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ABSTRACT 
A theoretical model is presented for the prediction of sound radiated from an unbaffled long enclosure with 
ground effect. This geometrical arrangement forms an idealized representation of traffic facilities such as 
tunnels and railway stations where sound propagates along the enclosures and radiates to the outside through 
the openings at both ends. The sound fields inside and outside the enclosures should be accurately predicted 
and thoroughly analyzed so as to determine an appropriate noise control strategy. In this paper, the Fourier 
transform technique and the mode matching method are firstly applied to transform the intractable boundary 
value problem into a scalar modified Wiener-Hopf equation. The solution of which contains infinitely many 
unknowns satisfying infinite linear algebraic equations susceptible to numerical treatment. Good agreement 
is found between the solutions obtained by the finite element method (FEM) and the proposed technique in a 
wide frequency range. Then, the far-field directivity patterns of the outside acoustic fields are emphatically 
illustrated and the formation mechanisms of lobes, zeros and the after radiation are discussed in details. In the 
end, the advantages and the application prospects of the proposed method are summarized. 
 
Keywords: Sound radiation, Unbaffled long enclosure, Wiener-Hopf technique 

1. INTRODUCTION 
In order to predict and control the noise level inside tunnels and railway stations, much attention 

has been focused in recent years on the mechanisms of sound propagation and dissipation inside long 
enclosures (1). Hard rough surfaces (2) and sound-absorbing materials (3) are found to be effective in 
reducing this kind of noise. However, in literatures, the enclosures were usually assumed to be infinite 
long and only the sound field deep inside the enclosures were considered. Reflection waves due to the 
abrupt size change of the openings were ignored which should be taken into consideration in practical 
applications as they contribute significantly to the total sound field especially near the opening. 

As the noise is difficult to be transmitted outside through the wall, it will concentrate at both ends 
of the long enclosures and radiate to the outside through the portals. If there are residents nearby, their 
living conditions will be severely deteriorated. Under such circumstance, the pollution caused by the 
radiated sound become prominent. When the prediction of sound level radiated from long enclosures is 
required, recourses are often made to simplify the geometry in which the openings are imagined to be 
surrounded by infinite baffle, thereby eliminating the diffraction effect of edge. In this condition, the 
Rayleigh integral (4) can be applied. However, it is only available to calculate the sound field in front 
of the opening while the radiation to the back side which is heavily influenced by the edge diffraction 
cannot be predicted. Besides, the model assumes that the outside region is free field, while in practical 
tunnels, the ground cannot be ignored which divides the total acoustic domain into a semi-infinite one 
and makes the problem more complicated. 

The main difference between the problem at hand and that in the literatures is that the unbaffled 
opening of the long enclosure and the ground effect are taken into account simultaneously in order to 
model the real traffic facilities. However, due to the geometrical complexity, this boundary value 
problem cannot be solved analytically for the lack of known conditions in the natural domain. During 
the past decades, several attempts were done by researchers to find the solution of the problem from 
different perspectives. In 1998, the Research Committee of Road Traffic Noise in Acoustic Society of 
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Japan established the ASJ model (5) to predict the sound radiated from tunnel opening based on the 
principal of energy conservation. However, it can only be applied as an approximate approach for 
engineering applications as the correction terms for the edge diffraction and the ground effect in the 
model are either from experimental data or empirical formula (6). In addition, numerical methods 
based on the FEM (7, 8) were proposed to transform the semi-infinite acoustic domain outside the 
enclosure into a waveguide one by introducing a perfectly matched layer (PML) outside the original 
geometry. Then, the radiated sound field can be easily obtained through the traditional mode matching 
method. However, their computational efficiency are limited by the size of the geometry which limits 
their application in dealing with problems regarding traffic noise.  

Wiener-Hopf technique is fairly a standard method to solve certain type of linear partial differential 
equations subjected to mixed boundary conditions on semi-infinite geometries. The exact solution to 
the problem of plane wave radiation from a cylindrical duct to the free field was obtained using the 
method by H. Levine (9). Then, it was extensively applied to solve problems regarding sound radiation 
from waveguide (10). Based on the existing literatures, we try to extend its application to obtain the 
explicit solution of the sound fields inside and outside a semi-infinite long enclosure. In the model, the 
unbaffled opening as well as the ground effect will be considered simultaneously which are seldom 
addressed before. In addition, the accuracy and efficiency of the proposed method will be compared 
with the FEM to highlight its availability and advantages in predicting traffic noise. 

2. FORMULATION 

2.1 Boundary Value Problem  
Consider a two-dimensional semi-infinite long enclosure as shown in Figure 1. The thickness of the 

wall is zero and all the surfaces are assumed to be acoustical rigid for simplicity. The origin of the 
coordinate system is at the intersection of the opening and the ground. Imaginary interfaces I and II are 
depicted for analysis convenience. They divide the total sound field into three sub-regions A, B and C 
which will be analyzed separately later. 

 

Figure 1 – Schematic diagram of sound radiation from unbaffled long enclosure with ground 

The total sound pressure field can be expressed by the following piecewise function 
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where yL denotes the height of the outer wall. ( , )Ap x y , ( , )Bp x y and ( , )Cp x y stand for the scattered sound 
fields in sub-regions A, B and C, respectively. Assume that a plane acoustic wave is incident from the 
left-hand side of the long enclosure which is given by  

  , ikx
ip x y e  (2) 

where k denotes the free space wave number. The time dependent factor i te  with being the angular 
frequency is well known and will be suppressed throughout. Noted that in any physical medium, loss 
is inevitable. Therefore, the ideal lossless medium which is often used in theoretical analysis, can be 
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regarded as the limiting case with vanishingly small loss. It is convenient to retain a small but nonzero 
loss in the model for further study, namely, let 
 1 2 1 2, 0k k ik k k    (3) 

So, the purely lossless medium is considered as the limiting case when 2k tends to be zero. The total 
sound field satisfies the Helmholtz equation 
    2 2, , 0T Tp x y k p x y    (4) 

where 2 denotes the two-dimensional Laplace operator. The total sound field is to be determined by 
the boundary conditions at the surfaces 

    , 0, ,0A yp x L y x      (5) 

    , 0 , , 0B yp x L y x      (6) 

    , 0 0, ,0Bp x y x      (7) 

    , 0 0, 0,Cp x y x      (8) 
the continuity relations at the imaginary interface I 

      , , , 0,A y C yp x L p x L x    (9) 

      , , , 0,A y C yp x L y p x L y x        (10) 

and the continuity relations at the imaginary interface II 

      0, 0, 0, , 0,i B C yp y p y p y y L       (11) 

      0, 0, 0, , 0,i B C yp y p y x p y x y L             (12) 

The acoustic field of interest involves boundaries at infinity and geometrical singularity at the edge 
which may give rise to several mathematically acceptable solutions of the Helmholtz equation. Only 
one of them, however, is consistent with the anticipated physical phenomenon. In order to ensure the 
uniqueness of the solution, the Sommerfeld radiation condition at infinity 

     2 2lim , , 0,T Tr
r p r r ikp r r x y 


         (13) 

should be satisfied. Besides, according to the edge condition, the acoustic energy stored in any finite 
neighborhood of the edge must be finite (11).  

Up to now, the boundary value problem has been well described in the natural domain. Due to the 
existence of semi-infinite region, however, the solution cannot be directly obtained. The Wiener-Hopf 
technique in conjunction with the mode matching method will be applied to transform the intractable 
problem into the spectral domain and obtain the Wiener- Hopf equation which can be solved through 
analytic continuation procedures. Essentially, this mixed method depends on expanding the sound 
field inside the enclosure by normal modes and applying the Fourier transform technique elsewhere 
which permits us to obtain the solution by the continuous relations at the opening. 

2.2 Wiener-Hopf Equation and Its Solution 
When applying the Wiener-Hopf technique, the Fourier integral and its inverse transformation are 

required which are defined as follows 

        1
, , , , ,

2
i x i xF y f x y e dx f x y F y e d   



 


 

    (14) 

where ( , )f x y stands for arbitrary function in the natural domain and ( , )F y denotes the corresponding 
transformed function in the spectral domain. In Eq.(14), the complex parameter i    is the Fourier 
transform variable. Since ( , )Ap x y satisfies the Helmholtz equation, its Fourier transform with respect 
to x gives 
      2 2 2, , 0A AP y y K P y       (15) 

where   2 2K k   . The sound pressure of region A in the spectral domain can be divided into two 

parts based on the definition of half range Fourier transform as 

          
0

0

, , , , ,i x i x
A A A A AP y P y P y p x y e dx p x y e dx   


   



      (16) 

The plus and minus signs in the superscript of the transformed function indicate that they are analytic 
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functions in upper and lower half complex plane, respectively. By taking into account the following 
asymptotic behavior of outgoing wave at infinity 

    , ,ik x
Ap x y O e x    (17) 

one can show that ( , )AP y and ( , )AP y are regular functions in the upper half complex plane defined 

by 2k   and the lower half complex plane defined by 2k  , respectively. The general solution of 
Eq.(15) satisfying the radiation condition in the spectral domain reads 

       , yiK y L

AP y A e
     (18) 

where ( )A  is an unknown coefficient to be determined. Obviously, the square root function ( )K  is 
double-valued in the complex plane. Therefore, it is necessary to specify its branches so as to uniquely 
define it. As shown in Figure 2, for the function ( )K  , there are two branch points k and two branch 

cuts along k   to k i     and k   to k i     , so that (0)K k . 

 

Figure 2 – Branch cuts of the square root function in the complex plane 

Using the derivative of Eq.(18) with respect to y and the transformed form of Eq.(5) we have 

      ,A yP L iK A      (19) 

where the dot specifies the derivative with respect to y. Similarly, we convert the Helmholtz equation 
for region C into the spectral domain by using the half-range Fourier transform technique 

          2 2 2, ,C CP y y K P y f y i g y          (20) 

where the new functions in Eq.(20) are defined as 
        0, , 0,C Cf y p y x g y p y     (21) 

The general solution of Eq.(20) can be attained by using the method of constant variation 

                   
0

1
, cos sin sin

y

CP y B K y C K y f t i g t K y t dt
K

      


                     (22) 

where  B  and  C  are unknown coefficients. Using the transformed form of Eq.(8), the coefficients 
can be determined. Then, the sound field of region C in the spectral domain reads 

 

 
 

   
        
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P y P L f t i g t K L t dt

K K L

f t i g t K y t dt
K


   

 

 


 
                      

        







 (23) 

Noted that the left-hand side of Eq.(23) is regular in the upper half complex plane. However, the 
regularity of the right-hand side of the equation is violated by the presence of simple poles occurring 
at the zeros of denominator, namely, m  satisfying 

        Im Im 0,1, 2,...sin 0, ,m m y m mK K L k         (24) 

These poles can be eliminated by imposing that their residues are zero. This gives 
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     , 1
m

A m y m m m mP L Q f i g      (25) 

where the coefficients mf and mg are defined as 

 
 
   

0

1
cos

yL

m
m

m m

f f t
K t dt

g g tQ


  
      

   
  (26) 

The coefficient mQ is the norm of these series expansion which is defined as 

  2
0m

0

cos (1 )
2

yL
y

m m

L
Q K t dt       (27) 

where  denotes the delta function. Consider now the transformed pressure continuity at the imaginary 
interface I and using Eq. (16) and Eq.(23) we have 

 
 
     

   
     2

0

, 1
, cos

sin

yL
A y

A y

y

P L
P L f t i g t K t dt

K L K K L


  

   


          




 (28) 

where the kernel function is expressed as 

  
 
 

 sin
yy iK LK L

L e
K





    (29) 

Owing to Eq.(26) the defined functions can be expanded into cosine series as follows 

     
 
   

0

cosm
m

m m

ff t
K t

gg t






   
       

  
  (30) 

Substituting Eq.(30) into Eq.(28) and evaluating the resultant integral, one obtains the scalar modified 
Wiener-Hopf equation of the second kind which is valid in the strip 2 2k k   as 

 
 
         

2 2 2
0

, 1
,

m
A y

A y m m
m m

P L
P L f i g

K L


 

   

 





   




 (31) 

The solution of Eq.(31) can be obtained through the classical Wiener-Hopf procedure (12) as 

             
0

, 1
2

m m m m
A y m m

m m m

f i g
P L k L k L


    

  


  




   

  (32) 

Here the split function is regular and free of zeros in the upper half plane which is given by 

 

 
     

1

sin
exp ln

2
exp 1 ln 1 exp

2

y y

y y

my m

kL K LiK
L

k k

i L i Li
C

kL m
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



   
  







       
   

                               


 (33) 

where 𝐶 is the Euler’s constant given by 𝐶 = 0.57721… 

2.3 Determination of the Sound Fields 
As can be seen, Eq.(32) contains infinite number of unknown coefficients. To determine them, the 

well-known mode matching method will be applied. The scattered sound field in region B can be 
expressed in terms of normal modes as 

    
0

, cos ni x
B n n

n

p x y a K y e 




     (34) 

where the eigenvalues are evaluated by the boundary conditions as 

  
2

2, , 0,1,2,...n n
y y

n n
K k n

L L

  
 

     
 

 (35) 

Based on the continuity relations at the opening, we have the following identities 

    
0 0

cos cosm m n n n
m n

f K y ik i a K y  
 

 

           (36) 

    
0 0

cos 1 cosm m n n
m n

g K y a K y 
 

 

          (37) 
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Multiply both sides of the equations by  cos sK y   and integrate from zero to yL in terms of y, using 

the orthogonality of the modal functions, we have 

  0 01 , 0, , 0s s sf ik a s f i a s       (38) 

 0 01 , 0, , 0s sg a s g a s      (39) 
On the other hand, combine Eq.(25) and Eq.(32) together when a new index 𝑠 is used, we have 

              
0

1 1
2

s m m m m
s s s s m m s s

m m s m

f i g
Q f i g k L k L


    

  


 




     

  (40) 

Substitute Eq.(38) and Eq.(39) into Eq.(40) we have the following identity 

      1
1

s

s s
s s

k
a L k L

Q



     (41) 

which are the modal coefficients of region B. Then, by Eq.(34) the sound field inside the enclosure can 
be determined. The radiated sound field in region A can be obtained by taking the inverse Fourier 
transform of  ,AP y as 

  
 
 

  ,1
,

2
yA y iK y L i x

A

P L
p x y e e d

iK

 



 


 







 (42) 

where  is a straight line parallel to the real axis lying in the strip 2 2k k   . In order to perform the 
asymptotic evaluation of the equation via the saddle point technique, let us change the variables and 
express the radiated sound field in cylindrical polar coordinate system as shown in Figure 1. 
 cos , cos , sink w x r y r       (43) 
Then, the radiated field can be determined (12) as  

      
4

sin, 2 cos
2

y

i ikr
ik L

A

e e
p r kL k L k e

kr


 




    (44) 

Up to now, the sound fields inside and outside the semi-infinite long enclosure are obtained. Next, the 
FEM will be applied to validate the proposed model. 

3. DISCUSSIONS 
An enclosure of 2.5m long and 0.5m high is established in COMSOL Multiphysics, a commercial 

software based on the finite element method (FEM), to validate the proposed technique. In theory, the 
radiated sound field extends to infinity. However, for the computational efficiency, a relatively small 
calculation domain is considered. The outside acoustic domain is bounded by introducing PML which 
is an artificial absorbing layer allowing sound wave to propagate out without reflection. The results of 
absolute sound pressure in region B at 800Hz obtained by the Wiener-Hopf technique and the FEM are 
compared in Figure 3. 

 

Figure 3 – Comparison of the sound fields in region B (absolute sound pressure/ Pa) obtained by 

Wiener-Hopf technique (W-H) and the FEM at 800Hz 

From (a) and (b) we can observe good agreement between the results obtained by the Wiener-Hopf 
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technique and the FEM. From (c), we can find that, inside the enclosure, apart from the incident plane 
wave, the scattered wave will contribute to the total sound field due to the impedance mismatch at the 
opening. For small size enclosure with plane wave incidence in this case, the scatted field is relatively 
small and simply distributed. But it cannot be ignored as it still contributes nearly 1/3 of the sound 
energy. For larger size enclosure and in high frequency case, the contribution will increase. 

Besides, comparison of sound pressure level (dB) between the Wiener-Hopf technique and the FEM 
in the frequency range 200Hz to 2000Hz at a particular point (-0.1,0.35) near the opening edge is also 
shown in Figure 4. In this case, 100 modes are taken in the calculation. Good agreement is found which 
validates the correctness and accuracy of the proposed model.  

 

Figure 4 – Comparison of sound pressure level (dB) between Wiener-Hopf technique and FEM in the 

frequency range 200Hz to 2000Hz at a particular point (-0.1,0.35)  

Directivity patterns of the radiated sound field in region A at different frequencies are plotted in 
polar coordinate (r=5m). As shown in Figure 5, the results show good agreement despite some sharp 
deeps which may come from mathematical issues. Clear lobes and zeros can be observed. The number 
of lobes increases with the increasing of frequency. In front of the opening, the sound field is formed 
by the superposition of radiated, diffracted and reflected sound. They propagate to the receiver with 
different phase and distance, which results in the directivity pattern. At the back, the sound field is the 
result of diffraction at the opening edge. It becomes stable and stands at relatively low level. 

   

Figure 5 – Directivity patterns of the radiated sound fields (Sound pressure level/dB) obtained by the 

Wiener-Hopf technique and the FEM at different frequencies (r=5m) 

We also calculate the sound fields of lager enclosures at higher frequency range, the results from 
the Wiener-Hopf technique and the FEM coincide well with each other (The results are not listed for 
the limitation of pages). As the increase of geometry size and frequency, the calculation time remains 
nearly the same for the proposed method as it is an analytical solution. Despite the fact that, the mode 
number in the calculation will increase for larger size enclosure and high frequency so as to capture 
high order mode. The calculation efficiency is still high using the Wiener-Hopf technique because it is 
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easy for computer to do mode superposition. However, the meshes for the FEM increase exponentially 
which results in the low efficiency. So, in this condition, the Winer-Hopf technique performs much 
better than the FEM. 

4. CONCLUSIONS 
In this paper, a rigorous and explicit solution is obtained for the prediction of sound fields inside 

and outside a semi-infinite long enclosure. In the proposed method, the unbaffled opening of the 
enclosure and the ground effect are taken into consideration simultaneously in order to model the 
practical traffic facilities. The boundary value problem is formulated as a modified Wiener-Hopf 
equation involving three sets of unknowns satisfying three infinite systems of linear algebraic 
equations which can be solved numerically. Results obtained from the FEM and the Wiener-Hopf 
technique are compared and discussed which indicates that the proposed method is capable of 
predicting the sound fields inside and outside a tunnel simultaneously and show better performance in 
big size condition.  
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