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Abstract: The fundamental shear horizontal (SH0) wave in plate-like structures is of

great importance in structural health monitoring (SHM) applications due to its unique

non-dispersive nature. Its generation or reception using piezoelectric (PZT) wafers,

however, is always a critical and challenging issue. In this study, a theoretical model

on the shear horizontal (SH) wave generation is established based on the continuum

mechanics theory. The model considers the dynamic properties of a PZT actuator and

its coupling with a host plate through a bonding layer, whose mechanical property is

modelled by considering a continuous shear stress but different tangential

displacements across the adhesive layer. Closed form solutions are obtained using the

trigonometric series decomposition and the modal superposition method. The solution

series are shown to exhibit fast convergence. The model, along with some typical

physical phenomena, is validated through comparisons with the FEM and

experimental results. Numerical analyses allow establishing a series truncation

criterion, in relation to the size of the actuator and the wavelength of the SH0 wave. It

is shown that the dynamic coupling between the PZT and the plate should be

considered in the design of PZT-activated SH0 wave generation. Typical phenomena

in different frequency regions and their impact on the SH0 wave generation are

scrutinized and discussed. The proposed theoretical model is expected to provide a

useful tool for the physical mechanism exploration, structural design and eventually

system optimization for SH0 wave generation in SHM applications.
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1. Introduction

The ultrasonic inspection based on guided waves, a combination of the wave emission

and the ultrasonic characterization, has shown its effectiveness for structural damage

detection and has been extensively applied in non-destructive evaluations (NDE) and

the structural health monitoring (SHM) [14]. Conventional guided waves include

Lamb waves with symmetric and anti-symmetric modes and shear horizontal (SH)

waves in plates. Among numerous techniques employed in the SHM, Lamb waves

have been intensively explored, owing to their unique features such as strong

penetration, long-distance transmission, omnidirectional dissemination and high

sensitivity to damage etc. [36]. However, Lamb waves are dispersive in nature, with

frequency-dependent phase and the group velocities. Waves are therefore distorted

during propagation, which increases the complexities for the signal processing,

especially when the wave packet interacts with cracks and/or defects. Compared with

Lamb waves, one of the most appealing advantages of the fundamental shear

horizontal (SH0) waves is its non-dispersive property. Therefore, the shape of the

wave packet remains unchanged during the propagation, thus facilitating the

interpretation of the received signals to some extent [78]. Moreover, the SH0 waves

do not involve out of-plane particle displacements. The wave propagation is then less
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prone to the surrounding media, which is also attractive for SHM applications [9].

Hence, SH0 wave-based techniques show great potential in SHM applications.

The successful SH0 wave generation and a thorough understanding of the

underlying physical mechanism are the prerequisite for the implementation of SH0

wave-based SHM techniques. Well-known methods include magnetostrictive

transducers [10], electromagnetic acoustic transducers (EMAT) [11], interdigital

PVDF [1213] and shear horizontal piezoelectric wafer active sensor (SH-PWAS) [8,

14]. Studies have been carried out to ensure the effective SH0 wave generation.

Among these techniques, SH-PWAS is a popular choice, shown to be efficient and

also cost-effective for SH0 wave generation in plates, with the piezoelectric

transducers working in different modes, such as d15 [9], d35 [8], d24 [1516] and d36 [7,

17  18] modes. Specifically, for the d15 mode, with the poling direction of the

piezoelectric wafer parallel to the surface of the plate and the electric field on the

thickness direction, SH waves (including SH0 wave) can be generated and propagate

along the direction perpendicular to the poling direction. For instance, a flexible d15

PZT transducer is used to generate SH0 waves with directionality in the low

frequency range of 20-120kHz [19]. Besides, to predict the directivity patterns of

contact type ultrasonic transducers in the generation of guided waves, a novel 2D

analytical model based on the Huygens’s principle is proposed by Tiwari et al [20], in

which affiliated SH0 wave with 80kHz is obtained through finite element modeling

and verified by experiments. Recently, SH0 wave generation and reception using a

synthesized face-shear deformation mode in a thickness-poled piezoelectric wafer
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have also been investigated [21].

Despite the vast FEM-based numerical investigations and experimental attempts

on the SH wave excitation, there is still a lack of general theoretical method/model to

systematically describe the generation process of the SH waves, which is the

motivation and the contribution targeted by this paper. Such a model would allow

revealing the mechanism of the SH wave generation on one hand, and providing

guidance to the design of the SH-wave-based SHM system configurations in terms of

the actuator size and excitation patterns to achieve the desired system performance on

the other hand. Motivated by this, this work is dedicated to the development of such a

theoretical model for further SHM applications.

In this paper, a theoretical model for the SH0 wave generation using d15 mode

piezoelectric transducers is established based on the continuum mechanics theory, in

which the transducer is bonded on a plate through an adhesive layer. Upon exciting

the PZT actuator with an input voltage, SH waves are generated in the plate through

the bonding layer. In the process, the dynamics of the PZT intervene and are coupled

with the system, which is referred to as “dynamic coupling” in the following

discussions. In the proposed model, the bonding layer between the PZT actuator and

the plate is simulated through its thickness and shear modulus, instead of solving

complex governing dynamic equations [2224]. Analytical solutions, expressed in the

form of trigonometric series, are then obtained, which can simultaneously satisfy the

governing dynamic equations and the boundary conditions of the coupled PZT-plate

system. The convergence of the series is first assessed, following by a comprehensive
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FEM validation process in both time and frequency domains. Additionally,

experiments are carried out for further model validations and phenomenon

verifications. After that, influences of the dynamic coupling on the system

performance under different bonding conditions in different frequency ranges are

investigated in detail to better understand the underlying physics and the impact on

SHM system design.

2. Theoretical model

The two-dimensional model under investigation is composed of a PZT wafer (d15

mode), with a length 2a, bonded on the surface of an infinite metal plate through a

thin bonding layer, as shown in Fig. 1. The thickness of the PZT and the plate are

denoted by hp and hs, respectively. The upper PZT belongs to transversely isotropic

piezoelectric materials poled along the positive z direction which is determined from x

and y by the right-hand rule and is assumed to be infinite in this model. The bonding

layer, with parameters equivalent to an adhesive thickness typically in the range of

1-100 m [25], is taken into account.

Figure 1. Theoretical model
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2.1. Governing equations

Driven by an alternating voltage imposed on the surfaces of the PZT, SH waves can

be excited and propagate along x directions in the plate. Under the framework of the

continuum mechanics theory, the displacement vector u and electric potential function

 in the PZT can be expressed as [2627]

1 2 0u u  , 3 ( , , )u u x y t , ( , , )x y t  . (1)

Using the linear piezoelectricity theory, the corresponding stresses ( zx and  zy) and

electric displacements (Dx and Dy) in the PZT actuator write

44 15 44 15

15 11 15 11

, ,

, .

zx zy

x y

u uc e c e
x x y y
u uD e D e
x x y y

  

  

           
        
    

(2)

where c44, e15 and  11 are the elastic, piezoelectric and dielectric constants,

respectively. Hence, the dynamic equations governing the PZT layer can be written

as
2

2 2
44 15 2

p uc u e
t

  
   


, 2 2

15 11 0e u      . (3)

where p is the mass density, 2 is the two-dimensional (2D) Laplacian, and t is the

time. Similarly, the stress component zy in the plate can be obtained by zy
u
y

  




with  s being the shear modulus. Hence, the governing dynamic equation for the

plate is given by
2

2
2

s s uu
t

  
 


, (4)

with s being the mass density of the plate.
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2.2. Boundary conditions

The PZT layer is traction free and electricity open-circuited at x = a, which requires

x a  : 0xD  , 0zx  for 0 py h  . (5)

With the PZT acting as an actuator, a harmonic driving voltage Vexp(it) is imposed

on the piezoelectric strip, leading to the following boundary conditions:

py h : exp( )V i t   , 0zy  for x a . (6a)

0y  : 0  for x a . (6b)

Due to its sub-wavelength thickness scale of the bonding layer, i.e., the

thickness h is much smaller than the wavelength concerned, the corresponding shear

strain can be approximated by  1 ( ) ( 0)u y h u y
h

   . For the same reason, the shear

stress is assumed to be identical across the thickness of the bonding layer. Therefore,

the stress boundary conditions at the PZT-plate interface can be mathematically

written as:

( 0 ) ( 0 ) ( 0 ) , .
( 0 )

0, .

zy
zy

y u y u y x a
hy

x a




  


           
 

(6c)

where  stands for the shear modulus of the bonding layer. In this model, both  and

h are adopted to simulate the mechanical property of the bonding layer. While the

shear stress is continuous across the adhesive layer, the tangential displacements

undergo a jump. As an extreme case, Eq. (6) can be reduced an ideal bonding when u

and h approaches to infinity and zero, respectively. Then both displacement and shear
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stress are continuous.

Besides, the bottom surface of the plate is traction free, which requires

sy h  : 0zy  . (6d)

In the following, we will focus on finding a theoretical or analytical solution which

can satisfy both the governing equations, Eqs. (3) and (4), and the boundary

conditions, Eqs. (5) and (6), simultaneously.

2.3. Analytical solutions

The solution of Eq. (3) can be obtained by virtue of the trigonometric function

expansion technique [28]. The displacement and the electrical potential function are

expressed as follows (hereafter, exp(-it) is omitted for brevity):

   0 0 0 0
1

cos( ) sin( ) cos( ) sin( ) cos( )m m m m m
m

u A y B y A y B y x    




    , (7a)

   

   

15
0 0 0 0 0 0

11

15

1 11

cos( ) sin( )

cos( ) sin( ) cosh( ) sinh( ) cos( ),m m m m m m m m m
m

e A y B y C y D

e A y B y C y D y x

  


    






   

 
    

 


(7b)

where the undetermined coefficients A0, B0, C0, D0, Am, Bm, Cm and Dm will be

determined by the boundary conditions mentioned above. In the above expressions,

m
m
a
  is the wave number in x direction. The above expressions involve the modal

superposition of different mode number m. The wave number m in y direction can

be obtained as
2

2

44 /
m mpc

 


  if the solution in Eq. (7) satisfies dynamic

governing equation of the PZT, Eq. (3), with the equivalent shear modulus
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2
15

44 44
11

ec c


  . Note that the traction free and electricity open-circuited boundary

conditions at x = a, i.e., Eq. (5), have been automatically satisfied. Correspondingly,

the shear stress component zy, which will be used in subsequent boundary conditions,

is given by

 

    
44 0 0 0 0 0 15 0

44 15
1

sin( ) cos( )

sin( ) cos( ) sinh( ) cosh( ) cos( ).

zy

m m m m m m m m m m m
m

c A y B y e C

c A y B y e C y D y x

   

      




   

    

(8)

For the SH waves in the plate, its displacement can be expressed in terms of the

Fourier integral as [29]

     cos sin exps s s su A y B y iqx dq 



    , (9)

where As and Bs are the coefficients to be determined. This expression satisfies the

governing equation of the plate, Eq. (4), if
2

2

/s s s q
 

  . Hence, the

corresponding stress component can be obtained as:

     sin cos exps
zy s s s s sA y B y iqx dq    




     . (10)

Substituting Eqs. (7), (8), (9) and (10) into the boundary conditions, Eq. (6), yields the

following linear homogeneous equations:




44 0 0 0 0 0 15 0 44
1

15

sin( ) cos( ) sin( ) cos( )

sinh( ) cosh( ) cos( ) 0.

p p p p
m m m m m

m

p p
m m m m m m

c A h B h e C c A h B h

e C h D h x

     

   





           

    


(11)

15
0 0 0 0 0 0

11

15

1 11

cos( ) sin( )

cos( ) sin( ) cosh( ) sinh( ) cos( ) .

p p p

p p p p
m m m m m m m m m

m

e A h B h C h D

e A h B h C h D h x V

 


    






        

 
           

 


(12)
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15 15
0 0

111 11

cos( ) 0.m m m
m

e eA D A C x
 





 
    

 
 (13)

     0
1

tan exp cos( ) exp , .s
s s s s m m s

m
h A iqx dq A A x A iqx dq x a

h
   

 

 


       
  (14)

   
   44 0 0 15 0 44 15

1

0, .
tan exp

cos( ), .
s
s s s s

m m m m m
m

x a
h A iqx dq

c B e C c B e D x x a
  

   







 
  

   


 

(15)

It is noted that the undetermined coefficient As can be obtained by inverting the

Fourier transform in Eq. (15), giving

           
 44 0 0 15 0 44 15 2 2

1

sin 1 sin1 .
tan

m

s m m m ms
ms s s m

qa q qa
A c B e C c B e D

h q q
  

     





       
  



(16)

When  tan 0s s sh   , the phase velocity of the SH waves in the plate with its both

the upper and bottom surfaces free can be obtained as:

2

SH 1, ( 0,1, 2, ).
s

s
s

mc m
qh

 


 
   

 
 (17)

When m = 0 for SH0 wave, SH0 /s sc   . This velocity only depends on the

material parameters of the plate and is frequency-independent and therefore

non-dispersive. Multiplying Eqs. (11)(14) by cos(nx3) for n = 0, 1, 2, …(with 0=

0), integrating the resulting equations from –a to a, and substituting Eq. (16) for As,

the following linear equations in terms of the whole set of the undetermined constants

can be obtained:

44 0 0 0 0 0 15 0sin( ) cos( ) 0.p pc A h B h e C        (18a)

44 15sin( ) cos( ) sinh( ) cosh( ) 0.p p p p
m m m m m m m m m mc A h B h e C h D h                (18b)
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15
0 0 0 0 0 0

11

cos( ) sin( ) .p p pe A h B h C h D V 


          (18c)

15

11

cos( ) sin( ) cosh( ) sinh( ) 0.p p p p
m m m m m m m m

e A h B h C h D h   


          (18d)

15
0 0

11

0.e A D


  (18e)

15

11

0.m m
e A C


  (18f)

     

     
 

2

0 44 0 0 15 0 2

2

44 15 2 2
1

2sin1 12
/ tan

2 1 sin
.

s
s s s

m

m m m m
m m

qa
aA c B e C

h h q

qa
c B e D dq

q


    

 
 









  
     

 

 

 





(18g)

       
 

     
  

2

44 0 0 15 0 2 2

2 2

44 15 2 2 2 2
1

2 1 sin1 1
/ tan

2 1 sin
.

m

m s
s s s m

m n

n n n n
n m n

qa
aA c B e C

h h q

q qa
c B e D dq

q q


     

 
  









  
       


 

  





(18h)

Eq. (18) contains 2N+4 linear algebraic equations with 2N+4 undetermined

coefficients, in which N stand for the truncation order of the trigonometric series.

These coefficients can be numerically obtained by solving the above equations.

In most SHM applications, tone-burst excitations are preferred as they can

provide sufficient temporal information for damage diagnoses. The input voltage in

time domain can be expressed as

 in 0 0
1( ) 1 cos 2 sin 2 ,

2 C

VV t f t f t
N

 
  

   
  

(19)

where f0 is the central frequency, V stands for the voltage amplitude and NC is the

number of cycles. In the present work, five-cycle tone-burst signals are used (NC = 5).

Given a certain position x0, the frequency response function, denoted by G(ω), can be
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numerically obtained from Eq. (18). Subjected to an excitation signal fe(t), the time

domain displacement response can be obtained as

 0( , ) IF F ( ) ( ) ,eu x t f t G     (20)

where F() and IF() represent the direct and inverse Fourier transform, respectively.

3. Numerical simulations and improvement of the series

Up to now, a theoretical dynamic model on SH waves that are excited by external

voltage imposed on a PZT actuator and propagate along x direction in the plate has

been established, for which the closed form expressions of the solution have been

obtained. Before investigating its application in SHM, the correctness of the model is

first examined. To this end, an aluminum plate with a PZT-5H actuator is considered.

For the selected PZT-5H, c44 = 23GPa, e15 = 17.0C/m2, 11 = 1.50510-8C/Vm, and p

= 7500kg/m3 [30]. For the aluminum plate, E = 70GPa,  = 0.33, and s = 2700kg/m3.

In the present case, only SH0 wave is considered because of its non-dispersive

property. The external voltage V = 1V, and the thickness of Al plate is fixed as hs =

2mm. For the bonding layer, the shear modulus is estimated as 0.468 GPa from the

experimental measurements [22] for the 2-component epoxy which will be further

used in the experiments of this work. In the calculations, however, this value is

rounded to 0.5GPa throughout the numerical studies. The thickness of the bonding

layer usually varies in the range of 1-100  m [25], depending on the gluing

techniques used. Hence, the effect of the thickness h on SH wave generation is worth
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investigating. Altogether, the effect of the shear modulus  can be derived directly

from the results based on Eq. (6c) (not shown here).

3.1. Convergence of the series

The convergence and the correctness of the series solution are first examined. Tables 1

and 2 respectively show the amplitude of the displacement u at a given point of the

plate with different truncation orders of the series for the ideal (h = 0) and a

representative non-ideal (h = 10m) bonding cases. It can be seen from the tables that

the trigonometric series exhibits a good convergence in the frequency range

concerned for both cases, irrespective of bonding conditions, structural configurations

and receiving positions of the signals. Typically, twenty terms in the series are

sufficient to ensure an acceptable accuracy.

Table 1 Values of u  at x0 = 20mm with different truncations of the series for ideal

bonding (h = 0, 2a = 6mm, and hp= 0.3mm).

u(10-9m) f0 = 100kHz f0 = 200kHz f0 = 300kH f0 = 400kHz f0 = 500kH

N = 1 0.081117 0.119097 0.122308 0.082794 0.116833

N = 2 0.080946 0.118704 0.122194 0.082723 0.114423

N = 5 0.080795 0.118363 0.121979 0.082534 0.110178

N = 10 0.080744 0.118234 0.121876 0.082450 0.108409

N = 20 0.080730 0.118142 0.121804 0.082409 0.107526

Table 2 Values of  u  at x0 = 50mm with different truncations of the series for



15

non-ideal bonding (h = 10m, 2a = 10mm, and hp= 0.2mm).

u(10-9m) f0 = 50kHz f0 = 150kHz f0 = 250kH f0 = 350kHz f0 = 450kHz

N = 1 0.047516 0.085128 0.042566 0.095653 0.164971

N = 2 0.047469 0.085056 0.042617 0.095639 0.171180

N = 5 0.047410 0.084969 0.042613 0.094511 0.169916

N = 10 0.047386 0.084921 0.042594 0.094076 0.169257

N = 20 0.047378 0.084804 0.042576 0.093846 0.168939

3.2. FEM validations

To validate the present model, an FEM model is established using Comsol

Multiphysics (with the Partial Differential Equation Module), as shown in Fig. 2. The

aluminum plate is set to be long enough in x direction, so that for an input tone-burst

voltage shown in Eq. (19), SH0 wave will not be reflected within the computed time.

In the FEM simulations, the mesh size is set to be smaller than 1/20 of the shortest

wavelength and the time step smaller than 1/20f0 [6, 17]. Besides, re-computations are

done using even finer mesh sizes to ensure the convergence and the required accuracy

of the numerical results. It can be seen from Fig. 2 that a pure SH0 wave can be

excited and captured clearly.
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Figure 2. FEM model.

For a typical bonding case with h = 10m, 2a = 10mm, and hp= 0.2mm, Fig. 3(a)

shows the comparison between the theoretical and the FEM results at x0 = 20mm with

the central frequency f0 = 150kHz. The two curves match very well, in terms of both

the temporal, amplitude and phase information. The same consistency can also be

observed at different propagating distances and the excitation frequencies, as

evidenced in Figs. 3(b), 3(c) and 3(d). Besides, SH0 waves with different frequencies

in Figs. 3(a) and 3(c) show the same arriving time at the same receiving point, which

furthermore proves their non-dispersive property. The same phenomenon can also be

seen in Figs. 3(b) and 3(d). Furthermore, FEM validations are also carried out by

comparing the frequency tuning curves [25] which are used to characterize the

dependence of the wave amplitude on the excitation frequencies, as shown in Fig. 4.

In the FEM simulations, the wave amplitudes at each excitation frequency case are

extracted with the wavelet transform method [31]. When the external frequency

approaches fu-min in Fig. 4, instead of using the peak amplitude, we simply use the

amplitude of the wavelet coefficients at the calculated arriving time of SH0 waves.

For example, the amplitude at a receiving point x0 = 50mm can be extracted from the

wavelet coefficients of t = 0.5/cSH0. The consistency between the results in both time

and frequency domains in these different cases confirms that the proposed theoretical

model can be used to accurately predict the generated SH waves. Indeed, when the

excitation frequency exceeds fu-min and starts approaching the resonant frequency (to

be discussed later), the amplitude of the response tends to increase significantly,
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theoretically to infinite but to be bounded to a certain value depending on the system

damping. Due to the highly dynamic nature of the PZT-adhesive-plate assembly in the

vicinity of the resonance region, the system response is sensitive to structural details

such as damping and other system parameters. This explains the differences observed

in this region. For practical SHM applications, however, this is a frequency region

that should be avoided. Therefore, the model can meet our need as long as this

frequency range, alongside the wave amplitude variation trend, can be correctly

predicted.

(a) f0 = 150kHz, x0 = 20mm (b) f0 = 150kHz, x0 = 50mm

(c) f0 = 200kHz, x0 = 20mm (d) f0 = 350kHz, x0 = 50mm

Figure 3. Comparisons between the theoretical and FEM results for the non-ideal
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bonding case (h = 10m, 2a = 10mm, and hp = 0.2mm): (a) f0 = 150kHz, x0 = 20mm;

(b) f0 = 150kHz, x0 = 50mm; (c) f0 = 200kHz, x0 = 20mm; (d) f0 = 350kHz, x0 =

50mm.

Figure 4. Comparisons between the frequency tuning curves from the theoretical and

FEM results.

In addition, we also looked through the results for the ideal bonding case with h

= 0, 2a = 6mm, and hp = 0.3mm, nice agreement between the theoretical and FEM

results in both time and frequency domains can be observed (not shown here). To

conclude, the whole set of results demonstrate the validity and the accuracy of the

proposed dynamic model, which can be further used to simulate the SH0 wave

generation and propagation in a PZT-activated plate and furthermore guide the design

of the corresponding SHM systems.

3.3. Truncations of the series
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Before the systematic investigations, an improvement or optimization of the algorithm

is necessary by establishing a truncation criterion of the series, aiming at truthfully

depicting the SH wave generation process while reducing the computational cost at

the same time.

Using the realistic bonding case with h = 10m, Fig. 5(a) shows the comparison

between the calculated results with N = 20, which has been proved to be convergent

and correct, and those with different truncation orders. We can observe that N = 1

guarantees very good accuracy for frequencies before the first fu-min. Similarly, for N =

2, the result is still convergent before the second fu-min. This trend seems to apply to

other cases considered in both Figs. 5(a) and 5(b), irrespective of the bonding stiffness

and PZT dimensions. Considering that the length of PZT approximately equals to the

multiple of the wavelength at fu-min, this suggests that the series order to be kept in the

calculation should be no less than the non-dimensional ratio 2a/  (  denotes the

wavelength). Therefore, a truncation criterion using  cr INT 2 / 1N a   is

proposed for the trigonometric series truncation, in which INT stands for the rounding

operation. The displacement amplitude of the SH0 waves calculated using this critical

truncation, as well as the reference result using N = 20, is shown in Fig. 6, which

furthermore proves the correctness of the proposed truncation criterion. This criterion

will be adopted in the following simulations and analyses.
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(a) (b)

Figure 5. Excited amplitude of displacement using different truncations: (a) 2a =

20mm, hp = 0.3mm, and h = 10m; (b) 2a = 30mm, hp = 0.2mm, and h = 0.

(a) (b)

Figure 6. Verifications of the proposed truncation criterion: (a) 2a = 30mm, hp =

0.2mm, and h = 10m; (b) 2a = 40mm, hp = 0.15mm, and h = 0.

4. Experimental validations

Experiments are designed and carried out to further validate the theoretical model and

to confirm some important physical phenomena revealed by the model. For the

experimental set-up, PZT C6 patches (manufactured by Fuji Ceramics, c44 = 19GPa,
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e15 = 14.4C/m2,  11 = 9.18  10-9C/Vm, and  p = 7650kg/m3) of a dimension

10mm  10mm  0.3mm are bonded on the surface of a 500mm  500mm  1.6mm

aluminum plate to serve as the transducers. Three SH-PWAS, polarized along positive

z direction, are placed along the diagonal direction of an aluminum plate, as shown in

Fig. 7. The SH0 wave is first generated by Actuator #1, and received by Sensors #2

and #3, 10cm and 25cm away from Actuator #1, respectively. Then the SH-PWAS #2

serves as the actuator and wafer #3 is used for sensing. Experimental process follows

the standard test procedure with experimental facilities detailed in [22, 31]. A

controller commands the NI-PXI5412 signal generation module to output a tone burst

excitation signal. The low-voltage signal then passes through a Ciprian US-TXP-3

power amplifier and the amplified output is applied to the piezoelectric transducer to

generate SH waves in the plate. Responses of SH waves are then acquired by the

NI-PXI5105 data acquisition system, stored and processed by the controller. Fig. 8

shows the photo of the experimental setup used.

Figure 7. Layout of the piezoelectric actuator and sensors for SH wave excitation and

reception in an aluminum plate.
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Figure 8.Measurement system.

Some typical sensor output signals at different central frequencies are shown in

Fig. 9 and compared with the theoretical results. As the theoretical model gives the

displacement output at a single point and the experiment obtains the voltage output

within a finite region, the results are compared in the normalized scale due to the

different sensing patterns. It can be seen that the temporal variation and the phase in

the theoretical and experimental results match reasonably well. Unwanted S0 mode,

inevitably generated by the PZT of finite size, is also detected in experimental signals

before the SH0 wave mode, evidenced by the small wave packet in Fig. 9(d).

However, due to the difference in the group velocities of S0 and SH0 waves, their

corresponding wave packages can be separated in the captured signals. Thus, the

generated Lamb wave package was not seen to affect the analyses of the SH0 wave.
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Besides, some differences between the theoretical and experimental results can be

found from the results shown in Fig. 9, which mainly due to the sensing pattern

during the experimental process. More specifically, the theoretical result is calculated

at a fixed position, for example, x0 = 10cm in Fig. 10. However, the sensor used in the

experiments has a length of 10mm in the wave propagation direction. The received

output signal actually corresponds to the region 9.5cm  x0  10.5cm. This also leads

to discrepancies between the theoretical and experimental results.

(a) f0 = 100kHz, x0 = 10cm (b) f0 = 100kHz, x0 = 15cm

(c) f0 = 150kHz, x0 = 10cm (d) f0 = 350kHz, x0 = 10cm

Figure 9. Comparisons between the theoretical and experimental results: (a) f0 =

100kHz, x0 = 10cm; (b) f0 = 100kHz, x0 = 15cm; (c) f0 = 150kHz, x0 = 10cm; (d) f0 =
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350kHz, x0 = 10cm.

Although the amplitude information in the theoretical and experimental results

cannot be directly compared, their frequency tuning curves can be compared to

further validate the theoretical model in the perspective of wave amplitude prediction.

To obtain the frequency tuning curves in the experiment, the amplitude of each

response signal is extracted with the continuous wavelet transform. Similar to the

FEM validation, when the central frequency approaches fu-min, the amplitude of the

wavelet coefficients at the wave arrival time is used instead of the peak amplitudes.

Finally, the frequency tuning curves in terms of the normalized sensor output voltages

of the three aforementioned cases with different wave propagating distances are

obtained and compared with the theoretical results, as shown in Fig. 10. The

frequency tuning curves from experimental results for different cases have the same

tendency with the theoretical prediction, including the locations of fu-max and fu-min,

despite some discrepancies in the amplitude values. In the extremely low frequency

region, near-field effect may contribute to these discrepancies between the theoretical

and experimental results. However, with the increase of the excitation frequency,

especially when the excitation frequency exceeds fu-min, the system will tend to

resonate. The responses near the resonant frequency will be very sensitive to the

structural details such as material damping and bonding parameters and so forth. It is

the complex dynamic behaviors that cause the relatively large discrepancies between

the theoretical and experimental results in this frequency region. Besides, as
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mentioned above, the different sensing patterns between the theoretical and

experimental results also contribute to the discrepancies observed in Fig. 10.

Neverthless, although there are some discrepancies between the theoretical and

experimental results due to the complex dynamic behaviors of the system when the

excitation frequency approaches the resonant frequency, this frequency region should

be avoided for SHM applications and therefore this region appears less important to

us. All important SHM promising characteristics, such as the frequencies to generate

the maximum and minimum wave amplitude, and the general variation of the

frequency tuning curves predicted by the theoretical model, are confirmed by

experimental results, which implies that the theoretical model can provide all the

necessary temporal, phase and amplitude information to guide the SHM design.

Figure 10. Comparisons of the frequency tuning curves between theoretical and

experimental results.

5. Discussions
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So far, the proposed theoretical model has been validated in both numerical and

experimental perspectives. In this section, based on the model, the influence of the

dynamic coupling between the PZT and the plate under different bonding conditions

is investigated in detail for guiding the design of SH0-wave-based SHM systems. As

illustrated in Fig. 4, the generated SH wave amplitude varies with the PZT size as

well as the excitation frequencies. Generally speaking, with the increasing excitation

frequency, the generated amplitude u  firstly increases, peaks at fu-max, decreases to a

valley at fu-min before rising up again rapidly. In the present case, the exact peak

position is determined to have 2a/  = 0.477, slightly lower than the commonly

accepted rule of thumb of 0.5 when the PZT is considered as an ideal non-dynamic

element [15]. At higher frequencies, the system starts to enter into a highly dynamic

region in which system resonances are expected. These observations suggest that SH

wave generation can be affected by the PZT dynamics and its coupling with the plate,

which may pose challenges for further system design. Therefore, a systematic

investigation is carried out in three typical frequency regions of the frequency tuning

curves in the following sections using a typical benchmark problem (hs = 2mm and hp

= 0.3mm).

5.1. Peak region and peak positions

The thickness of the bonding layer can certainly affect the amplitude of the
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generated waves. However, in practical applications, the thickness of the bonding

layer is usually hard to be controlled precisely. Therefore, a more feasible scenario

would be to choose the optimal excitation frequency for a given thickness of the

existing bonding layer, in the peak region and peak positions on the frequency tuning

curves. Governed by the inherent PZT length-wavelength relations, the peak positions

are mainly determined by the PZT lengths, as shown in Fig. 11. Taking the particular

bonding case (h = 0) with a PZT length 2a = 8mm as an example, the maximum SH0

wave amplitude is achieved at f = 181kHz, which can be considered as the optimal

frequency fu-max. When 2a = 12mm, two peaks appear at f = 115kHz and f = 343.5kHz,

with corresponding 2a/ values of 0.443 and 1.32, respectively, smaller than 0.5 and

1.5, the subconscious values in our mind. Although different in values, these

observations are consistent with the ones made using Fig. 4. Apart from the PZT

length, the dynamic coupling may also affect the peak positions. The coupling

strength can be adjusted through changing the bonding conditions. To ascertain this,

the fu-max peak positions are plotted against the bonding stiffness for different PZT

lengths in Fig. 12 for both the first and the second peak positions. It can be seen when

the PZT length is small, the influence of the bonding conditions is very significant, as

evidenced by the steep curves in the figure. Besides, the fu-max peak positions remain

relatively stable when the bonding layer is thin, especially for a large PZT size.

Therefore, for a given PZT size and bonding layer thickness, the optimal excitation

frequency can be determined using Fig. 12. This finding can be further used to guide

the design of the SHM systems in two aspects:
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1) If the length of the PZT can be tuned, long PZTs are preferred to ensure a more

stable system performance against the variation of the bonding conditions.

2) For a small-sized PZT, precautions should be taken to carefully check the bonding

quality in order to ensure an effective wave generation using the right excitation

frequency.

Figure 11. Excited displacement amplitude for different PZT lengths (h = 0).

(a) (b)

Figure 12. Relationship between the first two fu-max peak positions and the bonding

layer thickness h: (a) the first peak position; (b) the second peak position.



29

5.2. Highly dynamic region and resonance frequencies

Another frequency region of interest is around the resonance frequencies of the

system where the system is highly dynamic. Fig. 13 shows the time domain responses

(Fig. 13a) of the system under a five-cycle tone-burst excitation with a central

frequency of 420kHz, as well as their corresponding spectra (Fig. 13b) with two

different bonding conditions. It can be seen that, when h = 0, the excitation frequency

is distant from the resonance frequency of the system at 618.5kHz. Therefore, the

generated wave undergoes little distortion. However, when h = 10m, the system

resonance frequency (546.8kHz) reduces to get closer to the excitation frequency. As

a result, the generated SH0 waves are severely distorted and dispersed in frequency as

shown in Fig. 13. This divergent signal can hardly be used in SHM applications so

that the situation should be avoided. The resonant frequencies of the system for a

given configuration and bonding condition can be predicted using the proposed

dynamic model.

It is relevant to further quantify the influence of the dynamic coupling through

the bonding conditions. Using the same example, the first resonance frequency of the

system is calculated and plotted against the thickness of the bonding layer with

different PZT lengths in Fig. 14. As expected, a weaker bonding case with a samller h

value reduces the resonance frequency, as shown by the downward trend of the curves.

Meanwhile, a plate with a longer PZT results in a lower resonance frequency, due to

the fact that the equivalent shear modulus 44c of the PZT is smaller than the shear
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modulus  s of the metal plate. When this happens, the resonance region moves to

lower frequencies, thus narrowing down the useful frequency range for SHM. Another

observation is that the resonant frequency is quasi-linear with respect to the thickness

of the bonding layer in logarithmic scale, which provides a simple way for the

systematic assessment. To some extent, it is always preferred to enhance the bonding

conditions to achieve a wider low-frequency range for SHM applications.

(a) Time domain (b) Frequency domain

Figure 13. Displacement responses in the time domain (a) and the corresponding

amplitude spectrums in the frequency domain (b) (x0 = 50mm, f0 = 420kHz, and 2a =

4mm).
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Figure 14. Variations of the first resonance frequency with respect to the thickness of

bonding layer.

5.3. Wave distortion around the valley

Having discussed the peak position region (to be used in SHM) and the resonance

region (to be avoided in SHM), a closer look is taken at the valley region surrounding

fu-min on the frequency tuning curve to complete the coupling analyses. By varying the

central frequency of the excitation f0 around fu-min, calculations using the proposed

model and the FEM both reveal a split of the generated SH0 wave packet to various

extents, as shown in Fig. 15. A plausible explanation can be made as follows.

According to the frequency tuning curve shown in Fig. 4, wave generation at fu-min is

minimal. Since the excitation signal has a certain frequency band near the central

frequency, the side band responses dominate to create such a phenomenon, as

evidenced by the transformed amplitude spectrums (FFT results) shown in Fig. 15.
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Due to the finite PZT patch adopted during experimental process, unwanted S0 mode

waves can be clearly seen before SH0 waves in Fig. 16. Meanwhile, the wave

distortion phenomenon is also confirmed by experiments, as shown in Fig. 16. The

shape of the two split waves is dependent on many factors, such as the initial

excitation signal, external frequency, fu-min, and the slope of the frequency turning

curve near fu-min. Therefore, the two split wave packages are not necessarily to be even

theoretically. In addition, when the excitation frequency approaches fu-min, the

generated SH wave amplitude will be very small. In this case, other factors which

would be neglected under the normal SH wave dominance can no longer be

overlooked and start to show effects. Therefore, the revelation of the phenomenon and

its experimental confirmation demonstrate again the capability of the proposed model

in depicting the fine details of the physical phenomena.

This situation should, again, be avoided in practical SHM exercises. Should this

happen, the splitted waves might be misunderstood as two separate wave packets.

Moreover, the extracted amplitude information may be easily overwhelmed by the

wave components of the side bands. This may further mislead the damage diagnosis.
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(a) f0 = 270 kHz

(b) f0 = 280 kHz

(c) f0 = 290 kHz

Figure 15. Wave distortion phenomenon observed during theoretical and numerical

analyses (the PZT 5H-Aluminum composites with 2a = 10mm, hp = 0.2mm and hs =

2.0mm): (a) f0 = 270kHz; (b) f0 = 280kHz; (c) 290kHz. The left and right figures are

respectively the displacement responses in time domain and the corresponding

amplitude spectra in frequency domain.
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(a) f0 = 264kHz, x0 = 15cm (b) f0 = 270kHz, x0 = 10cm

Figure 16. Wave distortion observed in experiments (PZT C6-Aluminum composites

with 2a = 10mm, hp = 0.3mm and hs = 1.6mm): (a) f0 = 264kHz, x0 = 15cm; (b) f0 =

270kHz, x0 = 10cm.

6. Conclusions

A theoretical model for the SH0 wave generation is established in this study, in which

the full dynamics of the PZT actuators are considered and coupled to a plate through

an elastic bonding layer, through the consideration of its thickness and shear modulus.

Analytical solutions, which can simultaneously satisfy the governing dynamic

equations and boundary conditions, are obtained in a closed form using trigonometric

series and modal superposition method. The fast convergence of the series solutions

and their good accuracy are demonstrated with the aid of FEM results in both time

and frequency domains. To maximize the calculation efficiency, a truncation criterion

for the series selection is proposed, based on the size of the PZT actuators and the

wavelength of SH0 waves. Additionally, experiments are also carried out to further
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validate the theoretical results. Finally, systematic analyses on the dynamic coupling

and the SH wave generation are carried out from SHM perspectives.

Results predicted by the proposed model agree well with both FEM and

experimental results in terms of the temporal, phase and amplitude of the generated

SH0 waves, in a wide frequency range before approaching the system resonance.

Closer to the system resonance, the accuracy of the model deteriorates in terms of

wave amplitude prediction due to the increasing sensitivity of the system response to

structural details. Fortunately, this is a frequency range that should be avoided in

SHM applications. Numerical analyses show the influence of the dynamic coupling

on the SH0 wave generation in terms of both peak, valley and the resonance region of

the frequency tuning curves. The prevailing conclusion of the analyses is that the

PZT-adhesive-plate forms a coupled dynamic system, whose dynamic coupling

impacts on the SH0 wave generation, and consequently on the SHM applications.

More specifically, it is shown that, due to the dynamic coupling, the optimal

excitation frequency differs from (lower than) the common rule of thumb of 2a/ =0.5,

1.5, …. The determination of the accurate values, however, would need a

comprehensive analysis and calculation using a fully-coupled dynamic model like the

present one. When reaching the valley of the frequency tuning curve, the generated

waves are split into two wave packets dominated by the energy of the sidebands.

Finally, at even higher frequencies approaching the resonance frequencies of the

system, severe signal distortions take place due to the strong system dynamics. These

last two scenarios should be and can be avoided in the design of practical SHM
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system through simulations using the proposed model.

It is relevant to summarize the major contribution of the work form SHM

perspective. The proposed model, by virtue of its fully coupled nature, is different

from existing ones and provides a new analysis tool on a PZT-adhesive-plate system.

In physical perspective, the model allows the prediction of the system resonances as

well as the evaluation of the effect of the adhesive layers. Numerical analysis

demonstrates the implication of this coupling in terms of wave generation when

approaching the highly dynamic region of the system. Finally, the model shows its

ability to enable efficient and systematic evaluation of the effects of various system

parameters on the practical design of a SHMN system, such as the excitation

frequency, bonding thickness of the adhesive, and the size of PZT.

As a final remark, the present model presents a unified platform for physical

mechanism exploration, structural design and eventually system optimization for SH0

wave based SHM applications. As a side issue, the Lamb mode generation, such as

the unwanted affiliated S0 mode caused by the finite PZT pitch, is a useful and

interesting topic. Its generation, as well as its mutual effect with SH0 waves, deserves

a separate and systematic investigation in further work.
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