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Abstract 

Damage localization in plate-type structures has been widely investigated by exploring 

the structural characteristic deflection shapes (CDS’s) or their spatial derivatives. 

Despite the substantial advances in this kind of methods, several key issues still need 

to be addressed to boost their efficiency for practical applications. This study considers 

three essential problems: susceptibility to measurement noise, absence of baseline-data 

on pristine structures, and selection of measurement sampling interval and that of the 

parameters to be used in the de-noising techniques for more accurate damage 

localization. To tackle these problems, a novel baseline-free adaptive damage 

localization approach is proposed, which combines the robust Principal Component 

Analysis (PCA) with Gaussian smoothing. A damage localization evaluator is defined 

to determine both the spatial sampling interval of the CDS’s and the scale parameter of 

Gaussian smoothing to warrant a better damage localization. Moreover, effects of the 

measurement noise and numerical errors due to the use of the finite difference scheme 

on the estimate of the CDS derivatives are quantified. Finally, the feasibility and the 

effectiveness of the proposed method are verified both numerically and experimentally 

by using a cantilever plate with a small damage zone. It is found that the second-order 

spatial derivative of the CDS’s is able to provide the best damage localization results 

among the first four order spatial derivatives of the CDS’s.  
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1 Introduction     

Vibration-based methods for the detection and localization of structural damage play a 

significant role in structural health monitoring and have experienced a rapid 

development in the past several decades [1-5]. Recently, damage identification in plate-

type structures has attracted more attention [6-8]. As compared to natural frequencies, 

structural characteristic deflection shapes (CDS’s) or their spatial derivatives are more 

effective and sensitive dynamic features, as structural damage is typically a local 

phenomenon that initiates and propagates within a local area [9, 10]. Here, the so-called 

structural characteristic deflection shapes refer to spatial shape-type features, e.g., mode 

shapes and operational deflection shapes [11, 12]. Moreover, CDS-based damage 

identification methods tend to be much more robust to environmental and operational 

variability than natural frequency-based methods. With the development of advanced 

measurement techniques like scanning laser vibrometer (SLV) or full-field digital 

image correlation, CDS’s can be readily acquired at a high spatial resolution within a 

short time. However, CDS’s and their spatial derivatives are vulnerable to measurement 

uncertainties. For example, the CDS’s acquired by a SLV are easily contaminated by 

speckle noise [13]. 

 

The CDS- or its spatial derivative-based damage localization methods can either be 

baseline-based or baseline-free. In practice, baseline data on pristine structures may not 

be available. Therefore, baseline-free methods which only utilize CDS’s or CDS spatial 

derivatives of the damaged state are more attractive and useful. To examine the damage-

induced local characteristics without baseline data, advanced signal processing methods 

are commonly used, exemplified by methods like wavelet analysis or fractal dimension 

analysis [14-16]. Gentile and Messina [17] studied the Gaussian wavelet transforms in 
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localizing open cracks of beams and concluded that high-order Gaussian derivative 

wavelets were more sensitive to damage. Cao and Qiao [18] employed the stationary 

wavelet transform to improve the noise robustness of mode shapes and applied 

continuous wavelet transform to localize the damage. Bai et al. [19] applied fractal 

dimension analysis to high-order mode shapes of plates based on the fractal surface 

singularities. Moreover, fractal dimension analysis could be combined with wavelet 

analysis to enhance the noise robustness of damage localization [20]. A common 

limitation of this kind of methods, however, is to the difficulty in integrating the damage 

information of several CDS’s or CDS spatial derivatives for robust damage localization.  

 

On the other hand, without the baseline data on pristine structures, the pseudo-CDS’s 

or CDS spatial derivatives of the undamaged state are primarily constructed based on 

those of the damaged state by surrogate models or low-rank models (such as principal 

component analysis (PCA)) [21, 22]. Then, differences in CDS’s or CDS spatial 

derivatives between the damaged state and the undamaged state are evaluated to 

localize the damage. The basic principle is that the CDS’s or CDS spatial derivatives of 

an intact plate are smooth; or, when represented as a matrix by following the 

measurement grid, possess a low-rank structure. Xu and Zhu [23] employed a 

polynomial fitting approach to construct the mode shapes of the undamaged plates. The 

square of the absolute differences with mode shapes of the damaged plates was then 

used for damage localization. Cao and Ouyang [24] proposed a robust damage 

localization index by incorporating the damage information of several modes, which 

applied gapped smoothing method to extract the damage characteristics of mode shapes. 

Yang et al. [25] investigated the low-rank and sparse data structure of a 2-D strain field 

for damage identification in plates. One advantage of this kind of methods is that the 

damage-induced local shape characteristics can be clearly extracted. Furthermore, the 

extracted damage features of several CDS’s or CDS spatial derivatives can be readily 

integrated for robust damage localization.  
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Generally speaking, high-order spatial derivatives of the CDS’s, especially the 

curvature, are commonly used for structural damage localization in flexible structures, 

as the spatial derivatives can effectively amplify the damage-induced local structural 

changes [26-28]. However, the finite difference method, usually adopted for estimating 

the spatial derivatives of CDS’s, spreads and amplifies the numerical and measurement 

errors, which can severely degrade the estimation accuracy of these quantities [29]. To 

tackle the problem, two strategies, namely the proper choice of the sampling interval 

and low-pass filters, are commonly used [30-32]. For the former, a numerical solution 

was presented by Sazonov and Klinkhachorn [31] to minimize the effect of the 

measurement noise and that of the truncation errors of the finite element method on the 

calculation of the curvature and strain energy mode shapes. For the latter, methods 

including cubic spline interpolation [33], wavelets [34], Gaussian function derivatives 

[35] and wavenumber filtering [36] were investigated. However, these damage 

localization strategies cannot guarantee the best (the most accurate) damage 

localization result.     

 

This paper proposes a novel baseline-free adaptive damage localization method to 

achieve the best damage localization by using only CDS’s or their spatial derivatives of 

the damaged state. The proposed method takes advantage of the low-rank structure of 

2-D CDS’s and the sparse property of the structural damage locations. Different from 

the methods that intuitively setting the measurement sampling interval and the 

denoising parameters, a damage localization evaluator (DLE) is defined to quantify the 

damage localization performance and to determine the optimal spatial measurement 

sampling interval and the proper scale parameter of Gaussian smoothing for the best 

damage localization corresponding to the highest DLE value. In addition, localization 

results using the first four order spatial derivatives of the CDS’s are presented and 

compared to evaluate the proper order of the CDS spatial derivatives for more accurate 

damage localization. 
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The structure of the paper is organized as follows. In Section 2, the principle of damage 

localization of plates by using CDS’s or CDS spatial derivatives is described and a 

baseline-free damage localization index is defined based on a robust PCA. Then, the 

noise propagation and truncation errors of the finite element method during high-order 

CDS spatial derivative estimation are quantified in Section 3. In Section 4, an adaptive 

damage localization method is proposed and a damage localization evaluator is defined. 

Numerical and experimental studies are then conducted to verify the proposed approach 

in Section 5 and Section 6, respectively. Finally, conclusions are summarized in Section 

7.  

 

2 Principle of the baseline-free damage localization in plates  

Consider a homogeneous and isotropic thin plate of constant thickness ℎ . The 

governing equation of harmonic motion at a given angular frequency 𝜔 writes  

 𝐷∇2∇2𝑤(𝑥, 𝑦) + j𝐶𝜔𝑤(𝑥, 𝑦) − 𝜌ℎ𝜔2𝑤(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) (1) 

where j= √−1 ; ∇2= 𝜕2 𝜕𝑥2⁄ + 𝜕2 𝜕𝑦2⁄   is the Laplace operator; 𝐷 =

𝐸ℎ3 (12(1 − 𝜐2))⁄  is the plate’s flexural rigidity with Young’s modulus 𝐸 and the 

Poisson’s ratio  𝜐 . 𝑤(𝑥, 𝑦)  denotes the plate displacement in the z -direction; 𝐶 

indicates the viscous damping coefficient and 𝜌 the mass density.  

 

If the external force distribution  𝑓(𝑥, 𝑦)  and its spatial derivatives are always 

continuous including 𝑓(𝑥, 𝑦) = 0, the damage-induced changes in Young’s modulus 

𝐸 or plate thickness ℎ will cause a sudden change/singularity in 𝑤(𝑥, 𝑦) and then 

𝑤d(𝑥, 𝑦)  (d  indicates the damaged state) can be used for damage detection and 

localization. 

 

Traditionally, the high-order spatial derivatives of 𝑤d(𝑥, 𝑦) are preferred, as they are 

more sensitive to incipient damage than 𝑤d(𝑥, 𝑦) [28]. To extract the damage-induced 

features in  𝑤d
𝑟(𝑥, 𝑦)  (𝑤d

𝑟(𝑥, 𝑦) = (𝜕𝑟 𝜕𝑥𝑟⁄ + 𝜕𝑟 𝜕𝑦𝑟⁄ )𝑤d(𝑥, 𝑦),  ∀𝑟 ∈ [0, +∞]  and 

𝑟 is an integer), a robust principal component analysis is adopted, which decomposes 

𝐖d
𝑟(𝐖d

𝑟 ∈ ℝ𝑛1×𝑛2 is a matrix containing 𝑤d
𝑟(𝑥, 𝑦) at all measurement points) into a 

low-rank matrix 𝐋, a sparse matrix DI (which is defined as the damage index matrix 
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for damage localization) and a noise matrix E as 

 
𝐖d

𝑟 = 𝐋 + 𝐃𝐈 + 𝐄

minimize ‖𝐋‖∗ + 𝜉‖𝐃𝐈‖1   subject to ‖𝐖d
𝑟 − 𝐋 − 𝐃𝐈‖ ≤ 𝜖

 (2) 

where 𝜉 > 0  is an arbitrary balance parameter; 𝜖  (𝜖 > 0)  a threshold for noise 

matrix 𝐄. ‖𝐋‖∗ = ∑ 𝜆𝑖𝑖 (𝐋) represents the nuclear norm of matrix 𝐋 (which is the ℓ1 

norm of singular values) and ‖𝐃𝐈‖1 = ∑ |𝐷𝐼𝑖𝑗|𝑖𝑗  denotes the ℓ1 norm of matrix 𝐃𝐈. 

The healthy state 𝑤𝑟(𝑥, 𝑦) can be well approximated by 𝐋 and the damage-induced 

changes/singularities in 𝑤d
𝑟(𝑥, 𝑦) are revealed by 𝐃𝐈. 

 

Moreover, the balance parameter 𝜉  in Eq. (2) should be properly chosen to well 

separate the low-rank matrix 𝐋 and the sparse matrix 𝐃𝐈. It can be seen that an 𝐋 

with a sufficiently high rank will incorporate the damage features in its representation. 

For a very low rank 𝐋 , however, characteristic deflection shape features will be 

embedded in 𝐃𝐈 , which will corrupt the damage identification procedure and even 

produce misleading identification results. Here, 𝜉 = 1 √max( 𝑛1,  𝑛2)⁄   is chosen 

based on the work reported in the related papers [37, 38]. 

 

3 Problems in high-order derivative estimation  

The spatial derivatives of 𝑤(𝑥, 𝑦), 𝑤𝑟(𝑥, 𝑦), such as slopes (𝑟 = 1), curvatures (𝑟 =

2) and, more recently, third and four derivatives, have been widely used to localize 

damage in plate-type structures due to their damage sensitivity [39]. The most used 

approach to evaluate 𝑤𝑟(𝑥, 𝑦) is via the finite difference method, thus generating two 

essential problems: noise propagation and numerical approximation, which may 

jeopardize the accurate damage localization.  

3.1 Noise propagation of the finite difference method 

The acquired displacement 𝑤(𝑥, 𝑦) can be easily contaminated by measurement noise. 

To mathematically demonstrate the uncertainty propagation due to the finite difference 

calculation, 𝑤(𝑥, 𝑦) is assumed to be polluted by Gaussian white noise as  

 𝑤̃(𝑥, 𝑦) = 𝑤(𝑥, 𝑦) + 𝑛(𝑥, 𝑦) (3) 

in which 𝑛(𝑥, 𝑦) is the Gaussian white noise and expressed in detail as 

 𝑛(𝑥, 𝑦) = 𝑛level𝑛n𝜎𝑤 (4) 
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where 𝑛n denotes the normally distributed random white noise with a zero-mean with 

a variance being 1; 𝑛level  is the noise level range of [0, 1] and 𝜎𝑤  the standard 

variance of 𝑤(𝑥, 𝑦), ∀𝑥, 𝑦. Thus, the mean value and standard deviation of 𝑛(𝑥, 𝑦) are 

0 and 𝜎n = 𝑛level𝜎𝑤, respectively. 

 

Taking the spatial derivative estimation along 𝑥  direction as an example, the 

uncertainty propagation at each measurement point writes  

 𝐸n
𝑟 =  

𝜕𝑟𝑤̃(𝑥𝑖,𝑦𝑗)

𝜕𝑥𝑟 −
𝜕𝑟𝑤(𝑥𝑖,𝑦𝑗)

𝜕𝑥𝑟 = ∑ 𝑐𝑘
𝑚
𝑘=−𝑚 𝑛(𝑥𝑖+𝑘, 𝑦𝑗) 𝑑𝑥

𝑟⁄  (5) 

where 𝑐𝑘 is the coefficient of the finite difference method and the coefficients of the 

second-order central difference method are tabulated in Table 1. 𝑛(𝑥𝑖+𝑘, 𝑦𝑗)  is an 

independent random variable for different 𝑘  and possesses the same probability 

distribution of (0, 𝜎n) . In addition, 𝑑𝑥  denotes the spatial sampling interval of 

𝑤(𝑥, 𝑦) along 𝑥 direction.  

 

Table 1. Coefficients of the central differences with second-order accuracy. 

r 𝑐−2 𝑐−1 𝑐0 𝑐1 𝑐2 𝑐𝑟 

1  -1/2 0 1/2  1/6 

2  1 -2 1  1/12 

3 -1/2 1 0 -1 1/2 1/4 

4 1 -4 6 -4 1 1/6 

 

In Eq. (5), 𝐸n
𝑟  still holds a normal distribution with the mean value and standard 

deviation being 0 and √∑ 𝑐𝑘
2𝑚

𝑘=−𝑚 𝜎n 𝑑𝑥
𝑟⁄ , respectively. It can be seen that the finite 

difference method significantly amplifies the effects of the measurement noise in high-

order spatial derivatives 𝑤d
𝑟(𝑥, 𝑦), as 𝑑𝑥 is normally very small during experimental 

measurements. Moreover, the higher the order of 𝑤d
𝑟(𝑥, 𝑦), the more sensitive it is 

to the measurement noise.  

3.2 Truncation errors of the finite difference method 

Truncation errors are caused by the difference between the actual solution and the 

approximate solution [40]. The principle of the finite difference scheme is a Taylor 

expansion in which a truncated series are typically used instead of an infinite series.  

 

Taking the 𝑥  coordinate as an example, 𝑤(𝑥𝑖+1, 𝑦𝑗)  is expressed at 𝑥 = 𝑥𝑖 



8 

 

according to linear Taylor expansion as 

 𝑤(𝑥𝑖+1, 𝑦𝑗) = 𝑤(𝑥𝑖 , 𝑦𝑗) + ⋯ +
𝑑𝑥

𝑟

𝑟!

𝜕𝑟𝑤(𝑥𝑖,𝑦𝑗)

𝜕𝑥𝑟
+

𝑑𝑥
𝑟+1

(𝑟+1)!

𝜕𝑟+1𝑤(𝜉𝑥,𝑦𝑗)

𝜕𝑥𝑟+1
, 𝜉𝑥 ∈ [𝑥𝑖 , 𝑥𝑖+1] (6) 

Based on Eq. (6), the truncation error at each measurement point is evaluated by  

 𝐸t
𝑟 = 𝑐𝑟𝑑𝑥

2 𝜕𝑟+2𝑤( 𝜉𝑥,𝑦)

𝜕𝑥𝑟+2 ,  𝜉𝑥 ∈ [𝑥−𝑚, 𝑥𝑚]  (7) 

in which, 𝑐𝑟 is the coefficient and its value for the second-order central difference 

method is tabulated in the last column of Table 1. Moreover, Eq. (7) indicates that the 

truncation errors are proportional to the square of the spatial sampling interval 𝑑𝑥 and 

the two-order higher derivative of the estimated derivatives. 

 

By increasing 𝑑𝑥, the truncation error 𝐸t
𝑟 tends to be amplified whilst the noise effect 

𝐸n
𝑟  being reduced accordingly, which is typically depicted in Fig. 1. In general, an 

optimal 𝑑1 can be obtained to minimize the average total errors of measurement noise 

and truncation errors for a given order 𝑟. However, it is not realistic to determine the 

optimal 𝑑1  without the priori information on measurement noise. Furthermore, the 

optimal 𝑑1 does not set the damage localization performance as the direct optimization 

objective. To address this issue, an alternative strategy is proposed, which optimizes the 

damage localization performance by adjusting the measurement sampling interval after 

an initial high spatial resolution measurement. Furthermore, at a given measurement 

sampling interval 𝑑, the scale parameter 𝜎 of Gaussian smoothing will be tuned to 

obtain the optimal damage localization.  

d1

Measurement grid distance
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Figure 1. Typical plot of the total errors of the finite difference method.  
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4 Adaptive damage localizations in plates 

4.1 Damage localization evaluator 

In order to obtain the best damage localization results by exploring a given 

measurement data set, a damage localization evaluator is defined to quantify the 

damage identification performance. Then, the best damage localization is achieved by 

adaptively adjusting the spatial sampling interval 𝑑  and the scale parameter 𝜎  of 

Gaussian smoothing which warrant the highest DLE value. DLE is defined as 

 𝐷𝐿𝐸 = ℎ1 ℎ2⁄  (8) 

where ℎ1 and ℎ2 denote the peak values of DI within and outside the damage zone, 

respectively, which are shown in Fig. 2(a). As the area of the damage zone is unknown 

a priori, an equivalent estimation zone (EEZ) is assumed, which is illustrated in Fig. 

2(b). In the present case, the maximum absolute outlier value in DI is chosen as the 

centre of the EEZ, which is set as 0.05×0.05 m2.  

 

While the centre of the EEZ can be easily determined, its area should be properly set 

which indeed needs careful considerations. Theoretically and ideally, the area of EEZ 

should be larger than the actual damage zone to completely remove the damage effects 

on areas outside EEZ, as the establishment of DI involves neighbouring measurement 

points beyond the damaged zone. Furthermore, a large-scale parameter 𝜎 of Gaussian 

smoothing will enlarge the damage zone as well. In practice, without knowing the actual 

size of the damage, one can start with a relatively large EEZ as long as the areas outside 

EEZ are still able to reflect the characteristics of measurement noise (noise-induced 

outlier values randomly scattered over the plate surface). If the noise-induced 

characteristics are not detected, the area size of EEZ could be successively reduced until 

these are detected.   



10 

 

h2

h1

Actual damage zone

Equivalent estimation zone

x (m)

y 
(m

)

 

(a) (b) 

Figure 2. Definition of (a) damage localization evaluator (DLE) and (b) equivalent 

estimation zone (EEZ).  

 

4.2 Adjustment of measurement sampling interval  

Initially, a smaller sampling interval 𝑑 is used during the data acquisition phase. Then, 

𝑑  will be adjusted by a triangulation-based linear interpolation. In the process, the 

observation points are discretized into Delaunay triangulation and a neighbourhood of 

nearby measurement points are used for the linear interpolation.  

 

Linearly interpolating the planar surface of a triangle only requires applying barycentric 

coordinates to the data at the vertices of the triangle. This is a weighted average method 

and the value of the interpolated surface 𝑤̂d(𝑥, 𝑦), at any interpolation point (𝑥, 𝑦) 

within the triangle is  

 𝑤̂d(𝑥, 𝑦) = ∑ 𝜃𝑖
3
𝑖=1  𝑤d(𝑥𝑖, 𝑦𝑖) (9) 

where the coefficient 𝜃𝑖  is the 𝑖th barycentric coordinate of the interpolation point with 

respect to the triangle; and 𝑤d(𝑥𝑖, 𝑦𝑖) the observed value at the data point (𝑥𝑖, 𝑦𝑖).  

4.3 Gaussian smoothing 

Since the high-order spatial derivative estimation is very susceptible to the 

measurement noise, it is common to smoothen 𝑤d(𝑥, 𝑦)  before applying the finite 

difference method. To this end, a Gaussian smoothing is applied, which convolves 

𝑤d(𝑥, 𝑦) with a Gaussian function as  

 𝑤̂d(𝑥, 𝑦; 𝜎) = ∫ ∫ 𝑤d(𝑥 − 𝑢, 𝑦 − 𝑣)𝑔(𝑢, 𝑣; 𝜎)
+𝑙

−𝑙
𝑑𝑢𝑑𝑣

+𝑙

−𝑙
 (10) 
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where 𝜎  denotes the scale parameter and 𝑔(𝑥, 𝑦; 𝜎)  is a two-dimension Gaussian 

function and expressed as 1 (2𝜋𝜎2)⁄ exp(−(𝑥2+𝑦2) (2𝜎2)⁄ ). In addition, the size of the 

Gaussian smoothing is limited to a window of [−𝑙, 𝑙]  instead of [−∞, +∞] . Here, 

𝑙 = ⌈3𝜎⌉  is used to approximate 99.73% of the Gaussian kernel, where ⌈3𝜎⌉ 

represents the ceil of 3𝜎 . It is seen that the window size is a function of the scale 

parameter 𝜎 of Gaussian function. Therefore, when optimizing 𝜎, the window size 

will be tuned accordingly.  

 

Due to the differentiation property of the convolution integral, the 𝑟th-order spatial 

derivative of 𝑤̂d(𝑥, 𝑦; 𝜎) can be calculated in two equivalent forms as  

 𝑤̂d
𝑟(𝑥, 𝑦; 𝜎) = 𝑤d(𝑥, 𝑦)⨂𝑔𝑟(𝑥, 𝑦; 𝜎) = 𝑤d

𝑟(𝑥, 𝑦)⨂𝑔(𝑥, 𝑦; 𝜎) (11) 

in which, ⨂ represents the convolution operator described in Eq. (10).  

 

By adjusting 𝜎, 𝑤̂d
𝑟(𝑥, 𝑦; 𝜎) can be handled at different spatial scales. It is well known 

that the damage-induced outlier values in DI tend to be spatially close to each other 

whilst the noise-caused outlier values tend to be scattered over the measured plate 

surface, which are depicted in Fig. 3(a). For a smaller 𝜎, there will be many outlier 

values due to measurement noise as shown in Fig. 3(a). By increasing 𝜎, fine-scale 

features will disappear, which include both noise effects and damage-induced local 

features. For a larger 𝜎 , the damage-induced local shape characteristics will be 

smoothed as well [41]. Thus, an appropriate selection of 𝜎 is required to obtain the 

best damage localization as displayed in Fig. 3(b). 

 

Noise-induced values Damage-induced values Damage zones

(a) Noisy case (b) Ideal case 
 

Figure 3. An illustration of damage localization results.  
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The boundaries imply some discontinuities on the estimated 𝑤̂d
𝑟(𝑥, 𝑦)(𝑟 = 1,2,3,4), 

which cannot be eliminated by Gaussian smoothing. Moreover, this has to be processed 

before Gaussian smoothing, as Gaussian smoothing propagates the discontinuity effects 

of boundaries [42]. Here, a spatial Hanning window is applied to 𝑤d
𝑟(𝑥, 𝑦)  before 

Gaussian smoothing. The 2-D window is defined by the product of two identical 1-D 

windows [43] as 

 𝜑2D(𝑥, 𝑦) = 𝜑(𝑥)𝜑(𝑦) (12) 

in which, 𝜑(𝑥) is defined by 

 {

𝜑(𝑥) = 1 2(1 − cos(𝜋𝑥 𝛼⁄ ))⁄ , 𝑥 ∈ [0, 𝛼]

𝜑(𝑥) = 1, 𝑥 ∈ (𝛼, 𝐿𝑥 − 𝛼)

𝜑(𝑥) = 1 2(1 − cos(𝜋(𝑥 − 𝐿𝑥 + 2𝛼) 𝛼⁄ )), 𝑥 ∈ [𝐿𝑥 − 𝛼, 𝐿𝑥]⁄

 (13) 

The value of 𝛼  denotes the width on the boundary of 𝑤d
𝑟(𝑥, 𝑦)  where the spatial 

derivatives are discontinuous. As shown in Table 1, one measurement point for the first 

and second order derivatives and two measurement points for the third and fourth-order 

derivatives cannot be used. In this paper, 𝛼  is set as the length of the first five 

measurement points around the boundaries to further suppress the effects of boundaries. 

 

Finally, the proposed baseline-free adaptive damage localization method is illustrated 

by the flowchart in Fig. 4. 

   

 

Figure 4. A flowchart of the proposed baseline-free adaptive damage localization. 
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5 Numerical studies 

A cantilever aluminium plate, of a dimension 0.35 × 0.23 × 0.003 m3 with Young’s 

modulus 𝐸 =69 GPa, Poisson’s ratio 𝜈 = 0.35  and mass density 𝜌 =2700 kg/m3, is 

studied. The plate is modelled using the four-node quadrilateral elements in MATLAB 

according to the Mindlin plate theory. The cantilever plate, clamped on the left, is 

discretized into 140 × 92  elements with an element size of 0.0025 × 0.0025 ×

0.003 m3. The plate contains a damage zone of 0.02 × 0.02 m2, which is centred at 

(0.10m, 0.115m) as graphed in Fig. 5(a). The damage is simulated by reducing the plate 

thickness of the associated finite elements. 

 

In the following study, the 10th mode shape is used as a representative example, which 

is shown in Fig. 5(b). The main purpose here is to demonstrate the working principle 

and the feasibility of the proposed adaptive damage localization based on robust PCA. 

In practical applications, different mode shapes show different sensitivities to damage 

at different locations and each one has its own blind inspection zones such as the areas 

around the nodes of the mode shape. Therefore, the damage information from more 

mode shapes should be integrated to warrant a more robust and reliable damage 

localization. As one of the options, the proposed DI in Eq. (2) can be readily embedded 

into a data fusion approach to combine the damage localization results based on 

different mode shapes [44].     

 

 

(a) (b) 

Figure 5. (a) FE model of a plate with a damage zone and (b) the 10th mode shape. 

 

In this numerical study, the noise-free damage localization results of the plate with a 

damage of 5% depth reduction are first presented in Fig. 6 to verify the effectiveness of 
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the proposed DI in Eq. (2).  
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Figure 6. Noise-free damage localization results using 𝑤d

𝑟(𝑥, 𝑦)(𝑟 = 0,1,2,3,4) 

 

It is seen from Fig. 6 that the damage zone is clearly identified by using either the mode 

shape or any of its first four spatial derivative terms, regardless of the magnitude level 

of the DI. Thus, the robust PCA is proved to be powerful in extracting the damage-

induced local shape features in plate-type structures. Moreover, the higher the order of 

𝑤d
𝑟(𝑥, 𝑦), the larger the magnitude of the damage-induced local shape discontinuities. 

Hence, the high-order spatial derivatives of 𝑤d(𝑥, 𝑦)  is able to enhance the local 

damage characteristics, which naturally boosts structural damage identification. In 

addition, the extracted damage-induced characteristics of 𝑤d
𝑟(𝑥, 𝑦)(𝑟 = 0, 2, 4)  in 

Figs. 6 (a), (c) and (e) present clear peak features whilst 𝑤d
𝑟(𝑥, 𝑦)(𝑟 = 1,3) in Figs. 6 

(b) and (d) provide two separated shape features. In practice, the damage-induced 

features of 𝑤d
𝑟(𝑥, 𝑦)(𝑟 = 1,3) may cause misleading damage localization results and 

this will be illustrated further in the following study. 

 

Secondly, to investigate the effects of measurement noise on 𝑤d
𝑟(𝑥, 𝑦)(𝑟=0,1,2,3,4), a 
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Gaussian white noise of 𝑛level =0.05% (Signal to noise ratio =66.15 dB) is added to 

pollute the 10th mode shape and the damage localization results of the plate with the 

same damage of 5% depth reduction are presented in Fig. 7.  
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Figure 7. Damage localization results using 𝑤d

𝑟(𝑥, 𝑦)(𝑟 = 0,1,2,3,4)  with 0.05% 

noise.  

 

It is clear that the damage localization results using high-order 𝑤d
𝑟(𝑥, 𝑦) (𝑟 = 2,3,4) 

are severely degraded by the added Gaussian white noise, whilst 𝑤d(𝑥, 𝑦)(𝑟 = 0) still 

provides accurate damage localization results, as shown in Fig. 7(a). Moreover, damage 

characteristics in 𝑤d
𝑟(𝑥, 𝑦) (𝑟 = 1,2,3,4), as displayed in Fig. 6, are overwhelmed by 

the propagated measurement noise of the finite element method. 

 

To tackle the problem, the spatial sampling interval 𝑑  of 𝑤d(𝑥, 𝑦)  and the scale 

parameter σ  of Gaussian smoothing are optimized to obtain the best damage 

localization results. The DLE values at different sampling interval 𝑑  and scale 

parameter σ of 𝑤d
𝑟(𝑥, 𝑦) (𝑟 = 1,2,3,4) are shown in Fig. 8.  
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Figure 8. DLE values at different 𝑑 and σ using 𝑤d
𝑟(𝑥, 𝑦)(𝑟 = 1,2,3,4) (𝑁𝑥 is the 

number of measurement points along x direction, 𝑑=0.35/𝑁𝑥 and 𝑁𝑦 =

round(0.23 𝑑⁄ )). 

It is seen from Fig. 8 that only a small region of the combined 𝑑 and σ can provide a 

large DLE value, corresponding to better damage localization performance. Therefore, 

it is vital to optimize the sampling interval 𝑑 and apply proper denoising techniques 

for accurate damage localization when using high-order derivatives of CDS’s. 

Moreover, 𝑤d
2(𝑥, 𝑦) is able to provide high DLE values at a wide range of 𝑑 whilst 

the 𝑤d
4(𝑥, 𝑦) only performs well for some large 𝑑, which demonstrates that 𝑤d

4(𝑥, 𝑦) 

is more prone to measurement noise. In addition, 𝑤d
2(𝑥, 𝑦) is more sensitive to damage, 

as it possesses the largest zone of high DEL values and the highest DLE values among 

𝑤d
𝑟(𝑥, 𝑦) (𝑟 = 1,2,3,4).  

To further interpret the damage localization performance at different DLE values in Fig. 

8, the damage localization results using different σ  for 𝑑 =0.0025m ( 𝑁𝑥 =140) is 

illustrated in Fig. 9. Figures 9 (b) and (d) indicate that the damage localization results 

are poor for both excessively small and large σ , with DLE values being around 1. 

Furthermore, by increasing σ, the magnitude of outlier values in DI becomes smaller 

as indicated in Figs. 9(b)-(d), suggesting a reduction in both the noise and damage-
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induced singularities. In addition, the identified damage zone in Fig. 9(c) is a circle 

whilst the original damage zone is a square, which is caused by Gaussian smoothing.   
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Figure 9. Damage localization of a plate with a damage of 5% depth reduction by using 

𝑤d
2(𝑥, 𝑦) with 0.05% noise. 

 

Finally, the best damage localization results using 𝑤d
𝑟(𝑥, 𝑦)(𝑟 = 1,2,3,4)  are 

presented in Fig. 10. It is clear from Fig. 10 that all the spatial derivatives 

𝑤d
𝑟(𝑥, 𝑦)(𝑟=1,2,3,4) can achieve accurate damage localization when using optimal 𝑑 

and σ which correspond to the highest DLE values in Fig.8, while this is impossible 

by using the original noisy data as shown in Fig. 7. Moreover, 𝑤d
2(𝑥, 𝑦) and 𝑤d

4(𝑥, 𝑦) 

tend to work better for damage localization than 𝑤d
1(𝑥, 𝑦) and 𝑤d

3(𝑥, 𝑦), as the latter 

two provide two damage zones for a single damage location.  
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Figure 10. The best damage localization for a plate with a damage of 5% depth 

reduction by using 𝑤d
𝑟(𝑥, 𝑦)(𝑟 = 1,2,3,4) with 0.05% noise.  

 

6 Experimental validation 

In order to verify the proposed baseline-free adaptive damage localization method, 

cantilever aluminium plates with the same physical and geometrical properties as those 

used in the numerical study are tested. The experimental set-up is illustrated in Fig. 11.  

The damage is introduced by reducing the plate thickness on the other side. As shown 

in Figs. 5 (a) and 12, a damage zone with 10% thickness reduction is centred at (0.10m, 

0.115m) with an area of 0.02 × 0.02 m2. The plate is excited by a shaker (LDS V406) 

close to its right edge, as depicted in Fig. 12(a).  

 

The vibration responses are measured by a PSV-500 SLV within a measured zone which 

is slightly smaller than the original plate dimension to avoid the effects of the 

boundaries. The measurement zone is of 0.326m × 0.219m spanning from 0.0084m 

to 0.3334m in the 𝑥  direction and from 0.0028m to 0.2218m in the 𝑦  direction as 

shown in Fig. 12(a). A total of 141 × 95 measurement points are used with a grid cell 

size of  0.00233m × 0.00233m . Here, a sufficiently large number of measurement 
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points is necessary to capture the damage-induced local CDS distortions, especially for 

incipient damage. For practical applications outside a laboratory, the fast development 

of measurement technology, exemplified by the non-contact measurement technology 

such as optic and imaging techniques, embedded sensors and smart sensing skin 

technology etc., could offer improved solutions to the measurement problem in the near 

future. It should be understood that the proposed technique may need to be revamped 

to adapt to the physical quantities measured by different techniques. 

 

Laser head

System controller

Amplifier

Plate
Shaker

 

Figure 11. Experimental set-up of a cantilever plate. 

 

Damage zone

 

Damage zone

 
(a)   (b)  

Figure 12. A plate with a damage zone: (a) Front surface and (b) Back surface.  

 

To determine the resonant frequencies of the plate, a pseudo random signal of 0-2000 

Hz, generated by the PSV-500 system, is used to excite the plate. The associated mode 

shape data are then obtained at the resonance frequency. Certainly, the operational 

deflection shapes at non-resonant frequencies can also be used.  

 

Here, the 10th resonant frequency is used and the velocities of measurement grid are 
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acquired using the ‘FastScan’ mode of PSV-500, with the bandwidth of the acquisition 

signal being set as 300Hz. A wider bandwidth can speed-up the measurement, whereas 

a narrow bandwidth will provide a better signal to noise ratio. In the present case, 30 

averages are used for each measurement point, amounting to a total of 141 × 95 

measurement points.  

 

With the measured mode shape of the damage state, damage localization is first 

conducted by using the mode shape and its first four order spatial derivatives without 

denoising, with results illustrated in Fig. 13. It can be seen that without denoising, the 

mode shape (r=0) provides the best damage localization results. The high-order mode 

shape derivatives are readily contaminated by measurement noise and unable to provide 

useful information for damage localization, in agreement with the numerical analyses 

reported above. Therefore, the proposed DI is robust to the experimental measurement 

noise in 𝑤d(𝑥, 𝑦) but sensitive to the propagated measurement noise in 𝑤d
𝑟(𝑥, 𝑦)(𝑟 =

1,2,3,4). 
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Figure 13. Damage localization of a plate with a damage of 10% depth reduction by 

using 𝑤d
𝑟(𝑥, 𝑦)(𝑟 = 0,1,2,3,4).  

 

Then, the proposed baseline-free adaptive damage localization approach is applied 

using 𝑤d
𝑟(𝑥, 𝑦)(𝑟 = 1,2,3,4) . The DLE values using different 𝑑  and σ  with a 

damage zone of 10% and 16.67% depth reduction are presented in Fig. 14 and Fig. 15, 

respectively. It is seen from both figures that high DLE value zones can be obtained, 

which indicates that the tuning of 𝑑  and σ  is an efficient strategy to improve the 

damage localization performance. Therefore, the proposed adaptive damage 

localization method shows its effectiveness in obtaining more accurate damage 

localization results by adjusting the measurement sampling interval 𝑑  and scale 

parameter σ of Gaussian smoothing. Moreover, 𝑤d
2(𝑥, 𝑦) provides the best damage 

localization results among the first four order spatial derivatives of 𝑤d(𝑥, 𝑦) , as it 

possesses the largest zone of high DLE values as shown in Fig. 14(b) and Fig. 15(b). In 
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addition, the magnitude of DLE values are proved to be capable of indicating the 

relative damage severity.  
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Figure 14. DLE values of 𝑤d
𝑟(𝑥, 𝑦)(𝑟 = 1,2,3,4) for a plate with a damage zone of 10% 

depth reduction ( 𝑁𝑥  is the number of measurement points along x direction, 

𝑑=0.326/𝑁𝑥 and 𝑁𝑦 = round(0.219 𝑑⁄ )). 
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Figure 15. DLE values of 𝑤d
𝑟(𝑥, 𝑦)(𝑟 = 1,2,3,4) for a plate with a damage zone of 

16.77% depth reduction (𝑁𝑥 is the number of measurement points along x direction, 

𝑑=0.326/𝑁𝑥 and 𝑁𝑦 = round(0.219 𝑑⁄ )). 

 

Finally, the best damage localization results using 𝑤d
𝑟(𝑥, 𝑦)(𝑟 = 1,2,3,4) for a plate 

with a damage zone of 10% depth reduction are presented in Fig. 16, which correspond 

to the highest DLE values in Fig. 14. A comparison with Fig. 10 verifies the conclusions 

obtained from the numerical study. Moreover, Fig. 16 experimentally demonstrates that, 

with a proper choice of the sample interval 𝑑 and the scale parameter σ, all first four 

order spatial derivatives of 𝑤d(𝑥, 𝑦)  can provide acceptable damage localization 

results.  
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Figure 16. The best damage localization results using 𝑤d
𝑟(𝑥, 𝑦)(𝑟 = 1,2,3,4)  for a 

plate with a damage zone of 10% depth reduction. 

 

7 Conclusions 

From both theoretical and experimental perspective, this paper investigates three vital 

aspects in the characteristic deflection shape (CDS) based non-destructive damage 

localization: suppression of measurement noise, baseline-free and adaptive damage 

localization. Instead of trying to determine an optimal spatial sampling interval on a 

trial-error basis to minimize the measurement noise and the truncation errors of the 

finite difference calculation, an effective parameter tuning strategy is proposed, which 

optimizes both the spatial sampling interval of CDS’s and the scale parameter of 

Gaussian smoothing to achieve accurate damage localization results, quantified by a 

damage localization evaluator (DLE). The baseline-free damage localization index is 

evaluated by using the low-rank structure of 2-D CDS’s (or their spatial derivatives) 

and the location sparsity of the damage-induced characteristics. Numerical and 

experimental results demonstrate that the proposed baseline-free adaptive damage 

localization approach is robust and effective in reducing the effects of measurement 

noise to obtain more accurate damage localization.  
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Other conclusions are summarized as follows:  

1. Robust principal component analysis is shown to be effective to extract the 

damage-induced local characteristics of 2-D CDS’s and CDS spatial derivatives.  

2. The higher the order of CDS spatial derivative, the larger the magnitude of the 

damage-induced local shape distortions and the more susceptible it is to 

measurement noise. 

3. The magnitude of the DLE values is capable of indicating the relative damage 

severity. 

4. The second-order CDS spatial derivative, through a proper balancing of the 

damage sensitivity and anti-noise robustness, is shown to provide the best 

damage localization results among the first four order spatial derivatives of 

CDS’s.  
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