
ABSTRACT: There is a genuine need to shorten the development period for new materials with desired properties. In this 

work, Machine Learning (ML) was conducted on a dataset of 219 bulk metallic glasses (BMGs) with the elastic moduli and 

another dataset of 630 BMGs with the critical casting diameters (Dmax). The predicted moduli and Dmax with the ML model 

were in good agreement with most experimentally measured ones and the models have identified some errors reported in 

the literature. This work indicates the great potential of ML in advanced materials design with target properties. 
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Introduction 

Bulk metallic glasses (BMGs), as promising materials with unique structural features and outstanding 

mechanical, physical and chemical properties [1], have been extensively studied, because of their potential 

applications in various fields, since they were first discovered in 1960 by Duwez and co-workers [2]. However, 

the relationship between mechanical property and chemical composition in BMGs has not been established due 

to the poor understanding of the underlying physics [3,4]. At the moment, it is difficult to develop an analytic 

model to design a new BMG with targeted properties. As a result, it requires a long time to discover and optimize 

a potential material for application via the traditional paradigm of materials science and engineering [5]. 

Along with the fast development of artificial intelligence, the paradigm of “machine learning” or “materials 

informatics”, which unifies the knowledge learned from experiments, theory, computations and simulations, is 

rapidly becoming popular in the field of materials science [3-8]. Integrating artificial intelligence with materials 

science and engineering may accelerate the design and discovery of advanced materials. A few groups of 

researchers have employed machine learning to study metallic glasses. In 2017, Sun and co-workers employed 

support vector machine to study the glass-forming-ability (GFA) of binary metallic alloys with random 

compositions [8]. Ward and Ren applied the machine learning approach on metallic glasses containing three or 

more elements in 2018 [9,10]. Their findings suggest that Machine learning (ML) has the great potential to 

discover new metallic glasses with good GFA. 

The present work uses ML to study BMG with the aim to predict elastic moduli (bulk modulus K and shear 

modulus G). A four-step procedure is used in this study: (1) Data collection: the sets of experimental data on 

metal-metal BMGs was collected from the literature; (2) Feature selection: the best subset-selection (BSS) 

algorithm was applied to select the best features from feature candidates; (3) Parameter tuning: the parameter of 

ML model was tunning by opimazation technique; (4) ML model validation: the machinle learning model was 

trained and tested by leave-one-out cross-validation (LOOCV). 



 

Figure 1. Four-step procedure used in this study: (1) Data collection; (2) Feature selection; (3) Parameter tuning; (4) ML validation. 

 

Data Collection  

We have built two training sets in this paper: (1) Elastic modulus dataset and (2) Critical casting diameter 

dataset. 

Elastic modulus dataset: The shear modulus and bulk modulus for 219 metal-metal BMGs have been 

collected in this research. The 219 alloys are from 4 Ca-based, 23 Cu-based, 4 Hf-based, 69 LT-based (LT= Ce, 

Dy, Er, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Tm and Yb), 21 Mg-based, 8 Ni-based, 1 Sc-based, 5 Sr-based, 4 Ti-

Based, 78 Zr-based and 2 High-entropy alloys. All compositions herein are expressed in atomic fraction. And the 

elastic moduli were measured via ultrasonic-wave-propagation (UWP) methods  

Critical casting diameter dataset: this set contains the characteristic temperatures and Dmax for 442 metal-

metal BMGs. The 442 alloys are from 19 Ag-based, 57 Ca-based, 84 Cu-based, 3 Hf-based, 111 LT-based, 60 

Mg-based, 13 Ni-based, 1 Sc-based, 20 Ti-Based, 4 Y-based and 70 Zr-based alloys. All compositions herein are 

expressed in atomic fraction. Because of the fact that Dmax can be affected by the fabrication method, only values 

obtained by copper mold casting method were chosen. And the most characteristic temperatures were measured 

by the differential thermal analysis and differential scanning calorimetry at a heating rate of 20 K/min. 

Data standardization 

The feature standardization method [16] was used to standardize the features, given by  

𝑥′ =
𝑥 − 𝑥̅

𝜎𝑥
 

where 𝑥̅ is the average feature value, and 𝜎𝑥 is the standard deviation.  



Support vector regression (SVR) model 

The WEKA software was used to build a SVR model. SVR is equipped with the kernel function which is 

used to covert the features into a higher dimensional space. With the kernel trick, the output y from any set of 

features x has a linear correlation at the higher space. 

𝑓(𝑥) =< 𝑤,𝐾(𝑥) > +𝑏  

in which, K(x) is the kernel function, w and b are determined by argmin(
1

2
‖𝑤‖2 + 𝐶∑ 𝐿(𝑓(𝑥𝑖, 𝑦𝑖))

𝑚
𝑖=1 . C is the 

penalization parameter and L is the loss function: 𝐿(𝑓(𝑥𝑖, 𝑦𝑖)) = max⁡{|𝑓(𝑥𝑖) − 𝑦𝑖|} 

Two kernel functions were used in this research, radial basis function (RBF) kernel and Pearson Ⅶ Universal 

Kernel (PUK) 

RBF: 𝐾(𝑥𝑖, 𝑥𝑗) = exp (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2
) 

PUK: 𝐾(𝑥𝑖, 𝑥𝑗) = [1 + (
√‖𝑥𝑖−𝑥𝑗‖

2
√21∕𝜔−1

𝜎
)

2

]

−𝜔

 

The RBF parameter γ, PUK parameters ω and σ were tuning via the grid search (GS) technique in this 

research, as well as parameter C. 

Gaussian process (GP) model 

The Matlab 2018 software was used to build the GP model. A GP model is characterized such that the output 

y from any set of features x has a multivariate normal distribution: 

𝑦 = 𝑓(𝑥) 𝑇𝑊+ 𝜀  

where W is a constant vector, f(x) and ε are gaussian distribution, the probability density (PD) of these two 

distributions are: 

𝜀~𝒩(0, 𝜎), PD(ε) =
1

σ𝑛√2π
exp (−

x2

2σ𝑛2
) 

𝑓(𝑥)~𝒩(0, 𝐾𝑓), PD(𝑓(𝑥)) =
1

𝐾𝑓√2π
exp (−

x2

2𝐾𝑓
2) 

in which Kf is the covariance function, and the exponential function (EF) was used in this research 

𝐾𝑓 = 𝜎𝑓
2 exp (−

‖xi−xj‖

σl
)  

 The σ𝑛, σ𝑓 and σ𝑙 were estimated via Matlab automatically. 



Results and Discussion 

Elastic modulus model 

Selection of best-performance features  

The bulk modulus is fundamentally related to the atomic bonding energy [10,11], which is influenced by the 

electronegativity (EN). The bulk modulus depends on the average atomic volume (VA) [12], and the atomic size 

difference (δ) affects the ratio of K to G in metallic glasses [13]. There exists correlation among the critical cooling 

rate, elastic modulus and mixing entropy (Sm) [14]. Thus, the feature candidates in the present work include 

relative electronegativity (REN), absolute electronegativity (AEN), average atomic volume (VA), atomic size 

difference (δ), and mixing entropy (Sm), which are defined by   

𝑅𝐸𝑁 = ∑𝑎𝑖 (𝐸𝑁𝑖 − 𝐸𝑁𝑜)  

𝐴𝐸𝑁 = ∑𝑎𝑖 𝐸𝑁𝑖  

𝑉𝐴 = ∑𝑎𝑖 ∙
4

3
𝜋𝑟𝑖

3  

𝛿 = √∑𝑎𝑖 (1 −
𝑟𝑖

𝑟𝑖̅
)
2

  

Sm = −𝑅∑ 𝑎𝑖𝑙𝑛
𝑛
𝑖=1 𝜙𝑖  

where ai is the atomic percentage of the i-th constituent, ENo is the Pauling electronegativity of the major element 

in a BMG, ri is the atomic radius and 𝑟𝑖̅ is the average value. R is the ideal gas constant, 𝜙𝑖 is the volume 

percentages of i-th component. The replacement of 𝑎𝑖 by 𝜙𝑖 in the logarithmic term of Sm-p is due to the effect 

of dissimilar size of atoms [15].  

Due to the poor understanding of metallic glasses, three types of atomic radius are considered here. The 

metallic radius (rm), the covalent atomic radius (rc) and the statistical radius. Their values are shown in Table 1 

and the datasets containing all features shown in Table 2 will be used to train ML models. 

Metallic radius [17] which is taken as half of the interatomic distance in the metallic lattice was widely used 

in studies of metallic glasses as the atomic radius [8,17,18]. This radius depends on the nature of the atom, as 

well as on the coordination number (CN). The metallic radius of an element in this work is calculated with a 

coordination number of 12 for closed packed lattice.  



PENG et. al [19] used the covalent atomic radius to study the Mg-based metal-metal BMGs, and Lu et. al 

[20] also studied the Zr-based metal-metal BMGs with this radius. The covalent radius of Mg and Zr are 

calculated with a coordination number of 2 and 4, respectively [21]. The coordination numbers used in this work 

are shown in table 1. 

The above two types of atomic radius use a constant coordination number. However, the structures of BMGs 

are known as the disordered structures, the atoms of same element might have different coordination numbers 

[22]. Thus, the statistical radius [23], which is the atomic radius based on a statistical analysis of more than 

228,000 experimental bond length form the Cambridge Structure Database, was employed in this research. 

The best subset selection (BSS) method [24] was applied to screen these feature candidates. If there are m 

feature candidates, the linear least-square regression (LLS) was used to fit for each possible combination of these 

feature candidates. That is to say, m LLS models are built that only include one feature candidate, m(m-1)/2 LLS 

models containing two feature candidates, and so forth [25].  

Table 1 Data of electronegativity [26] and atomic radius [17,19,22] of elements. 

Symbol EN 
rm rc 

rs Symbol EN 
rm rc 

rs 
Value CN Value CN Value CN Value CN 

Ag 1.93 144 12 128 1 145 Mo 2.16 139 12 138 6 154 

Al 1.61 143 12 125 3 121 Nb 1.60 146 12 147 5 164 

Au 2.54 144 12 124 1 136 Nd 1.14 181.4 12 174 3,6 201 

Be 1.57 112 12 102 2 96 Ni 1.91 124 12 110 2 124 

Ca 1.00 197 12 171 2 176 Pb 1.87 180 12 144 4 146 

Ce 1.12 181.8 12 163 4 204 Pd 2.20 137 12 120 2 139 

Co 1.88 125 12 111 3 126 Pr 1.13 182.4 12 176 5 203 

Cr 1.66 128 12 122 6 139 Pt 2.28 138.5 12 123 2 136 

Cu 1.90 128 12 112 1 132 Sc 1.36 162 12 148 3 170 

Dy 1.22 178.1 12 167 3 192 Sm 1.17 180.4 12 172 3 198 

Er 1.24 176.1 12 165 3 189 Sn 1.96 145 12 140 4 139 

Fe 1.83 126 12 116 4 132 Sr 0.90 215 12 185 2 195 

Gd 1.20 180.4 12 169 3 196 Ta 1.50 146 12 146 5 170 

Ge 2.01 125 12 121 4 120 Tb 1.10 177.3 12 168 3 194 

Hf 1.30 159 12 152 4 175 Ti 1.62 147 12 136 4 160 

Ho 1.23 176.2 12 166 3 192 Tm 1.25 175.9 12 164 3 190 



In 1.78 167 12 142 3 142 V 1.63 134 12 134 134 153 

La 1.10 187 12 180 3 207 Y 1.22 180 12 163 3 190 

Li 0.98 152 12 133 1 128 Yb 1.10 176 12 170 3 187 

Lu 1.27 173.8 12 162 3 187 Zn 1.65 134 12 118 2 122 

Mg 1.31 160 12 139 2 141 Zr 1.33 160 12 154 4 175 

Mn 1.55 127 12 119 5 139               

 

Table 2. List of original datasets 

Atomic radius 
Target modulus 

G  K 

rm GM  KM 

rc GC  KC 

rs GS  KS 

 

The qualities of strained LLS models were tested by the LOOCV with the cross-validation root mean square 

error (RMSE), For a dataset containing n samples, a model was trained with n-1 training observations and the 

trained model was used to predict the target property 𝑦𝑖̂ of remain observation, the root square error between the 

authentic value 𝑦𝑖 and this predicted value are computed. Repeating this approach n times produces n root square 

errors, the average of these errors is cross-validation root mean square error (RMSE) is given by 

𝑅𝑀𝑆𝐸 = √∑
1

𝑛
(𝑦𝑖̂ − 𝑦𝑖)2

𝑛

𝑖=1

 

The BSS method selects the best LLS model, shown in Figure 2a for G and in Figure 2b for K. The best 

subset of features in GM is (AEN, VA, Sm); in GC is (REN, AEN, VA, δ, Sm); in GS is (AEN, VA, δ), in KM and KC 

is (AEN, VA, δ, Sm), and in KS is (AEN, VA, δ). These best subsets are marked and used hereafter as TGs (TGM, 

TGC and TGS), and TKs (TKM, TKC and TKS).  

 



 

Figure 2. The cross-validation root mean square error of the best LLS model containing a subset of 1~5 features in training set for (a) 

G and (b) K. 

Selection of the best type of atomic radius 

Support vector regression (SVR) with a radial basis function (RBF) kernel [27,28] which shows much better 

performance than other algorithms (decision tree, gaussian process and so on) was used to develop ML models 

containing these eight selected subsets. Two SVR parameters [29], C (Penalty parameter) and γ (kernel parameter), 

were adjusted to strain the SVR model. Grid searches were conducted to obtain the best SVR-RBF model for 

each training set based on the correlation coefficient (R),  

𝑅 = √
∑ (𝑦𝑖̂ − 𝑦̅)2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 

where 𝑦̅ is the average of 𝑦𝑖, the R value lies between 0 and 1, with 1 indicating perfect fitting. The R values 

with different SVR-RBF parameters on TGs and TKs are shown in Figure 3(a-c) and 4(a-c), and the maximum 

values of R are marked with the green check. For comparison, Figures 3d and 4d plot the predicted values against 

the measured values [30] for G and K, respectively, with the best trained parameters of the SVR-RBF models.  

It is clearly that the statistical radius performs much better than metallic radius and covalent radius. This 

radius is the best type of atomic radius to be used in ML procedure.  

 



  

Figure 3. The performance of the SVR-RBF models on the training datasets. R of SVR-RBF model is found to have the maximum value 

of (a) 0.9533 when C=8, γ=0.25 on TGM, (b) 0.9534 when C=8, γ=0.25 on TGC, (c) 0.9742 when C=8 and γ=2 on TGS. (d) The 

comparing of the predicted G with the measured data. 



 

Figure 4. The performance of the SVR-RBF models on the training datasets. R of SVR-RBF model is found to have the maximum value 

of (a) 0.9596 when C=8 and γ=0.25 on TKM, (b) 0.9581 when C=8, γ=0.25 on TKC, (c) 0.9779 when C=8, γ=1 on TKS. (d) The 

comparing of the predicted K with the measured data. 

 

Table 3. The result of grid search on SVR-RBF models 

Training set maximum R C γ RMSE 

TGM 0.9533 8 0.25 3.2564 

TGC 0.9534 8 0.25 3.2545 

TGS 0.9742 8 2 2.4252 

TKM 0.9896 8 0.25 11.1283 

TKC 0.9581 8 0.25 11.3871 

TKS 0.9779 8 1 8.2898 

 



Final ML models  

To further generalize the SVR models, Pearson Ⅶ Universal Kernel (PUK) [31] was applied as a universal 

kernel function. The PUK function has excellent flexibility by adapting its parameters [29]: penalty parameter 

(C), kernel parameters (σ and ω). The R-value of SVR-PUK-TGS model has the maximum value of 0.9799 when 

C=8, σ =8, ω = 0.125 (marked with the green check in Figure 5a), and the maximum value of 0.9791 for the SVR-

PUK-KGCa model 0.9791 when C=4, σ =4, ω =0.5 (marked with the green check in Figure 5b).  

 

 

Figure 5. The performance of the SVR-PUK models on the training datasets. R of SVR-PUK model is found to have the maximum 

value of (a) 0.9799 when C=8, σ =8, ω = 0.125 on TGCa, (b) 0.9791 when C=4, σ =4, ω =0.5 on TGS. (c) SVR-PUK-TGS model 

predicted G against measured modulus, and (d) SVR-PUK-TKS model predicted K against measured modulus.  



Figures 5(c, d) show, respectively, the predicted G and K against the measured values, indicating excellent 

agreement, as evidenced by R2>0.958 for both cases. There are a few exceptions, e.g., the bulk moduli of 

Sc36Al24Co20Y20 (red point in Figure 5d) and Ni60Nb35Sn5 (blue point in Figure 5d).  

The Sc36Al24Co20Y20 is an outlier from the rest of the dataset, only one Sc-based BMG was collected in the 

dataset, as well as its bulk moduli (only one exists between 75 GPa and 90 GPa). The blue point in Figure 4d 

indicates that for Ni60Nb35Sn5, the predicted bulk moduli (189.9 GPa) is much lower than the measured (267 

GPa) [33]. This can be explained by the much lower bulk modulus of the alloy with similar composition in the 

dataset. 189 GPa of Ni60Sn6(Nb0.8Ta0.2)34. 

Ultrasonic-wave-propagation methods were performed on glassy Ni60Nb35Sn5 to measure the acoustic 

properties by Haein [34]. The longitudinal propagation velocity Cl was 5.45 km/s and transverse propagation 

velocity Ct was 2.51 km/s. The elastic modulus of isotropic materials can be calculated using following equations: 

(1) ⁡x = (
𝐶𝑙

𝐶𝑡
)
2

 , (2) ν =
2−x

2−2x
 , (3) G = ρ𝐶𝑡

2 , (4) K =
2𝐺(1+ν)

3(1−2ν)
 , where ν  is Poisson ratio and ρ  is density 

(8.64g/cm3 [1] for Ni60Nb35Sn5). The resulting bulk modulus based on acoustic measurements is 183.3 GPa, 

which is very close to our prediction of 189.9 GPa. The UWP method also performed on crystalline Ni60Nb35Sn5, 

the resulting bulk modulus is 152.2 GPa which is much smaller than our prediction 

 

 

 

Figure 6. Predicted modulus against updated measured modulus. (c) SVR-PUK-TGS model predicted G, and (d) SVR-PUK-TKS model 



predicted K.  

 

With the updated elastic modulus for Ni60Nb35Sn5, we have retrained ML models and the results are shown 

in Figure 6. The predicted bulk moduli of 188.7 GPa for Ni60Nb35Sn5 is very similar to the updated value, and 

the final ML models perform much better, as evidenced by improved R2 for both cases. 

 

Critical casting diameter model 

In the development of new BMGs, another issue is to find a relatively universal model to assess the glass 

forming ability (GFA). The most reliable and quantifiable GFA indicator of an alloy can be the critical cooling 

rate (Rc). However, it is very difficult to obtain the value of Rc experimentally. A slightly less direct parameter 

which is the critical casting thickness/diameter (Dmax) was considered in this research. In general, the larger the 

Dmax, the higher the GFA should be. 

 The characteristic temperatures (CTs), Tg (the glass transition temperature), Tx (onset crystallization 

temperature) and Tl (liquidus temperature), play important roles in the prediction of GFA. Various of GFA criteria 

have been proposed by investigators based on the functional relationships among CTs in recent decades. Twenty 

GFA criteria which presented as the mathematical formulas combining the CTs was estimated in this research. 

And the Matlab 2018 software was used to analyze the correlations between chosen criteria and Dmax. 

 The result in table 4 shows the Dmax-criteria correlations. The highest R values is observed as 0.5635 for γc 

criteria, followed by 0.5614 for γm criteria. These two criteria were developed based on 
𝑇𝑥

𝑇𝑙
 and 

𝑇𝑥−𝑇𝑔

𝑇𝑙
. Thus, we 

developed a new parameter γn (
𝐴𝑇𝑥−𝐵𝑇𝑔

𝑇𝑙
)) with the Dmax dataset. And A, B were found to be 5 and 3 in this research 

with a higher R value (0.5655). The Fitting of best two GFA criteria and new γn criteria were shown in figure 7. 

In addition, ML models were built for the prediction of Dmax with the CTs. The ML model based on the 

Gaussian Process (GP) algorithm with EF kernel show the best performance (R=0.7550), and much better than 

these developed criteria. The parameters of GP model were estimated by Matlab 2018 as σ𝑛 = 4.6, σ𝑓 = 5.4 

and σ𝑙 = 0.4 



The performance of GP model is shown in figure 7d. The GP model shows a similar performance with γn 

criteria for small-Dmax BMGs, but performs much better than γn criteria on bigger-Dmax BMGs.  



Table 4. The GFA criteria used in this research, their mathematical formulas, proposed year and investigators. And the values of 

R for linear correlation between these criteria and Dmax. 

Parameter Formula Year  Proposed by R 

∆𝑇𝑥 𝑇𝑥 − 𝑇𝑔 1991 Inoue A 0.5163 

𝑇𝑟𝑔 
𝑇𝑔

𝑇𝑙
 2000 Lu ZP 0.3303 

γ 
𝑇𝑥

𝑇𝑔 + 𝑇𝑙
 2002 Lu ZP 0.5446 

∆𝑇𝑟𝑔 
𝑇𝑥 − 𝑇𝑔

𝑇𝑙 − 𝑇𝑔
 2004 Xiao XS 0.5371 

α 
𝑇𝑥

𝑇𝑙
  2005 Mongal K 0.5077 

β𝑀 
𝑇𝑥
𝑇𝑔

+
𝑇𝑔

𝑇𝑙
 2005 Mongal K 0.5498 

δ 
𝑇𝑥

𝑇𝑙 − 𝑇𝑔
 2005 Chen QJ 0.4292 

𝛾𝑚 
2𝑇𝑥 − 𝑇𝑔

𝑇𝑙
 2007 Du XH 0.5614 

φ 𝑇𝑟𝑔 (
∆𝑇𝑥
𝑇𝑔

)

0.143

 .2007 Fan GJ 0.5543 

ξ 
𝑇𝑔

𝑇𝑙
+
∆𝑇𝑥
𝑇𝑥

 2008 Du XH 0.5442 

β𝑌 
𝑇𝑥𝑇𝑔

(𝑇𝑙 − 𝑇𝑥)2
 2008 Yuan ZZ 0.5199 

1

𝜔𝐿
 𝜔𝐿 =

𝑇𝑔

𝑇𝑥
−

2𝑇𝑔

𝑇𝑔 + 𝑇𝑙
 2009 Long ZL 0.4707 

𝜔𝐽 
𝑇𝑙(𝑇𝑙 + 𝑇𝑥)

𝑇𝑥(𝑇𝑙 − 𝑇𝑥)
 2009 Ji XL 0.4963 

θ 
𝑇𝑥 + 𝑇𝑔

𝑇𝑙
∙ (
𝑇𝑥 − 𝑇𝑔

𝑇𝑙
)
0.0728

 2009 Zhang GH 0.4514 

𝜔𝐴 
𝑇𝑔

2𝑇𝑥 − 𝑇𝑔
−
𝑇𝑔

𝑇𝑙
 2009 An LX 0.5526 

𝛾𝑐 
3𝑇𝑥 − 2𝑇𝑔

𝑇𝑙
 2010 Guo S 0.5635 

β′ 
𝑇𝑔

𝑇𝑥
−

𝑇𝑔

1.3𝑇𝑙
 2011 Dong BS 0.5540 

𝜔𝐵 
2𝑇𝑥 − 𝑇𝑔

𝑇𝑙 + 𝑇𝑥
 2015 Blyskum P 0.5564 

𝐺𝑝 
𝑇𝑔(𝑇𝑥 − 𝑇𝑔)

(𝑇𝑙 − 𝑇𝑥)2
 2016 Tripathi MK 0.5609 



χ 
𝑇𝑥 − 𝑇𝑔

𝑇𝑙 − 𝑇𝑥
∙ (

𝑇𝑥
𝑇𝑙 − 𝑇𝑥

)
1.47

 2018 Long ZL 0.5171 

𝛾𝑛 
5𝑇𝑥 − 3𝑇𝑔

𝑇𝑙
 2018 This work 0.5655 

 

Figure 7. Dmax vs (a) γc (b) γm and (c) γn criteria in 442 kinds of metal-metal BMGs. (d) The comparing of the predicted Dmax of GP 

model (red dots) and γn criteria (blue dots) with the measured data. 

 

 

Conclusions 

Machine learning was used to predict the elastic moduli and glass forming ability of metal-metal BMGs. The 

results show that the best type of atomic radius used in the ML models is the statistical radius. The best subset of 

features are absolute electronegativity, atomic volume, and atomic size difference. The best ML algorithm is SVR 



with PUK function with C=8, σ =8, ω = 0.125 for G, and C=4, σ =2, ω =0.5 for K. GP with EXP function with 

σ𝑛 = 4.6, σ𝑓 = 5.4 and σ𝑙 = 0.4 for Dmax 

 This work indicates the great potential of ML in advanced materials design with target properties. 
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