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Abstract 

This paper presents a novel vibration-based damage detection method using a general 

vibration model identification (GVMI) approach. A damage index based on the identified 

general vibration model is constructed for damage detection and localization, with the damage 
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being regarded as a virtual excitation on the structure. The proposed GVMI approach utilizes a 

general form of high order derivative equation that to be identified and further used to detect 

changes in the vibration characteristics of the structure. Therefore, the proposed damage 

detection method requires neither baseline signals nor prior knowledge on the structural 

parameters, thus offering great application potentials for complex structures with unknown 

parameters. As a proof-of-concept example, a honeycomb sandwich cantilever beam is 

investigated for validating the proposed approach. The influences of the key parameters on the 

detection resolution, such as the measurement interval, the order of the displacement derivative 

and the selection of the excitation frequency, are investigated. Furthermore, an enhanced 

version of the GVMI method with an excitation frequency extension is developed by using a 

data fusion scheme. Taking advantages of the broadband excitations, the blind inspection area 

can be completely eliminated, whilst improving the effectiveness and the accuracy of the 

detection. Experimental results with both single and multiple structural damage show the 

validity and the accuracy of the proposed approach. 

 

Keywords: Structural Vibration, Damage Detection, Data Fusion, Parameter Identification. 

  



1. Introduction 

Structural safety and integrity cannot be over-emphasized because the catastrophic 

structural failure may bring a great loss of human lives and wealth. Therefore, the demand for 

effective and reliable damage detection methods is ever-increasing during the recent decades. 

Many damage detection methods, such as ultrasonic [1, 2], radiography [3, 4], eddy current [5, 

6], guided wave [7, 8], thermography [9, 10] etc. have been developed to detect and identify 

structural damage for various applications. Among them, vibration based methods have aroused 

the interest of many researchers [11-14]. Typically, various damage indices were constructed 

based on different vibration parameters such as stiffness, mode shape, natural frequency, 

electro-mechanical impedance or damping property to detect local structural damage [15-18]. 

The implementation of these methods calls for the use of different measurement equipment 

such as Laser Doppler Vibrometer (LDV), acceleration sensors, strain gauges and piezoelectric 

sensors [19-21]. 

 

However, the implementation of most vibration based methods has been somewhat 

hampered by their serious reliance on the global vibration models, boundary conditions, 

baseline signals etc. When the structural parameters in the healthy situation are inaccessible or 

the structure under inspection is too complex to be modelled, the detection is difficult to be 

achieved under practical circumstances. Most critically, such global-vibration based methods 

are insensitive to the local damage before it reaches a conspicuous level. In an earlier attempt 

to tackle these problems, the “pseudo-excitation” (PE) approach was developed to identify the 

occurrence of the damage by evaluating the local vibration characteristics of the structure [22-



25]. Since the inspection philosophy is local component specific, PE approach can be applied 

to a complex system by examining the corresponding local equation of motion component-by-

component [26]. However, this approach still cannot solve the above problems completely, due 

to the inevitable requirement for the structural local equation of motion, especially given the 

discrepancies between the ideal and actual structural properties. 

 

To address these problems, a novel damage detection method based on a general vibration 

model identification (GVMI) procedure is proposed in this paper. Different from the methods 

that directly use the theoretical and numerical vibration models, the proposed GVM approach 

assumes a general equation form, involving a series of high-order displacement derivatives and 

unknown physical parameters to approximate the dynamic characteristics of the structure under 

inspection. Combined with the least mean square (LMS) algorithm, the proposed method has 

great potential to be applied to complex structures with unknown parameters. Furthermore, a 

data fusion scheme with broadband frequency excitation is used instead of single frequency 

excitation, by which the enhanced damage index is shown to produce better detection results 

with significantly improved damage resolution. 

 

This paper is organized as follows: in Section 2, the basic principle of the damage detection 

method based on GVMI is proposed, along with the detailed implementation procedure. In 

Section 3, numerical validations are presented using an aluminum honeycomb sandwich beam 

as an example. The selections of the optimized parameters such as the highest order of the 

displacement derivative, the measurement interval and the excitation frequency are investigated. 



As a further improvement, an enhanced GVMI version using excitation frequency extension is 

developed, by which the blind area of the inspection is eliminated. Experiments are 

subsequently carried out to validate the proposed method. Finally, the conclusions are drawn. 

 

2. Theory of the GVMI based damage detection 

A practical engineering structure usually comprises various sub-structural components. 

With different compositions and boundary conditions, a description of the global dynamic 

properties such as mode shapes, natural frequencies and transient responses, maybe 

cumbersome or even impractical. However, within a specific local area, each structural 

component should satisfy a certain equation of motion, which can generally be described as 
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where [Fint.] is the internal force induced by the structural deformation, [Finer.] represents the 

inertia force related with the structural vibration and [Fext.] is external excitation applied on the 

corresponding area. In the case of a pristine component in the absence of any external excitation, 

Eq. (1) becomes 
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in which [Fint.] can be written in a general form as 

    .
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where [L] is a matrix of spatial differential operator, [u] represents the structural vibration 

displacement vector. 

 

Taking a one-dimensional structural component (a beam-like structure) under a flexural 



harmonic excitation as an example, the steady transverse displacement u(x) satisfies the general 

vibration model (GVM) mentioned in Eq. (2) as 
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i

i
i
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where the superscript (i) denotes the order of the displacement derivative, ai regroups various 

parameters of the structural geometry and material. The first term, a0, can be written as 

 2

0
a S = −   (5) 

where ρ and S are the density and cross area of the structure, and ω is the angular frequency. 

a0u(x) represents the inertia force. However, with the occurrence of structural damage, changes 

in ai are anticipated [23]. Thus, when pluging u(x) within the damaged area into the equation 

with ai taken in the healthy region, Eq. (4) should be different from zero. The residual quantity 

corresponds to a virtual excitation induced by the structural damage. Therefore, to identify the 

damage location in the structure, a damage index DI(x) can be defined as the virtual external 

excitation according to the GVM, given by 
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The basic principle of the proposed method is based on an examination of the DI(x) curve 

along the structure. The damage location can be detected wherever unexpected peaks appear in 

the DI(x) curve. For a typical Euler-Bernoulli beam structure with homogeneous isotropic 

material properties, DI(x) can be simplified as 

 ( ) ( ) ( ) ( )4
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where a4 is flexural rigidity EI, in which E and I are the modulus of elasticity and the cross-

sectional moment of inertia of the beam, respectively. a0 is the product of the linear density of 



the beam and vibration frequency as Eq. (5). However, Eq. (7) can be regarded as a special case 

of Eq. (6) and it is not applicable for a more complex structure, in which the theory of Euler-

Bernoulli beam does not hold. It is worthy noting that the proposed method is, in principle,  

applicable anywhere inside the free surfaces and between structural supports. However, DI(x) 

is naturally different from zero at the constraint positions and loading points. In principle, for 

points close to the supports or excitation points, this can always be done by reducing the 

measurement interval, but never exactly at these points. 

 

The displacement of the beam structure under a steady vibration excitation can be usually 

measured point-by-point through a Laser Doppler Vibrometer (LDV). It converts the 

continuous displacement u(x) into a series of discrete displacement values uj, where the 

subscript j represents the j-th measurement point. The displacement derivative can be calculated 

by mean of the finite difference [23], as 
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where Ci
k  is the combination number and d is the interval between each pair of adjacent 

measurement points. Eq. (6) in the discrete form writes as: 
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  (9) 

where N is the number of the measurement points and n is the highest order of the displacement 

derivative. It should be mentioned that the above equations, which contain no first order 

derivative of the displacement with respect to t, are derived from an undamped structural 



vibration model. The light damping only takes significant effect on the vibration mainly in the 

vicinity of structural resonances. Thus, without loss of generality, the damping influence can 

be ignored when excitation frequency is away from any natural frequencies of the structure. 

 

To implement the damage detection process, a GVMI approach is proposed to identify ai 

in Eq. (9) before the construction of the DIi for the damaged structure. Assuming that the 

structural damage only occupies a small area of the whole structure, most part of the structure 

satisfies Eq. (4) within the inspection region in the absence of any external excitation. The 

general idea is to generate a coefficient vector [ai] to minimize the Mean Square Error (MSE) 

of the calculated DIi, written as: 
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In this paper, the LMS algorithm [27, 28] is used in GVMI to identify the coefficient vector [âi], 

which can be given as 

   ( )ˆ argmin
i

a MSE=   (11) 

 

To summarize, the GVMI based damage detection can be implemented by taking the 

following steps as shown by the flowchart in Fig. 1: 

Step 1: Excite the structure to generate the steady vibration and measure the displacement 

ui within the inspection region. 

Step 2: Select the highest order of the displacement derivative in the GVM and calculate 

the matrix [uj
(i)

] according to Eq. (8). 

Step 3: The GVMI can be achieved by identifying the coefficient vector [âi] using the LMS 



algorithm. 

Step 4: The damage index at each measurement point can then be constructed using Eq. (9) 

with the identified parameter [âi] and the structural damage can be located where 

a drastic change is observed in the DIi curve. 

Step 5: In order to eliminate the structural damage induced influence on the GVMI, use 

the detection result by Step 4 as a reference and extract the [uj
(i)

] in the pristine area. 

Repeat Steps 3 and 4 with the [uj
(i)

] in the pristine area to improve the detection 

result. 

 

It can be seen from the Eq. (9) that the GVMI based damage detection is to examine the 

local breakage of the identified equation of motion point-by-point. The appealing features of 

the proposed method can be highlighted as follows: 

1. The DIi is calculated from the vibration displacement curve of the structure in the current 

status. Thus, no benchmark structural models or baseline signals are needed a priori. 

2. The DIi is based on a local examination of the local dynamic property of the structure, 

independently of the rest of the system. Therefore, the proposed method requires no  

knowledge on factors such as the boundary conditions and the global structural model. 

3. The GVM can be used to characterize the dynamics of more complex structural 

components. Considering a structure as a combination of basic structural components 

such as beams, plates and shells, the proposed damage detection methodology can be 

applied to each segment of the structure based on its local inspection nature. The 

applicability of the method is therefore not limited to simple homogeneous components. 



4. In theory, as long as the structure is under steady vibration, the damage detection can be 

implemented. No additional requirements for the excitation source are needed. 

5. Any structural damage that breaks the local dynamics of the structure can be detected, 

inrespective of the number of structural damage. 

 

It is worthy noting that the GVMI based damage detection physlosophy is not limited to 

the beam-like structures only. Similarly, a two-dimensional damage index DIi,j can be derived 

for a plate-like structural components by using a high order partial derivative equation to 

approximate the GVM. 

 

3. Numerical validations 

3.1 Finite element model 

Lightweight materials are especially attractive in the civil, aeronautical and aerospace 

industries. Among various types of lightweight materials, the honeycomb sandwich material is 

commonly seen, with high strength-to-weight ratio, enhanced bending stiffness and good 

damage tolerance [29, 30]. Thus, it is widely used in aircraft wings, antenna structures, bridges 

and so on. A proof-of-concept validation of the proposed GVMI based damage detection 

method is firstly carried out using Finite Element Method (FEM). Without loss of generality, a 

one-dimensional structure (an aluminum honeycomb sandwich beam) is taken as an example. 

 

As shown in Fig. 2, the beam component under investigation consists of two continuous 

aluminum face sheets, which are separated by a layer of low-density core (aluminum 



honeycomb). The thickness of the face sheet is 1 mm, while that of the honeycomb core is 5 

mm. The honeycomb is made of 0.05 mm thick aluminum foil and the length of the honeycomb 

element is 6 mm. The whole beam structure is 685 mm long and 42 mm wide. A simplified FE 

model as shown in Fig. 2 using 3D solid elements is created using commercial FE code 

ABAQUS. In order to accurately obtain the vibration displacement on the surface with the equal 

spacing measurement points, the face sheet is divided into several uniform squares with a length 

of 1 mm in plane, resulting in a total of 28770 elements in each face sheet. A harmonic point-

excitation is applied at x = 676 mm (the coordinate system is shown in Fig. 2 and the coordinate 

origin starts from the left point of the inspection region). The excitation frequency f is set to 

700 Hz. Two different types of structural damage are investigated in this paper. The first one is 

a surface slit extending uniformly along the width of the beam placed on the face sheet. The slit 

is 2 mm wide and penetrates the face sheet in thickness. The second one is a simulated 

delamination containing a slit placed in the honeycomb core under the face sheet with 2 mm in 

width and 2 mm in thickness. The center of the structural damage is located at x=ld, which is 

297 mm in both cases. Fig. 3 shows the flexural displacement wi at each element node with a 

slit on the face sheet. Considering that the basic principle of the proposed method is independent 

of the excitation level and the amplitude of the excitation can be arbitrary, wi is shown in form 

of the normalized displacement. To validate the noise immunity capability of the proposed 

method, a random Gaussian white noise with a standard deviation of 1% in amplitude, 

corresponding to 40 dB of the signal-to-noise ratio (SNR) in energy, is added to the simulated 

displacement. 

 



3.2 Results and discussions 

The accuracy of the GVM is governed by the highest order of the displacement derivative 

n in Eq. (9). n=4 is firstly used to model the structure in the numerical validation. With the noisy 

displacement wi in Fig. 3, the normalized DIi curves constructed through Step 1 to Step 5 is 

shown in Fig. 4. Considering that the accuracy of the finite difference used in the calculation 

of the displacement derivatives [uj
(i)

] is related to the measurement interval d, a small d is, in 

principle, required to achieve a high accuracy of the finite difference and to improve the 

resolution of damage detection. However, it leads to dense measurement points and increases 

the sensitivity of the DIi to the measurement noise. To explore this issue, five different intervals 

are selected and compared in Fig. 4, using 1 mm, 4 mm, 8 mm, 10 mm and 12 mm, respectively. 

For a quantitative comparison of the detection results, a DI-to-noise ratio, DINR, is defined as: 

 
d

h

DI
DINR

DI
=   (12) 

where DI̅̅ ̅
d  and DI̅̅ ̅

h  are the average values of the damage index in the damage area and 

healthy area, respectively. It is apparent that DINR is a measure to evaluate the level of a desired 

detection result compared with the background noise and a higher DINR indicates a better 

detection resolution. As listed in Table 1, when d increases, DINR is significantly improved 

when d is below 8 mm and reaches the maximum when d=10 mm, in agreement with previous 

observations made using a model-based homogeneous beam strcutures [23]. Therefore, d=10 

mm is used as the optimal measurement interval in the following discussions. It should be 

mentioned that other signal de-nosing techniques, such as wavelet transform, low-pass 

wavenumber filtering and “weak” form of damage detection [22-26], could also be used as 

additional means to enhance the robustness of the proposed damage detection strategy under 



noisy measurement conditions. In this paper, the adjustment of the measurement density is 

opted as the simplest way to improve the DINR. The main advantage is that no additional signal 

processing method is required. However, as the measurement interval increases, the resolution 

of the detection decreases as well. 

 

Detection results using n=4 and n=6 are shown in Fig. 5. It can be seen that both allow the 

damage identifications with a high resolution. Altghough n=6 can achieve a more precise 

characterization of the structural vibration, DIi will be more sensitive to the measurement noise 

as the derivative order in finite difference increases. Therefore, in the present case, n=4 seems 

to be sufficient for the damage detection. The detection results also indirectly prove that the 

identified GVM can reflect the vibration characteristics of the objective. However, it should be 

mentioned that this GVM is only valid when the cantilever beam is excitied at f=700 Hz. 

Considering the structural complexity, it is difficult to use a particular GVM to model the 

vibration characteristics of the honeycomb stucutre at arbitrary frequency. 

 

Delamination is another typical type of damage in the honeycomb sandwich beam. Since 

the proposed method interrogates whether the measured vibration displacement satisfies the 

local dynamics under the healthy condition, in principle, any changes in the structure can be 

detected. Having said that, it is understandable that the detection accuracy of the proposed 

approach may deteriates or even fails when the structural damage is too small to alter the local 

dynamics of the struture distinctly. For the simulated delamination case shown in Fig. 2, the 

flexural displacement at each element node is calculated, when the excitation frequency is set 



to 700 Hz as shown in Fig. 6. The noise, of the same level as the case in Fig.3, is added to the 

displacement. Detection result using d=10 mm and n=4 is shown in Fig. 7, which shows that 

the proposed method can successfully detect the structural damage with different types and 

sizes.  

 

To further test and verify the proposed method, ten cases (from case 1 to 10) with different 

slit locations are comparatively used to construct DIi in the simulation. Fig. 8 shows the 

vibration displacement of the discussed beam without slit and the locations of the structural 

damage in each case. The slits in case 1 and case 10 are respectively located near the peak 

(Point A at x=335 mm) and the node (Point B at x=380 mm) of the vibration displacement. 

Other cases involve slits which are eaqualy distributed within this quarter of the displacement 

wavelength. It should be mentioned that the displacement used to construct the DIi in all cases 

are added with a Gaussian white noise of 40 dB in SNR. As shown in Fig. 9, whilst approaching 

Point B, the constructed DIi gradually loses its capacity of identifying the structural damage 

location from case 1 to case 10, with the damage near the node of the vibration displacement. 

To quantify this effect, a normalized distance Xn between the damage location and the closest 

displacement node is defined as 
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X



−
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where ld and ln is the positions of the damage and the closest displacement node, λ is the 

wavelength of the vibration displacement. The variation of the DINRs against Xn in these ten 

cases are illustrated in Fig. 10. It shows that the resolution of the damage detection is dependent 

on Xn and the damage can hardly be detected when Xn is below 0.5, called blind area. 



 

3.3 Enhanced GVMI using excitation frequency extension 

Aimed at circumventing this problem, an enhanced GVMI method is proposed through 

enriching the excitation frequency content. Allowing for the fact that the wavenumber of the 

vibration displacement (consequently the location of the nodes) depends on the excitation 

frequency f, the position of the vibration node can be shifted through a judicious selection of f. 

For a better illustration, the displacement distributions with different excitation frequencies 

(fl=600 Hz and fh=800 Hz) in case 1 are shown in Fig. 11(a) and (b). Corresponding to these 

two frequencies, the displacement wavelengthes are, respectively, 281 mm and 235 mm. The 

vibration node in the vicinity of the damage shifts more than 50 mm, exceeding the length of 

the blind area. Therefore, the blind areas at fl and fh are not overlapped, making it possible to 

provide a comprehensive detection without any blind area with excitation frequency extension. 

 

Reaching this stage, the constructed DIi can be obtained under different excitation 

frequencies, denoted by DIi-f. A data fusion scheme can subsequently be implemented to 

construct an enhanced damage index EDIi, which is the maximum of the normalized damage 

index NDIi-f within the excitation frequency range, given as 

 ( )max
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This data fusion scheme can generally be regarded as a statistical process for aggregating the 

results obtained under different excitation circumstances. EDIi is an ultimate damage index, 



defined within an excitation frequency range and applied to each measurement point i, which 

aims at improving the damage localization resolution and eliminating the blind area of the 

detection. 

 

For illustration purposes, the ten cases shown in Fig. 8 are used again to validate the 

proposed method. Fig. 12 shows the distribution of NDIi-f in each case. The excitation frequency 

ranges from 600 Hz to 800 Hz. The resolution of the swept-frequency measurement is 10 Hz. 

In fact, Fig. 9 can be regarded as a special case of Fig. 12, that is only captured at f=700 Hz. 

However, the structural damage in case 5 to 10, which cannot be detected using Fig. 9, is 

identified with other excitation frequency in Fig. 12. It proves that the excitation frequency 

extension can eliminate the blind area effectively. The constructed EDIi using Eq. (14) is 

presented in Fig. 13, in which the damage position can be clearly identified. Furthermore, to 

make a quantitative comparison, DINRs of each case using EDIi are added to Fig. 10 to compare 

with the results using single excitation frequency. It is obvious that the enhanced GVMI method 

using EDIi allows the detection of structural damage in all cases, thus eliminating the blind area 

observed before. 

 

4. Experimental validations 

4.1 Experimental setup 

A honeycomb sandwich cantilever beam, made of aluminum 6061, is subsequently tested 

for the experimental validation. The honeycomb sandwich is 8 mm in thickness, covered by 

two face sheets on each side of 1 mm thick. The detailed dimensions of the entire beam structure 



are shown in Fig. 14 and the material properties are listed in Table 2. The artificial structural 

damage is a rectangular slit, which is 2 mm in width penetrating the face sheet in thickness as 

illustrated in Fig. 14. During the experiments, both single structural damage (damage 1) and 

dual structural damage (damage 1 and 2) cases are tested. The beam is fix-supported on a testing 

table and excited by an electro-mechanical shaker. Through a power amplifier, the shaker 

provides a harmonic point-excitation to the structure at x=620 mm (referring to the coordinate 

system in Fig. 14 and the coordinate origin is located at the left point of the inspection region). 

As explained in Section 3, the excitation frequency range is set from 600 Hz to 800 Hz with a 

swept-frequency resolution equal to 10 Hz. A scanning Laser Doppler Vibrometer is used to 

measure the out-of-plane vibration displacement on the face sheet. Note that the measurement 

is conducted on the intact face sheet of the beam to avoid any influence of the slit on the 

displacement measurement. The interval between two adjacent measurement points is set to 1.8 

mm. 

 

4.2 Results and discussions 

With a single slit located at x=410 mm, Fig. 15 shows the steady-state vibration 

displacement wi, measured by the LDV at f=700 Hz. The structural damage is close to the 

displacement peak, facilitating the detection by GVMI based damage index DIi. The 

constructed DIi curve across the inspection range using Eq. (9) is presented in Fig. 16(a), in 

which the damage can be roughly identified with a measurement interval d1=1.8 mm. However, 

measurement noise induced peaks in the DIi curve may lead to possible misjudgments in the 

result. Treated with d2=9.1 mm (d2=5d1), the DIi curve is shown in Fig. 16(b), in which the 



damage position is highlighted prominently. Conclusively, by reducing the number of the 

measurement points from 320 to 64, the influence of the measurement noise on the DIi curve is 

significantly reduced. The DINR shown in Figs. 16 (a) and (b) is improved from 1.6 to 6.9, 

emphasizing an improved noise immunity capability with a proper selection of the 

measurement interval, in agreement with the numerical analyses reported in the previous 

sections. 

 

The dual structural damage case is also tested in the experiment. Two slits are located at 

x=90 mm and x=410 mm, respectively. The proposed enhanced GVMI using enriched 

excitation frequency is carried out within a swept frequency range from 600 Hz to 800 Hz. 

According to Eq. (15), the constructed NDIi-f is ploted in Fig. 17. Since Xn of each structural 

damage varies with the the excitation frequency, the two slits have their respective blind 

frequency areas, in which the damage induced peak in NDIi-f is not pronounced. For example, 

with 720 Hz (Fig. 18), the slit at x=90 mm cannot be delineated (the corresponding Xn is below 

to 0.5). Thanks to the data fusion scheme in Eq. (14), both slits are clearly identified in Fig. 19 

with the enhenced EDIi curve. 

 

5. Conclusions 

A novel damage detection method, based on a general vibration model identification 

(GVMI) approach, is developed in this paper. Compared with the methods based on the 

theoretical vibration models, the proposed method constructs a damage index using an 

identified General Vibration Model (GVM), involving a series of high-order displacement 



derivatives and unknown physical parameters to approximate the dynamic characteristics of the 

structure under inspection. For this reason, this method can be implemented for complex 

structural system with unknown parameters. Taking a honeycomb sandwich cantilever beam 

for verifications, both the simulations (added with a 40 dB Gaussian white noise in 

displacement) and the experiments are carried out to detect the structural damage positions. The 

influences of the key parameters on the detection resolution, such as measurement interval d, 

the highest order of the displacement derivative n, and the selection of the excitation frequency 

f, are investigated. For this study, the optimal d and n are 10 mm and 4, respectively. Detection 

results also indicate that the blind area exists when the detection is implemented using single 

excitation frequency. The structural damage can hardly be detected when Xn is below 0.5. An 

enhanced GVMI using excitation frequency extension (from 600 Hz to 800 Hz) is then 

proposed in this study to eliminate the blind area. Finally, both single and dual structural 

damage detection results show its validity and accuracy. 
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Table and Figure Captions 

 

Table 1. DINRs of damage detections with different measurement intervals d. 

Table 2. Structural parameters of the cantilever beam used in the experiment. 

 

Fig. 1. Flow chart on the procedure of constructing damage index using GVMI. 

Fig. 2. A honeycomb sandwich beam with artificial damage used in simulation. 

Fig. 3.  Normalized displacement with noise with a slit on face sheet at x=297 mm. 

Fig. 4. Normalized DIi with different measurement interval d. 

Fig. 5. Normalized DIi with different highest order of displacement derivatives n. 

Fig. 6.  Normalized displacement with noise with a delamination at x=297 mm. 

Fig. 7.  Normalized DIi calculated from the vibration displacement with a delamination. 

Fig. 8. Damage positions in ten cases against the structural displacement. 

Fig. 9. Results using normalized DIi with different Xn. 

Fig. 10. The resolution of detection results DINR against Xn. 

Fig. 11. Normalized displacements at different frequency. 

Fig. 12. Results using NDIi-f with different Xn. 

Fig. 13. Results using EDIi with different Xn. 

Fig. 14. Experimental setup. 

Fig. 15. Steady-state vibration displacement captured experimentally. 

Fig. 16. Single damage detection results using DIi with different intervals d. 

Fig. 17. Dual damage detection result using NDIi-f. 

Fig. 18. Dual damage detection result using NDIi at f=720 Hz. 

Fig. 19. Dual damage detection result using EDIi. 

 

  



Tables 

 

 

Table 1. DINRs of damage detections with different measurement intervals d. 

d (mm) 1 4 8 10 12 

DINR 0.74 2.28 4.01 5.24 5.10 

 

 

Table 2. Structural parameters of the cantilever beam used in the experiment. 

Beam width [mm] 40  

 Length of honeycomb element [mm] 6  

 Al foil used in honeycomb [mm] 0.05  

 Density [kg/m3] 2700  

 Elastic modulus [GPa] 68.9  
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Fig. 1. Flow chart on the procedure of constructing damage index using GVMI. 
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Fig. 2. A honeycomb sandwich beam with artificial damage used in simulation. 

 

 

Fig. 3. Normalized displacement with noise with a slit on face sheet at x=297 mm. 
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                (e) 

Fig. 4. Normalized DIi with different measurement interval d:  

(a) d=1 mm; (b) d=4 mm; (c) d=8 mm; (d) d=10 mm; (e) d=12 mm. 
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Fig. 5. Normalized DIi with different highest order of displacement derivatives n. 

 

 

Fig. 6. Normalized displacement with noise with a delamination at x=297 mm. 

 

 

Fig. 7. Normalized DIi calculated from the vibration displacement with a delamination. 
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Fig. 8. Damage positions in ten cases against the structural displacement. 

 

 

 

(a)                                 (b) 

 

(c)                                 (d) 

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

x (mm)

N
o

rm
al

iz
ed

 D
I i

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

x (mm)

N
o

rm
al

iz
ed

 D
I i

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

x (mm)

N
o

rm
al

iz
ed

 D
I i

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

x (mm)

N
o

rm
al

iz
ed

 D
I i



 

(e)                                 (f) 

 

(g)                                 (h) 

 

(i)                                 (j) 

Fig. 9. Results using normalized DIi with different Xn: (a)-(j) refer to case 1-10. 
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Fig. 10. The resolution of detection results DINRs against Xn. 

 

 

 

 

(a)                                 (b) 

Fig. 11. Normalized displacements at different frequency: (a) f=600 Hz; (b) f=800 Hz. 
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Fig. 12. Results using NDIi-f with different Xn: (a)-(j) refer to case 1-10. 
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(i)                                 (j) 

Fig. 13. Results using EDIi with different Xn: (a)-(j) refer to case 1-10. 
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Fig. 14. Experimental setup. 
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Fig. 15. Steady-state vibration displacement captured experimentally. 

 

 

(a)                                  (b) 

Fig. 16. Single damage detection results using DIi with different intervals d: 

(a) d=1.8 mm; (b) d=9.1 mm. 
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Fig. 17. Dual damage detection result using NDIi-f. 
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Fig. 18. Dual damage detection result using NDIi at f=720 Hz. 

 

 

Fig. 19. Dual damage detection result using EDIi. 
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