number.
The previous investigations point to a striking feature of flickering buoyant diffusion

flames that the flickering is not due to the alternate extinction and re-ignition but a
fluid-dynamical phenomenon. Buckmaster & Peters (1988) performed a linear stability
analysis to an infinite candle model and attributed the flickering to Kelvin-Helmholtz
instability. Chen and Roquemore (Chen & Roquemore 1986; Roquemore et al. 1987;
Chen et al. 1989) together with coworkers presented the flow visualizations of laminar
jet diffusion flames and identified two different types of vortices — the small vortices
(inside of the luminous flame) developed due to the instability of the jet and the large
toroidal vortices (outside of the flame) caused by the buoyancy-induced Kelvin-Helmholtz
instability. According to Chen et al. (1989), the toroidal vortices are responsible for the
detachment of the flame puff, which is also known as the flame pinch-off (Davis et al.
1990; Carpio et al. 2012), and the “pairing” and “merging” of the flame bulge, rendering
the periodic flame flickering as illustrated in figure 1. This was also confirmed by the
numerical simulation of Katta & Roquemore (1993). Cetegen & Ahmed (1993) further
substantiated this view by predicting the flickering frequency based on the convective
time scale associated with a toroidal vortex. Subsequently, numerous experimental and
numerical investigations have been conducted to study the dynamics of the toroidal
vortices and their interaction with flame (Katta et al. 1994; Mell et al. 1996; Ghoniem
et al. 1996; Cetegen 1997; Maxworthy 1999; Albers & Agrawal 1999; Jiang & Luo 2000;
Tieszen 2001; Kolhe & Agrawal 2007). It is quite clear now that flickering is primarily
caused by buoyant flow instability and the toroidal vortices, at least at sufficiently small
Reynolds numbers.
To this day, the jigsaw puzzle of the flame flickering has almost been completed, left

with only a few unsolved pieces, one of which is the connection between the dynamics
of toroidal vortices and the flame flickering frequency. The first and, thus far, probably
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the only theoretical attempt was made by Cetegen & Ahmed (1993), who applied the
Bernoulli equation to estimate the flow velocity of the flame sheet and then derived a
formula of flickering frequency. However, their formula depends on an implicit assumption
that the height of the flame puff risen during a period is proportional to the flame inlet
dimension, which has not been justified to date. In the current study, the germane and
critical problem is to mathematically elucidate how the vortex dynamics, including the
generation of vorticity, the roll-up of the toroidal vortex, and the vortex detachment, can
be integrated into a theory that quantitatively determines the flame flickering. To this
end, a primary task of the current study is to establish a unified vortex-dynamical scaling
theory to predict the frequency of various pool flames and jet diffusion flames reported
in the literature.

2. Vortex sheet formation of flickering buoyant diffusion flames

As stated above, the essence of the flickering flame lies in the dynamics of the toroidal
vortices. The first question to ask is how the toroidal vortex forms. In vortex dynamics,
the formation and evolution of toroidal vortex, formally known as the “vortex ring”, have
been studied extensively (Maxworthy 1972, 1977; Saffman 1978; Didden 1979; Glezer
1988; Shariff & Leonard 1992; Gharib et al. 1998). Physically, the appearance of a vortex
ring may be considered as the outcome of the growing and rolling-up of a cylindrical-
shaped vortex sheet. A well-known example is the starting vortex jet (Didden 1979;
Nitsche & Krasny 1994; Gharib et al. 1998; Mohseni & Gharib 1998), where the vortex
sheet is continuously supplied by pushing a fluid slug out of a circular jet nozzle to form
a cylindrical shear layer. From this perspective, the toroidal vortex of a diffusion flame
should not be fundamentally different and its formation must involve a growing vortex
sheet.
A schematic of vortex sheet in a laminar diffusion flame is shown in figure 2. The

vorticity growth inside the vortex sheet is governed by the vorticity transport equation,

Dω

Dt
= (ω · ∇)u− ω(∇ · u) + 1

ρ2
(∇ρ×∇p) +

ρA
ρ2

(∇ρ× g) + ν∇2ω, (2.1)

where u and ω are the velocity and vorticity vectors, ρ the local density, and p the gauge
pressure, g the gravitational acceleration vector, ν the kinematic viscosity, and ρA the
gas density of the ambient environment. On the right-hand side of (2.1), the first vortex
tilting/stretching term vanishes for either two-dimensional flows or axisymmetric flows
without swirling, the second dilatation term vanishes for incompressible flows, and the
fifth diffusion term describes the redistribution of vorticity and thus is not a source of
vorticity production. Vorticity generation are attributed to the third baroclinic term and
the fourth gravitational term, both of which entail the presence of variable density. In
this case, the growth of vortex sheet is caused by the flame-induced vorticity addition
mechanisms, which differ from the vorticity flux supplied by the inflow of a jet.
To evaluate the formation of a flame-induced vortex sheet (or viscous shear layer) and

its roll-up into a toroidal vortex, we focus on the circulation (Γ) of a control mass, defined
by

Γ =

∮
∂A

u · ds. (2.2)

As illustrated in figure 2, the dashed box ∂A is a material contour around the vortex sheet
segment between sv1 and sv2, and A is the area encircled by the contour so A is a control
mass; ds represents a material line element along ∂A. The vorticity vector has only one
azimuthal component as ω = ωθ̂ under the assumption of axisymmetric flow without
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Figure 2. Schematic of the vortex sheet for the growth of a toroidal vortex in an axisymmetric
laminar diffusion flame. Note that the zero thickness of flame and vortex sheets is exaggerated
for illustration.

swirling (the axial vorticity is important in swirling flames as studied by Klimenko &
Williams (2013) and Yu & Zhang (2017a,b)). Applying the divergence theorem to (2.2)
yields Γ =

∫∫
ωdA, meaning Γ is a measure for the total vorticity inside A.

The rate of total change of Γ can be derived from (2.2) as

dΓ

dt
=

∮
∂A

Du

Dt
· ds+

∮
∂A

u · D(ds)

Dt
. (2.3)

According to the identity D(ds)/Dt = du (Wu et al. 2007), the second integral term
of (2.3) vanishes as

∮
∂A

u · du =
∮
∂A

d(u · u)/2 = 0; the integrand Du/Dt in the first
integral term is given by the Navier-Stokes equation,

Du

Dt
= −1

ρ
[∇p+ (ρA − ρ)g] + ν∇2u, (2.4)

where the gauge pressure p is related to the absolute pressure pab as ∇pab = ∇p +
ρAg. Here, ν∇2u is the shear stress (per unit mass) and approaches zero outside the
viscous shear layer, where the flow is effectively inviscid. This implies ν∇2u = 0 on ∂A.
|∇p|/|(ρA − ρ)g| physically represents a characteristic Froude number. For buoyancy-
dominated flames, we adopt the small Froude number assumption (Fr ≪ 1) so the
pressure gradient is negligible compared with the gravity term in (2.4). With ds expressed
as ŝds, where ŝ is the unit tangential vector along the contour ∂A, equation (2.3) can
be rewritten as

dΓ

dt
=

∮
∂A

−ρA − ρ

ρ
g · ŝds =

∫ sv2

sv1

ρA

(
1

ρ1
− 1

ρ2

)
(ŝv · g) ds, (2.5)

where ŝv is the unit tangential vector of the vortex sheet as shown in figure 2. Assuming
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the gas density at either side of the vortex sheet is constant, which means ρ1(s) = ρf
where ρf is the density of the gas at the flame sheet and ρ2(s) = ρA, we have

dΓ

dt
= ρA

(
1

ρ1
− 1

ρ2

)(∫ sv2

sv1

dŝv · g
)

= −g∆z(r∗ − 1), (2.6)

where ∆z is the vertical length of the vortex sheet associated with the control mass A,
as shown in figure 2. The density ratio, r∗ = ρA/ρf , is a measurable quantity for a given
flame. For a rough estimation of r∗, assuming the flame is isobaric and following the
ideal gas law, we have r∗ = ρA/ρf = Tf/TA, where TA and Tf are the temperatures of
the ambient air and the flame sheet, respectively. For common fuels burned in air, the
flame temperature at normal atmospheric condition (1 atm, TA ≈ 300 K) varies in a
wide range roughly between 1200 K and 2400 K, corresponding to the r∗ range of 4 ∼ 8.
Equation (2.6) indicates an important feature of the buoyancy-induced vortex sheet

that the generation rate of total vorticity (circulation) is independent of the geometric
shape of the sheet, but only dictated by the vertical length of the sheet.

3. Formation of periodical toroidal vortices

It is evident from the flow visualization of Chen et al. (1989) and numerical
simulation of Katta et al. (1994), among others, that the periodicity of the
flame structures is strongly correlated with the toroidal vortices, which are
rolled up from the buoyancy-induced vortex sheet. The study of unsteady
diffusion flames by Cantwell et al. (1989) further illustrated the sequential
evolution of an individual toroidal vortex and its coupling with the dynamics
of the flame. Following these studies, we present the formation process of a
toroidal vortex in figure 3 to illustrate the relation between the flickering flame and
the periodic toroidal vortices. At t = 0, a previous toroidal vortex (marked by grey-
dashed line) matures and detaches, leading to the generation of a new toroidal vortex
near the base of the flame. This new vortex core together with its trailing vortex sheet
(marked by blue-solid line) then grow and advect downstream under buoyancy. At t = τ ,
where τ = 1/f is the period of flame flickering, the new toroidal vortex becomes fully
developed and its circulation is defined as

ΓTV = ΓB(τ) =

∫ τ

0

dΓB

dt
dt, (3.1)

where ΓB is the total circulation of the moving control volume B (marked by the red-
dashed box), which encloses the vortex core and its trailing vortex sheet.
The rate of change of ΓB is given by

dΓB

dt
=

d

dt

∫
B

dΓ =
d

dt

∫ h(t)

0

γz(z, t)dz, (3.2)

where γz(z, t) = dΓ/dt. h(t) is the height of the upper boundary of B, which rises
following the convection of the toroidal vortex. Applying the Leibniz integral rule to
(3.2), we have

dΓB

dt
= γz(h(t), t)

dh(t)

dt
+

∫ h(t)

0

∂γz(z, t)

∂t
dz. (3.3)

Considering the control mass VB that instantaneously overlaps with the control volume
B at time t, and applying (2.6) to VB , we can obtain the rate of change of the circulation
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Figure 3. Schematic of the periodic formation process of a toroidal vortex. The vortex sheets
associated with the formation of toroidal vortex are tracked by the blue-dashed lines.

in VB :

dΓVB

dt
= −gh(t)(r∗ − 1). (3.4)

Further noting that ΓVB
=
∫
VB

γz(z, t)dz, ΓVB
can be also derived using the Reynolds

transport theorem (Batchelor 1967) as

dΓVB

dt
= γz(h(t), t)

dz

dt

∣∣∣∣
z=h(t)

− γz(0, t)
dz

dt

∣∣∣∣
z=0

+

∫ h(t)

0

∂γz(z, t)

∂t
dz

= γz(h(t), t)
dh(t)

dt
− γz(0, t)

dz

dt

∣∣∣∣
z=0

+

∫ h(t)

0

∂γz(z, t)

∂t
dz.

(3.5)

Comparing (3.3) and (3.5) and using (3.4), we obtain

dΓB

dt
= −gh(t)(r∗ − 1) + Γ̇i(t), (3.6)

where Γ̇i(t) = (dΓ/dt)|z=0 is the rate of circulation addition by the inflow, which enters
the system through the lower boundary of B.
In the current study, Γ̇i(t) reflects the possible presence of an initial vortex sheet asso-

ciated with the fuel stream at the fuel inlet, either from a jet or induced by evaporation
of a pool flame. The fuel stream may be considered as a jet flow, the rate of circulation
addition by which was given by Didden (1979) as

Γ̇i(t) = −CjU
2
0 , (3.7)

where U0 is the initial jet velocity and Cj is a constant relating to the configuration and
boundary condition of the jet exit. According to Krieg & Mohseni (2013), Cj is 0.5 for
an ideal parallel-nozzle jet, but it could be inaccurate if the jet entrains a radial flow and
causes additional circualtion generation. For example, the effective Cj for a converging
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jet can be under-predicted by a factor of 3 (Krieg & Mohseni 2013). Consequently, we
shall compare the results of Cj = 0.5 and Cj = 1.5 in the theoretical predictions.
Applying (3.6) and (3.7) to (3.1), we obtain

ΓTV = −gHτ(r∗ − 1)− CjU
2
0 τ, (3.8)

where H = τ−1
∫ τ

0
h(t)dt is the time-averaged height of the growing toroidal vortex. The

integration of (3.8) is based on the assumption that the vortex sheet grows in a quasi-
steady manner, given that the flame flickering period is so short that the densities of the
gases across the vortex sheet remain approximately unchanged meanwhile.
In the current study, the two common types of diffusion flames are pool flames, where

the fuel vapor enters the system from the evaporation of liquid pool, and jet flames,
where the fuel stream is supplied via a gaseous jet. The initial fuel velocity U0 is a given
boundary condition for jet flames, whereas for pool flames it is an eigenvalue of the
thermochemical-coupled equations (Yu & Zhang 2017a,b). The effect of fuel velocity on
the flickering frequency of jet flames has been investigated by Hamins et al. (1992), Sato
et al. (2000), and Fang et al. (2016), among others, which indicates the existence of two
distinct regimes, namely momentum-driven and buoyancy-driven. Since buoyancy-driven
flames have a characteristic velocity of U =

√
gD, the motion of the upper boundary of

the toroidal vortex may be roughly estimated as h(t) = ChUt with Ch being a constant
prefactor; so H = ChUτ/2. With ΓTV scaled by −UD, equation (3.8) can be written in
the non-dimensional form as

Γ∗
TV =

Ch

2
Riτ∗2 + Cj

√
Frτ∗, (3.9)

where τ∗ = U0τ/D. The Richardson number and the Froude number are defined as Ri =
(r∗−1)gD/U2

0 and Fr = U2
0 /gD, respectively. It is noted that in theory equation (3.9) is

only valid for buoyancy-driven flames that are characterized by U0 ≪ U , corresponding
to Fr ≪ 1 or Ri ≫ 1.

In this study, we propose that the flame flickering is caused by the alternate formation
and detachment of the toroidal vortices, the fundamental mechanism of which does not
conflict with the Kelvin-Helmholtz instability proposed in the literature (Chen & Roque-
more 1986; Buckmaster & Peters 1988; Chen et al. 1989). In fact, these mechanisms share
two key similarities. First, both mechanisms are characterized by vortex roll-up. Second,
they are caused by velocity shear, and are closely related to strength of the shear layer.
The difference between them can be understood as spatial or temporal development of
the instability. Specifically, a typical Kelvin-Helmholtz instability can be thought as a
spatial one where multiple vortices roll up simultaneously along a uniform shear layer in
space; whereas the periodical formation and detachment of vortices can be considered as
a temporal instability where local growth of vortex sheet causes the vortices to develop
in sequence. Thus, a series of fully-developed vortices together render the feature of the
Kelvin-Helmholtz instability.

4. Theoretical predictions

The above analysis hitherto has addressed the formation and growth of a toroidal vor-
tex, which leaves us another question: how does the toroidal vortex shed? The answer to
a similar problem on vortex ring formation has been given by Gharib et al. (1998) and
Mohseni & Gharib (1998), who pointed to the existence of a universal non-dimensional
formation number, above which a vortex ring would be too strong to maintain growing
and consequently detach from its vorticity-feeding shear layer. In other words, the forma-
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tion number can be considered as a dimensionless measure of the upper limit of the total
circulation of an attached vortex ring. This mechanism can be interpreted as a unified
condition for the detachment of a rolled-up vortex ring. We hypothesize that the shedding
of the current toroidal vortex is controlled by the same mechanism, because the strength
of the vortex sheet is constantly growing under the buoyancy-induced vorticity gener-
ation, and will roll up into a vortex once the vortex sheet becomes sufficiently strong.
However, this should be distinguished from the case of constant laminar flow through
a nozzle, where the strength of the vortex sheet remains unchanged. As the result, the
initial vortex sheet is too weak to roll up unless otherwise being disturbed or instability
develops in the downstream. This explains why a continuous laminar jet generally does
not have alternate formation and detachment of vortex rings.
From the above discussion, the continuous growing shear layer causes gradual accu-

mulation of the circulation inside the toroidal vortex until it reaches a threshold denoted
by C. The typical value of C = 4 for an ideal starting vortex jet (Gharib et al. 1998)
is adopted here, although it could change notably under various conditions (Dabiri &
Gharib 2005; Krueger et al. 2006; Lawson & Dawson 2013; Xia & Mohseni 2015). Ap-
plying Γ∗

TV = C to (3.9) and solving for τ yields

f =
1

τ
=

1

2C

√
g

D

(
CjFr +

√
C2

jFr
2 + 2CCh(r∗ − 1)

)
. (4.1)

This completes the derivation of the frequency relation for buoyancy-driven diffusion
flames. (4.1) is similar to the scaling formula given by Eq. 1 of Cetegen & Ahmed (1993),
with different power on the Fr term. An extended discussion on the differences of the
two formulas will be provided at the end of this section. Now, let Fr → 0, (4.1) can be
further simplified to

f =

√
Ch(r∗ − 1)

2C
· g

D
, (4.2)

which recovers the prominent scaling law, f ∝ (g/D)
1/2

, obtained by Byram & Nelson
(1970), among others.
Next, we compare the theoretical formula with experiment for validation. Figure 4(a)

shows the relation of f against
√

g/D for various pool flames and jet flames from ex-
isting literature, which have diverse fuel types, fire source dimensions, and gravities.
The experimental data are in good agreement with (4.2), and confirms the unification
of the theory for buoyant diffusion flames. Similar comparisons of data were reported
by Hamins et al. (1992) and Cetegen & Ahmed (1993) to demonstrate the relation of
f ∼

√
D. However, we further verified the relation of f ∼

√
g/D with the pool flames

of varying gravity between 0.5g and 1.0g (Yoshihara et al. 2013) and the jet flames of
varying gravity between 1.5g and 6.0g (Durox et al. 1995). The trend line obtained from
figure 4(a), f = 0.48

√
g/D with g being 9.8 m/s2, is equivalent to the scaling relation,

f = 1.5
√
1/D, given by Cetegen & Ahmed (1993). This suggests that the relation,√

Ch(r∗ − 1)

2C
= 0.48, (4.3)

applies to all buoyant diffusion flames. Consequently, we can use (4.3) to eliminate the
undetermined prefactor Ch and rewrite (4.1) as

St =
Cj

2C

√
Fr +

√(
Cj

2C

)2

Fr +
1

4.34Fr
, (4.4)
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(a)

(b)

Figure 4. (a) Flickering frequencies (f) of pool and jet flames as a function of
√

g/D, with data
collected from Byram & Nelson (1970); Sibulkin & Hansen (1975); Schönbucher et al. (1988);
Baum & McCaffrey (1989); Weckman & Sobiesiak (1989); Hamins et al. (1992); Cetegen &
Ahmed (1993); Durox et al. (1995); Ghoniem et al. (1996); Yoshihara et al. (2013); Fang et al.
(2016). The gravitational acceleration was adjusted in the range of 1.5g ∼ 6.0g for Durox et al.
(1995)’s jet flames, and 0.5g ∼ 1.0g for Yoshihara et al. (2013)’s pool flames. ‘PF’ and ‘JF’ in
the legend represent pool flame and jet flame, respectively. (b) Theoretical predictions of St vs.
1/Fr for all jet flames in (a).

where the Strouhal number is defined as St = fD/U0. We arrived at the non-dimensional
frequency formula of flame flickering, where the only undetermined scaling factor is Cj ,
related to the boundary condition of the fuel inlet.
Figure 4(b) plots the experimental data from all jet flames in figure 4(a), showing
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Figure 5. Comparison between the current theory (4.4) with Cj = 0.5 and Cetegen & Ahmed
(1993)’s model (4.6). r∗ for a common diffusion flame varies between 4 and 8.

generally promising agreement with the predictions by (4.4). It is seen that the theoretical
predictions with Cj = 0.5 and Cj = 1.5 are almost identical for Fr < 0.1, and Cj = 0.5
shows a better agreement with the experimental data for Fr > 0.1. This is beyond the
range of Fr ≪ 1, based on which the present theory is derived. The result does suggest
that the applicable range of this theory can be extended to Fr 6 1. Equation (4.4) should
also be valid for pool flames; however, since U0 for those pool flames in figure 4(a) were
not measured or reported, a direct validation is not available here. As a reference, we
also plot the scaling relation of Hamins et al. (1992), which was obtained based on fitting
jet flame data in the range of 10−6 < Fr < 108. It is seen that their fitting line, with
an exponent of −0.57, does not yield the best match with data in the Fr < 1 region,
whereas the current theory (4.4) predicts that in the limit Fr → 0 the exponent of the
scaling law should be exactly −0.5.
Finally, we contrast our theory (4.4) with Eq. (1) of Cetegen & Ahmed (1993). Their

equation was derived by applying the Bernoulli equation to calculate the convective
velocity of the flame puff, which was then integrated to obtain the period as a function
of the flame puff height, Hf , in the form of (Eq. (A12) of Cetegen & Ahmed (1993))

τ∗ =
1

St
=

1

CfRi

(√
2RiHf

D
+ 1− 1

)
, (4.5)

where Cf is a constant prefactor. It should be noted that Cetegen and Ahmed made two
key assumptions. The first is a linear correlation between the inner flame velocity and
the convective velocity of the flame puff, which was loosely implied from their previous
work (Zukoski et al. 1985). The second is an implicit assumption that Hf = D/2, which
removes possible dependence of the height of the flame puff on the dynamics of the
toroidal vortex. So far, this assumption has not been supported by the existing literature.
The current theory does not require these assumptions. For quantitative comparison, we
rewrite Eq. (1) of Cetegen & Ahmed (1993) in the St − Fr form,

St = K

(
1√

r∗ − 1
+

√
1

r∗ − 1
+

1

Fr

)
, (4.6)
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where the fitting parameter K was suggested by Cetegen and Ahmed to be 0.5 based
on their experimental data. As seen in figure 5, both theories recover the same scaling
law of St ∼ Fr−0.5 in the limit Fr → 0. It is noted that (4.6) is explicitly dependent on
r∗, which varies in a wide range for diffusion flames. This might explain why Cetegen &
Ahmed (1993)’s formula predicted different K values for different jet flames as shown in
their Fig. 14. In contrast, the present theory (4.4) is a unified one for buoyancy-driven
jet flames, and relies on two physical constants C and Cj , the former accounting for the
toroidal vortex detachment and the latter for the initial circulation of inflow.

5. Conclusions

The classic problem of flickering laminar diffusion flames was theoretically revisited in
this study by performing vortex dynamics analysis. Considering the previous experimen-
tal observations that the flame flickering is synchronized with the periodic toroidal vor-
tices, we sought further mathematical modelling to bridge the gap between the prominent
frequency scaling and the dynamics of the toroidal vortices. By calculating the growth
and detachment of a toroidal vortex, both of which are essential contributions to the
periodicity of the flow field, we analytically derived a general formula which rigorously
correlates the dynamics of the toroidal vortices with flame flickering. This presents a
complete physical picture by incorporating the physically defined parameters Cj , Ch,
and C that account for the vortex growth from the initial jet, the height correction of
the toroidal vortex, and the detachment of the toroidal vortex, respectively. The formula
shows convincing agreement with data from existing literature, especially for pool flames
and jet diffusion flames with small Froude number.
The theory have profound significances in understanding the flickering of buoyant

diffusion flames. One is the theoretical connection between the toroidal vortex mechanism
and the prominent frequency scaling law. The other is a unified approach in treating pool
flames and jet diffusion flames, regardless of the differences in fuel and burner. Specifically,
we have shown that pool and jet flames share the same frequency formula at Fr → 0,
which does not depend on the initial fuel velocity U0. This provides a theoretical support
to the finding of Durox et al. (1995) and Sato et al. (2000) that the frequency is relatively
independent of fuel velocity for a low-velocity jet flame, where buoyancy dominates over
the initial jet flow. The future development of the current theory of buoyant diffusion
flames can involve other mechanisms to capture the frequencies of jet diffusion flames
with large Froude number, when gravitational effect becomes secondary.
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