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Abstract 

Pseudo-excitation (PE) method is a recently developed damage identification method for flexible 

structures containing components like beams, plates and shells. Characterized by the high-order 

spatial derivatives, the approach has been shown to feature a high sensitivity to local damage. 

However, two major issues, i.e. susceptibility to measurement noise and unknown material/structural 

properties, hamper its practical applications. To tackle these problems, an adaptive damage 

localization method is proposed for plate-type structures, which combines the PE method with 

hierarchical clustering. In the proposed method, a general dynamic equilibrium model, involving 

unknown material/structural properties, is statistically identified and further used for damage 

localization. Moreover, noise-induced effects are quantified by using a hierarchical clustering for 

performance assessment of damage localization and process optimization of spatial derivative 

estimation to achieve more accurate damage localization. Meanwhile, a data fusion scheme is 

developed to avoid blind inspection zones, thus enhancing the capability of damage localization. Both 

numerical and experimental studies of cantilever plates containing two damage zones are conducted 

to validate the feasibility and the effectiveness of the proposed adaptive damage localization method. 

Results demonstrate that the proposed method outperforms the traditional PE method in terms of 
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detection accuracy and robustness. 

Keywords: damage localization, local dynamic equilibrium, pseudo-excitation, spatial derivatives, 

hierarchical clustering 

1 Introduction 

Vibration-based damage identification plays an important role in structural health monitoring and has 

experienced a rapid development in the past several decades [1-4]. The basic principle of vibration-

based techniques consists in examining damage-induced changes in the vibration signatures under 

various operational and environmental conditions [5-9]. Generally speaking, vibration-based damage 

identification methods can be categorized according to different criteria such as the damage 

identification level, linear or nonlinear vibration responses and whether physics-based models are 

used or not [10-15]. Recently, a novel damage identification approach, referred to as pseudo-

excitation (PE) method, was proposed for damage identification in beam-, plate- and shell-type 

structures by examining the damage-induced perturbation in the dynamic equation of local structural 

components [16, 17].  

 

The fundamental idea behind the PE method originates from the local force identification problem 

[18, 19]. As for damage identification, the construction of a damage index for a damaged structure 

can be equivalently treated as the identification of pseudo-excitation forces on its intact counterpart 

[20, 21]. Naturally, damage alters the local structural properties like cross-section area or Young’s 

modulus, which in turn alters the local dynamic equilibrium [22-24]. Consequently, the peak/sudden 

changes in the reconstructed force distribution along the structure (in spatial domain) can be used to 

pinpoint the presence, locations or the size of the damage [25].  

 

PE method has several advantages over some traditional vibration-based methods [26, 27]. Firstly, 

structural damage is identified by using the measured displacement of damaged structures without 

requiring the baseline data on pristine structures or benchmark structures. Secondly, spatially 

distributed local information along the structures is used, which is more sensitive to local damage 

than the global damage feature-based methods. Furthermore, it examines the inspection region point-

by-point without requiring the global model of the entire structure. Thus, the method is applicable to 
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multi-damage detection. In addition, due to its local feature, structural boundary conditions have no 

effects and the method is immune from environmental variability such as changes of temperature and 

humidity.  

 

However, the damage localization index used in the PE approach is based on the equation of local 

motion, thus inheriting two major drawbacks. Firstly, the calculation of the high-order spatial 

derivatives of the displacement is highly sensitive to the measurement noise, since the finite 

difference method, usually adopted for spatial derivative estimation, severely propagates and 

amplifies the effects of measurement noise [28, 29]. Secondly, some material/structural parameters 

in the equation of local motion such as Young’s modulus, Poisson’s ratio and damping may be 

inaccurately described or even unknown a priori [30]. 

 

Traditionally, denoising techniques, exemplified by wavelet analysis [23, 31, 32] and wavenumber 

filtering [16, 26, 33], have been widely used to enhance the estimation accuracy of displacement 

spatial derivatives. Despite these efforts, two major problems still exist: one being the relationship 

between the estimation accuracy of the spatial derivatives and the performance of the damage 

localization, and the other one being the selection of the regularization parameters (such as the scale 

parameter of wavelet analysis) during spatial derivative estimation for more accurate damage 

localization. As for structures with unknown material/structural parameters, a general local vibration 

model without considering the damping effects is typically assumed [30, 34]. As a result, the 

application of the traditional PE method based on this assumption of no damping is limited to non-

resonant frequencies. However, an enhanced PE method based on vibration data under resonant 

frequencies is more desirable due to the high signal to noise ratio. Moreover, the damage index based 

on the statistically identified vibration model does not ideally zero for pristine plates due to the 

measurement noise effects, which may produce misleading damage localization results.      

 

Motivated by overcoming the afore-mentioned problems of the traditional PE method, the present 

work proposes a comprehensive approach to tackle the aforementioned problems, with the aim of 

improving the practical applicability of the PE method. Firstly, a novel adaptive damage localization 

method is proposed to obtain the most accurate damage localization by optimizing the estimate of 
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high-order spatial derivatives. The proposed approach contains two steps. Firstly, the measurement 

noise-induced features in the damage index (which is based on the fourth-order spatial derivatives of 

displacements) are characterized and quantified by using a hierarchical clustering. Secondly, a fully 

automated framework for high-order spatial derivate estimation is developed to reduce the noise 

features for better damage localization through a proper tuning of the process. Moreover, a vibration 

model incorporating viscous damping effects is adopted and statistically identified to construct the 

damage index, thus extending the applicability of the PE method to both resonant and non-resonant 

conditions. In addition, a normalization and thresholding process is also proposed to enhance the 

noise-robustness and the accuracy of the damage index.      

 

The outline of the paper is as follows. An enhanced PE method is first formulated in Section 2, 

including both damping effects and a data fusion scheme. In Section 3, a general form of the local 

dynamic equation is constructed for structures with unknown material/structural parameters. In 

Section 4, a local bivariate polynomial with adaptive selection of the fitting points is then developed 

for noise-robust fourth-order derivative estimation. The effects of the measurement noise are 

quantified by using a hierarchical clustering. Numerical and experimental studies are presented for 

validations in Section 5 and Section 6, respectively. Finally, key conclusions are given in Section 7.   

2 Enhanced pseudo-excitation method  

In principle, the PE method is applicable to any structural components such as beams, plates and 

shells as long as the inspected structural component can be locally described by an equation of motion. 

Without loss of generality, a plate-like component undergoing transverse vibrations is taken as an 

example, the equation of motion is defined according to the Kirchhoff-Love theory as 

 𝐷∇4𝑤(𝑥, 𝑦, 𝑡) + 𝐶
𝜕𝑤(𝑥,𝑦,𝑡)

𝜕𝑡
+ 𝜌ℎ

𝜕2𝑤(𝑥,𝑦,𝑡)

𝜕𝑡2 = 𝑓(𝑥, 𝑦, 𝑡)  (1) 

where 𝑤(𝑥, y, 𝑡) and 𝑓(𝑥, 𝑦, 𝑡) are the flexural displacement and transverse force at location (𝑥, 𝑦), 

respectively; 𝐷 = 𝐸ℎ3 [12(1 − 𝜐2)]⁄  is the plate’s flexural rigidity with Young’s modulus 𝐸, plate 

thickness ℎ and Poisson’s ratio 𝜐. 𝐶 and 𝜌 are the viscous damping coefficient and mass density, 

respectively. The operator ∇4𝑤(𝑥, 𝑦, 𝑡) is defined as 

 ∇4(𝑤(𝑥, 𝑦, 𝑡)) =
𝜕4𝑤(𝑥,𝑦,𝑡)

𝜕𝑥4 + 2
𝜕4𝑤(𝑥,𝑦,𝑡)

𝜕𝑥2𝜕𝑦2 +
𝜕4𝑤(𝑥,𝑦,𝑡)

𝜕𝑦4   (2) 
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Specifically, under harmonic excitation, steady-state vibration 𝑤(𝑥, 𝑦, 𝑡)  can be expressed by 

𝑊(𝑥, 𝑦). Assuming that the plate possesses a uniform cross-section and constant material properties 

within the inspection area, Eq. (1) can be simplified in a harmonic regime as  

 𝐷∇4𝑊(𝑥, 𝑦) + j𝐶𝜔𝑊(𝑥, 𝑦) − 𝜌ℎ𝜔2𝑊(𝑥, 𝑦) = 𝑓(𝑥, 𝑦, 𝜔) (3) 

in which j=√−1. In Eq. (3), the left side is identical to zero for a pristine plate, when the external 

excitation 𝑓(𝑥, 𝑦, 𝜔) is absent. However, with the presence of damage in the plate component, the 

left side of Eq. (3) does not equal zero when 𝑓(𝑥, 𝑦, 𝜔) = 0, which can be taken as an effective 

damage index (DI) as 

 
𝐷𝐼(𝑥, 𝑦, 𝜔) = [(𝐷 − ∆𝐷)∇4𝑊(𝑥, 𝑦) + j(𝐶 − ∆𝑐)𝜔𝑊(𝑥, 𝑦) − (𝜌ℎ − ∆𝜌ℎ)𝜔2𝑊(𝑥, 𝑦)]

+[∆𝐷∇4𝑊(𝑥, 𝑦) + j∆𝑐𝜔𝑊(𝑥, 𝑦) − ∆𝜌ℎ𝜔2𝑊(𝑥, 𝑦)]
 (4) 

where ∆𝐷, ∆𝑐 and ∆𝜌ℎ denote the damage-induced changes in the structural properties associated 

with its stiffness, damping and mass, respectively. Due to the local dynamic equilibrium, the first 

term of Eq. (4) equals zero, which is  

 (𝐷 − ∆𝐷)∇4𝑊(𝑥, 𝑦) + j(𝐶 − ∆𝑐)𝜔𝑊(𝑥, 𝑦) − (𝜌ℎ − ∆𝜌ℎ)𝜔2𝑊(𝑥, 𝑦) = 0 (5) 

It is seen from Eq. (4) and Eq. (5) that the transverse vibration of a damaged plate component is 

equivalent to its corresponding pristine counterpart subjected to a virtual excitation force, referred to 

as pseudo-excitation force (the second term of Eq. (4)). Therefore, the damage induced pseudo-

excitation force can be used to detect, localize or even quantify the damage and 𝐷𝐼(𝑥, 𝑦, 𝜔) of the 

damaged component is expressed as   

 𝐷𝐼(𝑥, 𝑦, 𝜔) = ∆𝐷∇4𝑊(𝑥, 𝑦) + j∆𝑐𝜔𝑊(𝑥, 𝑦) − ∆𝜌ℎ𝜔2𝑊(𝑥, 𝑦) (6) 

By considering the damping effects in Eq. (6), the proposed DI is applicable to both resonant and 

non-resonant frequencies. For practical applications, the statistically identified mode shape data of a 

structure can be used and are preferred to construct the DI in Eq. (6), as the mode shape data can be 

considered as the normalized displacement data that possess high signal to noise ratio. Moreover, the 

mode shape data can be readily extracted from acceleration, velocity or displacement measurements.  

 

Naturally, for any given 𝜔, the sensitivity of the 𝐷𝐼(𝑥, 𝑦) to damage depends on locations [16]. 
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Hence, an enhanced damage index integrating damage-induced characteristics at different 

frequencies should be more robust and accurate, which is defined as 

 𝐷𝐼(𝑥, 𝑦) = ∑ |𝐷𝐼(𝑥, 𝑦, 𝜔𝑖)|𝑖  (7) 

Having setting up the enhanced PE formalism, two critical issues are to be resolved: unknown 

material/structural properties and the evaluation of the fourth-order spatial derivatives of 𝑊(𝑥, 𝑦). 

These two issues will be addressed in Section 3 and Section 4, respectively. 

 

3 Damage localization with unknown material/structural properties 

In practice, the values of 𝐷 , 𝐶  and 𝜌ℎ  may not be available. Even if they were available, 

discrepancies between the theoretical and the actual material/structural values would be inevitable. 

To address this problem, a damage localization strategy is developed, which overcomes the absence 

of prior knowledge on material properties, geometric parameters and boundary conditions of the 

inspected structures.   

 

To demonstrate the proposed strategy, Eq. (6) is adopted without loss of generality. In Eq. (6), the 

basic material properties (𝜌 , 𝜐 , 𝐶  and 𝐸 ), geometric parameter (ℎ ) and boundary conditions are 

assumed to be unknown a priori. Instead of identifying the individual material and geometric 

parameters, combined parameters are used through casting Eq. (6) into the following form: 

 𝐷𝐼(𝑥, 𝑦, 𝜔) = 𝑎0∇4𝑊(𝑥, 𝑦) + 𝑊(𝑥, 𝑦) (8) 

in which, 𝑎0 = 𝐷 (j𝐶𝜔 − 𝜌ℎ𝜔2)⁄  is a constant for a given 𝜔. Assuming that each damage zone 

only occupies a small area of the whole structure, most part of the structure still satisfy 𝐷𝐼(𝑥, 𝑦, 𝜔) =

0 within the inspection region in the absence of any external excitation. Thus, coefficient 𝑎0 can be 

effectively evaluated according to the least-squares criterion at each interested angular frequency 𝜔. 

 

However, the constructed 𝐷𝐼(𝑥, 𝑦, 𝜔) in Eq. (8) does not ideally equal to zero even within the non-

damaged area due to measurement noise. To alleviate this, a normalization and thresholding 

procedure is harnessed to enhance the estimated 𝐷𝐼(𝑥, 𝑦, 𝜔).  

 

First, 𝐷𝐼(𝑥, 𝑦, 𝜔) is normalized as 
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 𝐷𝐼(𝑥, 𝑦, 𝜔) = (𝐷𝐼(𝑥, 𝑦, 𝜔) − 𝐷𝐼̅̅ ̅(𝜔)) 𝜎𝐷𝐼(𝜔)⁄  (9) 

where 𝐷𝐼̅̅ ̅(𝜔) and 𝜎𝐷𝐼(𝜔) denote the mean value and the standard deviation of all entries in 𝐷𝐼(𝜔), 

respectively.  

 

Then, a threshold value is determined according to the three-sigma limits of a normal distribution to 

reduce the effects of measurement noise. Normally, for a pristine structure, the values of 𝐷𝐼(𝜔) 

mostly sit in the range of [𝐷𝐼̅̅ ̅(𝜔) − 3𝜎𝐷𝐼(𝜔), 𝐷𝐼̅̅ ̅(𝜔) + 3𝜎𝐷𝐼(𝜔) ] and the outlier values outside this 

range tend to be scattered over the plate surface. However, the presence of damage will produce more 

outlier values outside [𝐷𝐼̅̅ ̅(𝜔) − 3𝜎𝐷𝐼(𝜔), 𝐷𝐼̅̅ ̅(𝜔) + 3𝜎𝐷𝐼(𝜔) ], which tend to be spatially close to each 

other around the damage. Therefore, the outlier values located outside the three standard deviations 

from the mean are taken for damage localization and the enhanced noise-robust 𝐷𝐼(𝑥, 𝑦, 𝜔)  is 

expressed as 

 𝐷𝐼(𝑥, 𝑦, 𝜔) = {
|𝐷𝐼(𝑥, 𝑦, 𝜔)|, |𝐷𝐼(𝑥, 𝑦, 𝜔)| ≥ 𝐷𝐼̅̅ ̅(𝜔) + 3𝜎𝐷𝐼(𝜔) 

0,         |𝐷𝐼(𝑥, 𝑦, 𝜔)| < 𝐷𝐼̅̅ ̅(𝜔) + 3𝜎𝐷𝐼(𝜔)
 (10) 

in which 𝐷𝐼(𝑥, 𝑦, 𝜔) requires neither baseline data on pristine structures nor the prior knowledge on 

their material/structural properties.  

 

4 Adaptive damage localization via the fourth-order derivative estimation  

To get 𝐷𝐼(𝑥, 𝑦, 𝜔)  from Eq. (6), ∇4(𝑊(𝑥, 𝑦))  is typically evaluated from 𝑊(𝑥, 𝑦)  through a 

finite difference calculation scheme, which severely amplifies the effects of measurement noise [35]. 

To overcome this problem, a systematic approach is proposed to achieve the most accurate damage 

localization by optimizing the estimation of ∇4(𝑊(𝑥, 𝑦)) . In this method, the performance of 

damage localization is evaluated and quantified by using hierarchical clustering.  

4.1 The fourth-order derivative estimation 

The estimation of ∇4(𝑊(𝑥, 𝑦)) can be categorized into either discrete or continuous methods [36]. 

The discrete method applies the direct calculation formula to the discrete representation points of the 

underlying displacement surface. The continuous method firstly employs a local bivariate polynomial 

technique to fit the current point and its adjacent measurement points as shown in Eq. (11), and then 
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evaluates the derivatives based on the fitted local displacement surface [37].  

 𝑊̂𝑝(𝑥, 𝑦) = ∑ ∑ 𝑐𝑖1,𝑖2−𝑖1
𝑥𝑖1𝑦𝑖2−𝑖1𝑖2

𝑖1=0
𝑛
𝑖2=0  (11) 

where 𝑊̂𝑝(𝑥, 𝑦) indicates the fitted displacement value at point 𝑝 and 𝑛 denotes the order of the 

polynomial.  

 

However, the direct application of Eq. (11) for ∇4(𝑊(𝑥, 𝑦)) estimation involves several other high-

order terms such as 𝑥3, 𝑦3, 𝑥𝑦3 and 𝑥3𝑦. Furthermore, the higher the order of the polynomial in 

Eq. (11), the more adjacent measurement points are required to evaluate the coefficients. Therefore, 

in order to avoid the involvement of some useless high-order terms and simplify the calculation 

process of ∇4(𝑊(𝑥, 𝑦)), a double second-order derivative procedure is proposed, expressed as   

 ∇4(𝑊(𝑥, 𝑦)) = ∇2 (∇2(𝑊(𝑥, 𝑦))) (12) 

where ∇2=𝜕2 𝜕𝑥2⁄ + 𝜕2 𝜕𝑦2⁄  is the Laplace operator. In Eq. (12), ∇2(𝑊(𝑥, 𝑦)) is first estimated 

according to a bivariate polynomial in the form of  

  𝑊̂𝑝(𝑥, 𝑦) = 𝑐2,0𝑥2 + 𝑐1,1𝑥𝑦 + 𝑐0,2𝑦2 + 𝑐1,0𝑥 + 𝑐0,1𝑦 + 𝑐0,0  (13) 

Then, ∇2(𝑊(𝑥, 𝑦)) is fitted using the same form of the bivariate polynomial as shown in Eq. (13) 

to evaluate ∇4(𝑊(𝑥, 𝑦)).  

 

In the proposed procedure, the selection of the number of local measurement points for polynomial 

fitting plays a vital role in determining the noise-robustness and estimate accuracy of ∇4(𝑊(𝑥, 𝑦)), 

which subsequently affects the damage localization. Here, in order to better represent the number of 

local measurement points, rings around a centre point are used, as shown in Fig.1. Theoretically, the 

more rings are used in the fitting, the more noise-robust and smooth the estimated spatial derivatives 

of 𝑊(𝑥, 𝑦) are, but the less sensitive to damage-induced local features. Therefore, an appropriate 

selection of the number of rings 𝑁𝑝 is required to obtain the most accurate damage localization. To 

simplify the selection of 𝑁𝑝 , the double fitting process based on Eq. (13) using the same 𝑁𝑝  is 

constructed. Moreover, an automatic approach for adjusting 𝑁𝑝  for obtaining the best damage 

localization performance will be presented in detail in the next section. 
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（a） （b） （c）
 

Figure 1. Adjacent measurement points: (a) 1 ring, (b) 2 rings and (c) 3 rings.  

 

4.2 Adaptive determination of 𝑵𝒑 via hierarchical clustering  

A typical demonstration of the elements of 𝐷𝐼(𝑥, 𝑦) under a multi-damage scenario is graphed in 

Fig.2. Usually, the outlier values due to local damage tend to be close to each other whilst the noise-

caused outlier values are scattered over the 2-D plate surface. A smaller 𝑁𝑝 can hardly suppress the 

effects of measurement noise, thus leading to a poor damage localization. By increasing 𝑁𝑝, fine-

scale features would gradually disappear, which include both the noise effects and damage-induced 

local features. Therefore, an appropriate selection of 𝑁𝑝  is essential to accurately localize the 

damage zones whilst suppressing the noise effects. 

 

Noise-induced values Damage-induced values Damage zones
 

Figure 2. Illustration of outlier values of 𝐷𝐼(𝑥, 𝑦).  

 

To determine the optimal 𝑁𝑝, a hierarchical clustering approach is proposed, which measures the 

dissimilarity between the sets of outlier values. In this approach, a single-linkage clustering is adopted 
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to evaluate the shortest distance that involves all the outlier values of 𝐷𝐼(𝑥, 𝑦), which is depicted in 

Fig. 3. The links between outlier values are represented as upside-down U-shaped lines. The height 

of the U indicates the distance between outlier values. For example, the link representing cluster 1 

contains a large number of outlier values due to a damage, which are spatially close to each other, 

whereas the clusters due to measurement noise have a large distance to each other and each cluster 

contains just one or two outlier values. Therefore, the number of clusters due to measurement noise 

as described in Fig. 3 is a performance indicator of damage localization. Normally, the fewer the 

noise-induced clusters, the more noise-robust and accurate the damage localization results.  

 

D
is

ta
n

ce
  

m
ea

su
re

Cluster 1

Noise-induced clusters

Cluster 2

Outlier value index  

Figure 3. Illustration of hierarchical clustering dendrogram of 𝐷𝐼(𝑥, 𝑦).  

 

Furthermore, the number of clusters 𝑁c associated with the measurement noise decreases gradually 

by increasing 𝑁𝑝, as the outlier values due to measurement noise are smoothened when a larger 𝑁𝑝 

is used. Therefore, the selection of 𝑁𝑝 can be determined by the calculation of 𝑁c. To calculate 𝑁c, 

the proposed steps are summarized as follows: 

 

Step 1: Compute the dissimilarity between each pair of outlier values in 𝐷𝐼(𝑥, 𝑦). For instance, 

with (𝑥𝑘, 𝑦𝑘) and (𝑥𝑙 , 𝑦𝑙) representing the coordinates of two outlier values, the dissimilarity 

is evaluated by using Euclidean distance as 

 𝑑𝑘𝑙 = √(𝑥𝑘 − 𝑥𝑙)2 + (𝑦𝑘 − 𝑦𝑙)2 (14) 

Sep 2: Group the outlier values into a cluster tree as shown in Fig. 3. The outlier values are linked 

in close proximity using the single-linkage criterion. Mathematically, the single-linkage criterion 

is expressed as  
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 𝑑(𝑅, 𝑆) = min
𝑟∈𝑅,𝑠∈𝑆

𝑑(𝑟, 𝑠) (15) 

where R and S denote any two sets of elements considered as clusters, and 𝑑(𝑟, 𝑠) indicates the 

distance between two elements 𝑟 and 𝑠. 

 

Step 3: Identify and sum up the number of the clusters 𝑁c that contain one or two outlier values, 

which are considered corresponding to the measurement noise as demonstrated in Fig. 3.  

 

To avoid possible over-smoothing of the damage-induced local features, the lowest number 𝑁𝑝 of 

fitting rings that makes 𝑁c zero will be chosen for damage localization.  

 

5 Numerical studies 

Cantilever aluminium plates of dimension 0.35 × 0.23 × 0.003m3  with Young’s modulus 𝐸 =69 

GPa, Poisson’s ratio 𝜈 = 0.35 and mass density 𝜌=2700 kg/m3 are studied. Based on the Mindlin 

plate theory, the plates are modelled in MATLAB by using the four-node quadrilateral shell elements. 

Here, the use of Mindlin plate theory would allow the re-examination of the possible shear and 

rotational effects of the plates on the validity of the proposed methodology based on Kirchoff-Love 

theory. For numerical integration, 2 × 2 Gauss points are used for the bending contribution and 1 

Gauss point is used for the shear contribution, which are proved to be one of the simplest approach 

to avoid shear locking [38].  

 

The plates are clamped on the left and discretized into 140 × 92  equal-sized elements of 

0.0025 × 0.0025 × 0.003m3. Two damage scenarios are studied and the damage is introduced by 

reducing the thickness of the associated FE elements, as shown in Fig. 4. In numerical case 1, two 

damage zones are centred at (0.10m, 0.115m) and (0.21m, 0.115m) with an equal area 

of 0.02 × 0.02 m2. For numerical case 2, two damage zones are centred at (0.155 m, 0.075 m) and 

(0.155 m, 0.155 m) with the same equal area of 0.02 × 0.02 m2 . In both damage scenarios, the 

damage zones of the plate thickness are reduced by 5% with respect to the pristine plate. 
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Figure 4. Configuration of a plate with damage. 

 

The purposes of numerical studies are twofold. First, at a single angular frequency, the proposed 

adaptive damage localization method will be proved to be noise-robust and effective for damage 

localization under noisy condition. Secondly, the enhanced PE method that integrates damage 

information at several angular frequencies will be demonstrated to be more effective and robust for 

damage localization. 

  

5.1 Verification of the proposed adaptive damage localization  

In this section, the 10th mode, shown in Fig. 5, which is sensitive to the two damage zones of 

numerical case 1, is first investigated to verify the feasibility and the effectiveness of the proposed 

adaptive damage localization method. Then, the 10th mode is shown to be ineffective for numerical 

case 2 and hence the combination of damage-induced features of more than one mode proved to be 

necessary for robust damage localization. 

 

Figure 5. The 10th mode shape. 
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The damage localization results in numerical case 1 without and with noise are presented in Figs. 6 

(a) and (b), respectively. For the noisy case, a Gaussian white noise of SNR=60dB (SNR represents 

the signal to noise ratio) is added.  
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    (a)                 (b) 

Figure 6. |𝐷𝐼(𝑥, 𝑦)| of the 10th mode shape for numerical case 1: (a) without noise effects and (b) 

with SNR= 60dB. 

 

It is seen from Fig. 6(a) that the damage index 𝐷𝐼(𝑥, 𝑦)  of the original PE method is able to 

accurately localize the two damage zones. However, the localization results are severely degraded by 

the presence of measurement noise as shown in Fig. 6(b). Moreover, the noise-induced outlier values 

of 𝐷𝐼(𝑥, 𝑦)  in Fig. 6(b) are scattered over the plate surface and are rarely close to each other. 

Therefore, the proposed approach of quantifying the noise-induced characteristics of 𝐷𝐼(𝑥, 𝑦) in 

Section 4.2 is reasonable.   

 

Next, for the noisy case in Fig. 6(b), the proposed adaptive fourth-order derivative estimation 

approach is applied and the number of the fitting rings 𝑁𝑝 is optimized as shown in Fig. 7.  
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Figure 7. 𝑁c at different 𝑁𝑝 for numerical case 1. 
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It can be seen that the noise-induced clusters 𝑁c decreases rapidly when 𝑁𝑝 increases. 𝑁𝑝=6 is 

automatically determined, as the corresponding 𝑁c first reduces to zero. Damage localization results 

using different 𝑁𝑝= 2, 6, 10, 14 are presented in Fig. 8. The actual positions of the damage zones are 

indicated by white boxes.  
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Figure 8. Damage localization results when using different 𝑁𝑝 for numerical case 1. 

 

By comparing Fig. 8(a) with Fig. 8(b), it is apparent that the effects of measurement noise are 

significantly reduced and the two damage zones are accurately identified when using 𝑁𝑝=6. In Fig. 

8 (c), 𝑁𝑝 is further increased to 10 and the damage localization results indicate that a larger 𝑁𝑝 is 

able to enlarge the detected damage areas. Finally, at 𝑁𝑝=14 as shown in Fig. 8(d), the damage-

induced local characteristics are totally smoothened. These observations confirm the fact that a proper 

selection of 𝑁𝑝  is indeed essential for accurate damage localization. Moreover, the proposed 

adaptive selection procedure for 𝑁𝑝  is an effective way to obtain accurate damage localization 

results.   

 

Then, the 10th mode is used to localize the two damage zones of numerical case 2. First, the damage 

localization results with and without noise are graphed in Fig. 9. Figure 9(a) shows that the two 

damage zones cannot be effectively localized by using the 10th mode shape. Furthermore, the presence 

of the measurement noise severely degrades the localization results, as shown in Fig. 9(b). After this, 
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the proposed adaptive damage localization is applied and the obtained damage localization results are 

illustrated in Fig. 10. It indicates that the noise-induced clusters decreasing to zero is achieved when 

𝑁𝑝=7 and the damage-induced local characteristics are clearly manifested. However, this mode is not 

effective for detecting these two particular damage zones. As expected, a single mode or operational 

deflection shape at a certain angular frequency may not lead to the desirable robustness for damage 

localization. 
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       (a)                 (b) 

Figure 9. |𝐷𝐼(𝑥, 𝑦)| by using the 10th mode for numerical case 2: (a) without noise effects and (b) 

with SNR= 60dB. 

 

N
u

m
b

er
 o

f 
cl

u
st

e
rs

 N
c

Number of rings Np

y 
(m

)

x (m)  

      (a) 𝑁c under different 𝑁𝑝           (b) 𝑁𝑝=7 

Figure 10. (a) Noise-induced clusters at different 𝑁𝑝 and (b) Damage localization results when using 

𝑁𝑝=7 for numerical case 2. 

 

Finally, the sensitivity of the proposed method to the number of measurement points is investigated 

using numerical case 1. Localization results are presented in Fig.11. It can be seen that by gradually 

reducing the measurement point number to a certain extent, down to 36×29, the identified damage 

shapes become coarse, but still detectable. However, a further reduced grid, e.g. 18×15, is obviously 

not enough. Therefore, sufficient measurement points are required to ensure the detectability.  
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Figure 11. Damage localization results on numerical case 1 based on the 10th mode shape using 

different measurement points. 

5.2 Enhanced adaptive damage localization index  

To obtain a robust damage localization results, the proposed integrated 𝐷𝐼(𝑥, 𝑦) as defined in Eq. 

(7) is applied. Here, the 1st to 5th modes (lower modes) and the 10th to 15th modes (higher modes) 

contaminated by a Gaussian white noise of SNR=60dB are used to show the effectiveness of the 

proposed integrated 𝐷𝐼(𝑥, 𝑦). Localization results are depicted in Fig. 12 and Fig. 13, respectively. 

It can be seen that the two damage zones can be accurately localized in both damage scenarios by 

using combinations of lower modes and higher modes. However, comparisons between Fig. 12 and 

Fig. 13 suggest that higher modes tend to provide more accurate damage localization results, as 

expected. For practical applications, with the damage information unknown a priori, it is better to 

combine all the available modes for a more robust damage localization. 
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Figure 12. Integrated damage localization by using the first five mode shapes: (a) Numerical case 1 

and (b)Numerical case 2. 
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Figure 13. Integrated damage localization by using the 10th to 15th modes: (a) Numerical case 1 and 

(b) Numerical case 2. 

 

6 Experimental studies 

As experimental validation, two cantilever aluminium plates with the same geometrical properties as 

those used in the numerical study are fabricated and tested. The experiment set-up is shown in Fig. 

14.  

Plate

ShakerAmplifier

PSV-500 system

Laser head

 

Figure 14. Experiment set-up of testing a cantilever plate. 
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The damage is introduced by reducing 10% of the plate thickness on the opposite side of the 

measurement surface. Other parameters of the two studied damage cases are manufactured according 

to the two damage scenarios of the numerical study. The plates are clamped on the left and excited 

by a shaker (LDS V406) on the right. Vibration responses are measured by a scanning laser 

vibrometer (PSV-500 SLV) under sinusoidal excitation. First, a pseudo random excitation signal of 

0-2000 Hz is applied to search for the resonant frequencies of the plate. The sampling rate is 5000Hz. 

Then, the ‘FastScan’ mode is adopted. By setting a specific excitation frequency of interest, excitation 

signal feeds an electromechanical shaker, producing an excitation force with an amplitude of 5N. 

 

For case 1, 141 × 95 measurement points are assigned, which span from 0.0084m to 0.3334m in 

the 𝑥  direction and 0.0028m to 0.2218m in the 𝑦  direction. For case 2, the measurement zone 

slightly differs from experimental case 1 but 141 × 95 measurement points are still used. During 

the experiments, 30 averages are taken for each measurement point, resulting in a total measurement 

time of 30 minutes for 141 × 95 measurement points.  

 

Firstly, the 10th mode is used as a representative and the proposed damage index based on the central 

difference method for the fourth-order derivative estimation is used to identify the two damage zones 

in both experimental cases, with damage localization results shown in Fig. 15. The actual positions 

of the damage zones are indicated by white boxes. Figure 15 demonstrates that without using 

denoising techniques, the traditional PE method is barely capable of detecting the damage. 
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Figure 15. Damage localization of the traditional PE method: (a) Experimental case 1 and (b) 

Experimental case 2. 

  

Then, the proposed adaptive damage localization method is used and the damage localization results 
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of the two experimental damage cases are illustrated in Fig. 16 and Fig. 17, respectively. From Fig. 

16, one concludes that the proposed adaptive damage localization approach is effective in reducing 

the noise effects and providing accurate damage localization results. Moreover, the denoising 

capability of the proposed method is further validated in Fig. 17 but only one damage zone is detected. 

Therefore, the damage-induced local features at a single frequency is not robust for damage 

localization and the damage information at more frequencies should be incorporated to provide an 

accurate and robust damage localization. 
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     (a) 𝑁𝑐 under different 𝑁𝑝           (b) 𝑁𝑝=6 

Figure 16. (a) Noise-induced clusters at different 𝑁𝑝 and (b) Damage localization results when using 

𝑁𝑝=6 for experimental case 1. 
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         (a)  𝑁𝑐 under different 𝑁𝑝             (b) 𝑁𝑝=8 

Figure 17. (a) Noise-induced clusters at different 𝑁𝑝 and (b) Damage localization results when using 

𝑁𝑝=8 for experimental case 2. 

 

To demonstrate the proposed integrated 𝐷𝐼(𝑥, 𝑦) in Eq. (7), the 10th and 13th modes are used with 

results for the two experimental cases presented in Fig. 18, which would be shown to be sufficient 

and efficient. It is clear that the two damage zones in both experimental cases are accurately localized. 

Therefore, in practical applications with the damage information unknown a priori, mode shapes or 
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operational deflection shapes at different angular frequencies should be combined in the proposed 

adaptive damage localization method to avoid blind inspection zones.  
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    (a)                (b)  

Figure 18. Integrated damage localization results: (a) Experimental case 1 and (b) Experimental case 

2. 

 

7 Conclusions 

A novel adaptive multi-damage localization method, based on a local vibration model and hierarchical 

clustering, is proposed. Compared with the traditional high-order spatial derivative-based damage 

localization methods, the proposed method optimizes the process for the high-order spatial derivative 

estimation to achieve more accurate damage localization. Moreover, the damage index is constructed 

based on an identified general local vibration model of the inspected structures with unknown 

material/structural parameters, under the assumption that damage only occupies a small area of the 

inspected structural component and the rest of the inspected structure still satisfies the local vibration 

model in the absence of any external excitation. Owing to these features, the method can be 

implemented for structures without baseline data and the information on material/structural properties.  

As part of the method, an enhanced damage localization index is proposed by integrating the damage-

induced features in modes or more generally, structural characteristic deflection shapes at different 

angular frequencies. Numerical and experimental studies on two plates with two damage zones are 

conducted to demonstrate the improved performance of the proposed adaptive damage localization 

method.   

 

Several major conclusions are summarized as follows: 

1. The quantification of the local dynamic equilibrium is an effective approach for damage 
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localization, even when some material/structural properties are unknown a priori. By 

incorporating the damping effects into the model, the applicability of the traditional PE 

method is extended to resonant conditions. Furthermore, a statistical thresholding approach is 

proposed to enhance the noise-robustness of the defined damage localization index. 

    

2. Hierarchical clustering is shown to be an effective tool for noise feature quantification and the 

improvement of the damage localization accuracy. A fully automatic framework to obtain the 

most accurate damage localization is developed based on hierarchical clustering. Firstly, the 

noise-induced features in the damage index are quantified via hierarchical clustering. Then, 

the noise effects on the damage index are reduced to a minimal level by tuning the process of 

spatial derivative estimation.  

 

3. A robust damage localization approach should integrate the damage information from 

multiple modes or operational deflection shapes at different frequencies, to avoid the blind 

inspection area that each one may have.  
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