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Highlights: 

⚫ Unified topology optimization framework is developed for designing double-negative acoustic metamaterials

(AMMs).

⚫ Representative resonance-cavity-based and space-coiling microstructures are explored.

⚫ Broadband double negativity originating from novel multipolar LC (inductor-capacitor circuit) or Mie

resonances can be induced by easily controlling optimization parameters.

⚫ Desired broadband subwavelength imaging of topology-optimized AMMs is verified experimentally.

Abstract: 

Double-negative acoustic metamaterials (AMMs) offer the promising ability of superlensing for applications in 

ultrasonography, biomedical sensing and nondestructive evaluation. However, the systematic design and 

realization of broadband double-negative AMMs are stilling missing, which hinder their practical implementations. 

In this paper, under the simultaneous increasing or non-increasing mechanisms, we develop a unified topology 

optimization framework involving different microstructure symmetries, minimal structural feature sizes and 

dispersion extents of effective parameters. The optimization framework is applied to conceive the heuristic 

resonance-cavity-based and space-coiling metamaterials with broadband double negativity. Meanwhile, we 

demonstrate the essences of double negativity derived from the novel artificial multipolar LC (inductor-capacitor 

circuit) and Mie resonances which can be induced by controlling mechanisms in optimization. Furthermore, 

abundant numerical simulations validate the corresponding double negativity, negative refraction, enhancement of 

evanescent waves and subwavelengh imaging. Finally, we experimentally show the desired broadband 

subwavelengh imaging by using the 3D-printed optimized space-coiling metamaterial. The present design 

methodology provides an ideal approach for constructing the constituent “atoms” of metamaterials according to 

any artificial physical and structural requirements. In addition, the optimized broadband AMMs and superlens 

lay the structural foundations of subwavelengh imaging technology.  
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1. Introduction 

 

Due to the fantastic wave characteristics, metamaterials [1-6] designed by engineering the subwavelength 

microstructures offer novel and exceptional opportunities for manipulating and controlling wave propagation, 

revealing the broad application prospects in various fields such as mechanics, materials, optics, electromagnetism, 

acoustics, and thermotics, etc. In general, conventional materials drive their wave motions from the properties of 

intrinsic atoms or molecules; metamaterials provide novel possibilities for constructing artificial “meta-atoms” 

(microstructures) with special geometry, physical features and spatial arrangements, thus bringing out many new 

functionalities. Electromagnetic metamaterials and metadevices can achieve a wide range of exotic 

electromagnetic responses, including negative refractive index, zero refractive index, optical chirality, anisotropy 

and hyperbolicity. Inspired by the optical metamaterials, acoustic metamaterials (AMMs) [2, 7], elastic 

metamaterials [8-12], mechanical metamaterials [5] and even graphene metamaterials [13] have been developed in 

many ways. Like other types of metamaterials, creating suitable building blocks of microstructures is the most 

fundamental and pivotal point for AMMs which exhibit diverse combinations of effective constitutive 

parameters−the mass density eff and bulk modulus Keff. In the quadrants of AMMs, reported representative cases 

are single negativity (eff<0, Keff>0; eff>0, Keff<0), double negativity (eff<0, Keff<0), double positivity (eff>0, 

Keff>0) near-zero mass density (eff0), and even double-zero index (eff0, 1/Keff0). Benefitting from the exotic 

effective properties, AMMs offer great potential for applications in low-frequency isolation, space sound field 

modulating, energy harvesting, perfect absorption, negative refraction, cloaking and nonreciprocal acoustic 

devices, and thus attracting the widespread and continuous attention during the past two decades. In acoustics, one 

of the most promising functionalities of AMMs is the subwavelength superlensing, warranting high-resolution 

ultrasonic imaging for medicine and industry [14-15]. Although the anamorphic effective refractive index [16] or 

phase difference [17] can enable the gradient metamaterials to focus waves in a focal plane, the conspicuous 

shortcoming is that their imaging resolutions cannot essentially break the diffraction limit. Alternatively, several 

strategies using microstructures [18-21] with different features of effective parameters can collect and exploit the 

evanescent wave field for the subwavelength details. One prominent technique for subwavelength imaging is the 

double-negative superlens [20]. It can cause the negative refraction, and then bring the diverging waves to 

reconvene and amplify the evanescent waves in the near field. Another approach relies on the anisotropic 

metamaterials [18-19] which can convert the coupling of near-fields emitted by subwablength objects into 

propagating waves. In addition to the above strategies, time-reversal technique can also control and focus the 

subwavelength waves. By virtue of the Helmholtz resonators, the temporal response is recorded, flipped in time 

and radiated back, achieving the subwavelength focusing [21]. Furthermore, recent research indicates that, for 

metamaterials having relatively high index within a slow medium, the excitation of guided acoustic modes can 

transmit only subwavelength information to generate the subwavelength edge-based imaging [22]. In consideration 

of the operating bandwidth, in particular, the double-negative and hyperbolic metamaterials are more suitable for 

the broadband acoustic subwavelength focusing and imaging applications. In most cases, the hyperbolic 

metamaterials are highly desirable for the structure design. Only the three-dimensional membrane-type 

metamaterials [23] or layers of perforated plates [24] can produce the extremely anisotropic dispersion relations at 

the subwavelength scale. Nevertheless, double-negative metamaterials allow three choices including the coupled 

filter-element [25], coupled-membrane [26] and space-coiling structures [7]. Therefore, it is necessary to go into 

constructing the double negativity and the corresponding subwavelength superlensing.   

In principle, the acoustic double negativity implies the several building blocks or specific elements supporting 

multiple overlapping resonances. The first approach is combining two resonating structures, membranes and 

Helmholtz resonators, to guarantee that their symmetric eigenmodes occur in the same dispersive frequency range, 

such as the example given in [25] to obtain the double negativity from 240 to 450 Hz based on a periodic array of 
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interspaced membranes and side holes. Alternatively, coupled-membrane resonators can also lead to double 

negativity with monopolar and dipolar eigenmodes in the range of 520–830 Hz [26]. In addition, the combination 

of clamped membranes and side branches can generate both anisotropic and double-negative properties as well [27]. It 

is found that detuned Helmholtz resonators with optimized coupling can also give rise to double-negative bands 

[28]. Moreover, the double negativity can be obtained through cavities drilled in the waveguide which contains the 

Helmholtz resonators for negative bulk modulus and a structured shell for negative mass density [29]. Another 

strategy, based on the ultra-slow Mie resonators consisting of macroporous microbeads [30], can also generate the 

negative acoustic index. Moreover, by coiling up space, the labyrinthine structures composed of hard solid plates 

inserted into the background fluid can cause the large phase delay and form the band folding in the low frequency 

range [7], thus exhibiting a frequency dispersive spectrum of a large refractive index not found in nature and 

double negativity without the traditional resonant elements. While the aforementioned methods preliminarily 

realized double negativity, the following problems and challenges need to be solved to achieve broadband double 

negativity for the subwavelength imaging. Firstly, from the perspective of microstructure design, the primary 

double-negative AMMs mainly depend on membranes or space-coiling structures. Compared with the 

membrane-type metamaterials, the space-coiling structures have attracted more attention for its strong control over 

the effective parameters and easy implementation. Because of the difficulties in constructing the pertinent zigzag 

path, however, most research only focus on the flexible phase manipulation [31] instead of the broadband double 

negativity within the spectrum of interest. Meanwhile, apart from the space-coiling metamaterials, designing 

various types of double-negative solid-air AMMs becomes a pressing issue to offer more choices for practical 

imaging applications. Secondly, regarding double-negative mechanism, existing AMMs mainly utilize the LC 

(inductor-capacitor circuit) resonance [25] induced from different resonant elements or the Mie resonance [30] 

produced by the particles with high refractive index relative to the background medium. There are, however, few 

works about the LC-resonance double negativity based on the artificial structures without membranes. 

Mie-resonance double negativity in a broadband range also challenges the microstructure design. Thirdly, with 

respect to the double-negative bandwidth, resonance-based AMMs usually suffer from frequency dispersions and 

narrow bands. Hence, it is imperative to broaden the frequency range of double-negative AMMs for solidifying 

their roles in diverse applications [32]. But in general, the above three issues are collectively limited by the manual 

and empirical design strategy.  

With the advent of the burgeoning 3D printing technology, topology optimization has successively applied to 

the design of metamaterials to achieve the desired performance [11-12, 33-38]. Since AMMs have shown the 

unprecedented functionalities on wave manipulations, several topology optimization studies of AMMs were 

subsequently reported in recent years [35, 39-40]. However, these works mainly focused on the optimization of 

propagation responses [35] or positive wave parameters [39]. Furthermore, the topology-optimized AMMs only 

realized the expected narrow-band single negativity [40], anisotropic dispersion relation [35] and negative 

refraction [35], but lacking of the demonstration for subwavelength imaging. So topology optimization of AMMs 

is still in its infancy stage, although the increasing demand for more newfangled phenomena and acoustic devices 

is clearly foreseeable. Up to now, the inverse design of double-negative AMMs for airborne sound is still lacking, 

let alone the systematic optimization study. Moreover, unlike elastic metamaterials [8-12, 41], the negative 

effective parameters not only depend on the LC resonance, but also are possibly dominated by the Mie resonance. 

Because of the uncertain mechanism for negativity, topology optimization of double-negative AMMs is full of 

challenges.  

In this paper, to provide a comprehensive guidance on engineering the double-negative AMMs, we show for 

the first time that the broadband double-negative AMMs can be systematically designed through topology 

optimization. A unified topology optimization framework is constructed for obtaining the broadband double 

negativity within the prescribed low frequency range. The proposed framework considers several typical structural 
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and physical characteristics of the microstructure, including unit-cell’s symmetry (i.e., the square, chiral and 

orthogonal symmetries), minimal geometrical size (i.e., minimal size of the solid parts and the width of the air 

channels), variation trend and frequency dispersion of effective parameters. Band structures and retrieval of 

effective parameters demonstrate that the topology-optimized microstructures really exhibit the broadband double 

negativity. All metamaterials present here uncover two kinds of topological characteristics, i.e., the 

resonance-cavity-based and space-coiling layouts. Eigenstate analyses reveal that the optimization methodology 

under simultaneous increasing tendencies of the effective mass density and bulk modulus can give rise to the 

LC-resonance double negativity; whereas the simultaneous non-increasing tendencies can evoke the 

Mie-resonance double negativity. Then, the subwavelength negative refraction and acoustic imaging are 

numerically demonstrated after validating the equi-frequency surfaces and enhanced transmission of the 

evanescent waves. Finally, we fabricate a topology-optimized space-coiling AMM through 3D printing to 

successfully perform the subwavelength imaging in an acoustic experiment.    

 

2. Topology optimization methodology 

 

Consider the square-latticed microstructures consisting of solid and air elements for the acoustic wave 

propagation, as shown in Fig. 1. Based on the simulation model depicted in Fig. 1(a), the transmission and 

reflection coefficients of one microstructure can be calculated for the acoustic effective parameters retrieval, as 

long as the microstructure is symmetric along the direction of wave propagation. The dispersion relations of the 

microstructures can be characterized by the Floquet-Bloch theory. In topology optimization, the microstructure is 

divided into NN pixels, in which air and solid are denoted by “0” and “1”, respectively. It is assumed that the 

microstructure has three representative types of symmetries during topology optimization, i.e., square, chiral and 

orthogonal symmetries, as illustrated in Fig. 1(c). Because of this symmetry assumption, the design domain in the 

topology optimization changes from the whole unit-cell to a reduced space, see Fig. 1(c). Similarly, their 

corresponding irreducible Brillouin zones are displayed in Fig. 1(c).  
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Fig. 1. Schematic illustration of the square-latticed AMMs and representative microstructural symmetries. (a) Wave propagation 

model for calculating the transmission and reflection coefficients of one microstructure. The simulation domain is terminated with the 

infinite elements at the left and right boundaries. The top and bottom edges are set as rigid walls. Four probes are introduced in the model 

for the scattering coefficients retrieval. (b) Double-negative AMMs with desired wave manipulation. (c) Three representative symmetries 

(left: square symmetry; middle: chiral symmetry; right: orthogonal symmetry) investigated in topology optimization. The dashed and solid 

lines show the corresponding reduced design domains and edges of the first reduced Brillouin zone, respectively. 

 

2.1. Characterization of AMMs 

To formulate the wave equations for the present high contrast (solid/air) wave problems shown in Fig. 1, the 

acoustic-structural interactions are ignored for simplicity. Because the solid can be regarded as perfectly hard, 

namely, the wave propagation is principally predominant in the background air [35, 42]; it is a good approximation 

to take the solid as a fluid with very high stiffness and specific mass [42]. Therefore, we only consider the 

traditional acoustic wave equation: 

          
1 2 1( ) ( ) ( ) ( ) 0,p p  − −   + = r r r r                            (1) 

where p is the acoustic pressure; and  for acoustic case equals to the bulk modulus K. According to the 

Floquet-Bloch theory, the acoustic pressure can be written as p(r)=eikrpk(r), where k and pk(r) are the Bloch wave 

vector of the first Brillouin zone and periodic function of r, respectively. Considering the wave equation and 

boundary conditions, we can calculate the dispersion relation (−k) by using the ABAQUS/Standard solver 

Lanczos. Then the eigen-modes, phase velocity, group velocity and equi-frequency surfaces can be obtained from 

the band structures. 

Under the long-wavelength assumption, a prominent trait of metamaterials is the feasibility of describing the 

artificial microstructure by the dynamic effective medium theory (EMT). For characterizing the AMMs, the 

primary and commonly used approach is extracting the acoustic effective properties from the reflection and 

transmission coefficients [43]. The essence of this inverse technique is reproducing the far-field scattering 

properties in an average sense through a uniform medium. To retrieve the effective constitutive parameters, the 

simulation model is regarded as a two-port network, shown in Fig. 1(a), in which an incident plane wave I 

propagates normally to the microstructure, with the reflection (R) and transmission (T) coefficients, respectively. 

Two probes are placed at x1 and x2 in the front and the other two at x3 and x4 in the back of the microstructure. 

After acquiring the total pressure of four probes, the four-microphone method [44] is adopted to calculate the 

scattering matrix S of the microstructure, thus getting the effective refractive index and impedance. Finally, the 

effective mass density and bulk modulus can be further determined. For details, we refer to Ref. [43]. It is noted 

that the above four-microphone method is very easy to be implemented through the acoustic experiment.  

In our simulation, the complex sound pressures at the four probes x1, x2, x3 and x4 are respectively expressed 

as 
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where A, B, C and D denote the complex amplitudes of the positive- and negative-going plane waves; k0 is the 

wave number in the background medium (air);  is the circular frequency; e-it represents the common 

time-harmonic factor which is omitted throughout the paper for the sake of brevity; x1, x2, x3 and x4 denote the 

corresponding distances of four probes relative to respective reference planes in the two ports. Since the pressures 
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P1, P2, P3 and P4 can be directly obtained by the numerical simulation, the four coefficients A, B, C and D can be 

derived from Eq. (2) as 
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The second order matrix relating the acoustic particle velocity and sound pressure on two faces of the 

microstructure in the simulation model shown in Fig. 1(a) is defined as the transfer matrix which is denoted as T  

with the elements Tij (i, j=1, 2) . In view of the considered symmetries in Fig. 1(c), the effective two-port system 

[44] is reciprocal. In other words, T should satisfy  

T11=T22,                                       (4) 

T11T22−T12T21=1,                                   (5) 

In addition, the simulation model has the following boundary conditions 

 p0=A+B,                                       (6) 

pd=C+D,                                       (7) 

v0=(A−B)/Z0,                                    (8) 

vd=(D−C)/Z0,                                    (9) 

where p0 and pd are the pressures at locations x0 and xd in Fig. 1(a), respectively; v0 and vd express the particle 

velocities at locations x0 and xd in Fig. 1(a), respectively; Z0 is the impedance of the background medium. Then the 

transfer matrix of the effective two-port network can be written as 

       

2 2

d d 0 0 0 d
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2 2
21 22 0 d d d 0 0
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.

p v p v p p

p v p v p v p vT T

T T v v p v p v

p v p v p v p v

 + −
 

+ +   =   − + 
 

+ + 

T =                          (10) 

Based on the transformation relation between the scattering and transfer matrices [44], the scattering matrix 

can be obtained as 

11 12 0 21 0 22 21 12 11 22
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S =               (11) 

where S11 and S21 are the reflection R and transmission coefficient T, respectively. If the size of the microstructure 

is much smaller than the operating wavelength of the background medium (i.e., bk5a), the composite 

microstructure can be regarded as the homogeneous medium [45-46], thus the effective impedance Zeff and 

effective refractive index neff can be retrieved using the inverse technique [43] as 

eff 2 2
,
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where m represents the branch number of function cos-1[(1-R2+T2)/2T];  and  are defined by 

  
2 2 2 2( 1) 4 ,R T T = − − −                                    (14) 

2 21
.

2

R T

T




− + +
=                                    (15) 

For passive metamaterials, the physically meaningful natural feature is that the sign of  should be chosen such 

that Re(Zeff) is positive. The calculation of neff shown in Eq. (13) is highly dependent on the value of m. For thick 

metmamaterials, m should be carefully selected which usually takes a finite value as integer. For the sake of 

simplicity, the metamaterial can be constructed with a minimal thickness whose size is much smaller than the 

wavelength so that m=0 can be guaranteed.  

After Zeff and neff have been determined, the effective mass density eff and bulk modulus Keff are computed 

by 

            eff 0 eff ,effZ n =                                    (16) 

       
2

eff 0 0 eff eff ,K c Z n=                                   (17) 

where 0 and c0 are the mass density and acoustic velocity of the background medium, respectively. Meanwhile, 

the effective phase change eff across the matamaterial layer can be obtained by eff=aeff/Zeff.  

 

2.2. Design problem formulation 

 

To realize a broadband double-negative AMM without membrane units, we need to construct a 

microstructure for resolving two emblematic challenges: (1) different resonance symmetries, including monopole, 

dipole and even quadrupole, have to be exploited through one microstructure; and (2) eff and Keff should have the 

same dispersion property as frequency increases. Fortunately, as a systematic mathematical method, topology 

optimization involves the optimization of material layout in a huge design space 2NN, providing limitless 

possibilities for the occurrence of multiple resonances based on a brand-new topology. In general, the 

microstructure only holds single negativity [47-48] or very narrow-band double negativity [7, 29] if the variation 

tendencies of eff and Keff are inconsistent. Consequently, it is essential to control their holistic properties and then 

guarantee the coincident performance.  

From the previous studies on AMMs [7, 47], we find that the metamaterial usually possesses a relatively large 

neff before generating the negative properties, no matter whether the metamaterial has single negativity [47] or 

narrow-band double negativity [7]. More specially, the labyrinth microstructure has been demonstrated to be 

capable of achieving a long path length which is equivalent to a large neff [7]. As a result, the metamaterial can 

realize the band folding in the low-frequency range, thus creating the double negativity. For other types of AMMs 

[47-48] with single negativity, the negative eff or Keff requires a resonance to generate an infinite effective value. 

That is, eff will increase from a positive value to the negative infinity and then derive the negative values. 

However, Keff will decrease from a positive value to the infinity. Hence, in pursuing double negativity, eff and Keff 

generally have the noticeable increasing and deceasing trends, respectively. In such a situation, the relatively large 

eff and relative small Keff will allow the microstructure to possess a large neff over the entire spectrum of interest. 

Although neff will show the obvious dispersion property, its value can keep the quasi-static feature in the ultra-low 

frequency range. Therefore, regardless of the resonance mechanism and structural topology, the common 

prerequisite condition for double negativity is getting the relatively large neff in the ultra-low frequency range. 

When large neff induces the suitable resonances, it is essential to avoid the single negative eff or Keff by adjusting 

and controlling the dispersion extent of eff and Keff. In other words, the optimization model must properly punish 
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the degree of variation for eff and Keff over the whole concerned spectrum while improving neff at the same time. 

Finally, to achieve broadband double negativity along the x direction within the target frequency ranges, a 

consolidated optimization formulation considering the prescribed physical mechanisms of effective constitutive 

parameters and special structural feature sizes is proposed as follows. 

 min maxFor:    
                                                               

(18)
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where min and max are the upper and lower bounds of the target frequency range which is divided by M sampling 

frequency points; OF denotes the objective function; Nn is the number of sampling frequency points where the 

double negativity is implemented; eff

xn +
, eff

x +

 
and effK +

 
are the arrays of positive eff

xn , positive eff

x  and 

positive Keff, respectively; M and N are the numbers of the elements which belong to the arrays of eff

x +
 and effK +

, 

respectively; 
,1

eff

xn +
 denotes the first positive effective refractive index of an array of eff

xn +
;  is a prescribed 

parameter for regulating the whole dispersion extents of eff

x  and Keff; i represents the material phase in 

optimization and declares the air (0) or solid (1) attribute of a pixel; CDair denotes the number of the connected air 

domains in the microstructure;  stands for the design domain shown in Fig. 1(c). Here we employ the simple 

geometrical constraint in Eq. (21) based on the fact that multiple connected air domains usually reduce the wave 

transmission and will form several closed cavities, resulting in extremely narrow bandwidths of the resonances. 

Note that two special structural constraints in Eqs. (22) and (23) are introduced to ensure meaningful 

microstructure from physics and manufacturing perspective, respectively. Given that the AMMs with very narrow 

air channels usually incur the significant viscous losses which are induced by the near-wall viscosity effect [47], it 

is necessary to restrict the dimensions of all air channels for circumventing this problem. More specifically, the 

minimum size of the array wa composed by every air channel should be larger than a pre-set parameter 
*

aw . 

Furthermore, similar control over the solid components is also needed for topology optimization, especially for 

satisfying the sufficient strength and fabrication requirement of the metamaterial samples [11-12, 47]. Therefore, 

we set the constraint in Eq. (23) to cope with these two issues, i.e., the minimum size of an array ws including 
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every solid must be larger than an empirical value 
*

sw .  

Moreover, without taking particular control measure, inducing the overlapping resonances can easily bring 

about two different and inconsistent variations for eff

x  and Keff, thus jeopardizing the formation of broadband 

double negativity. Therefore, we use the special physical constraint in Eq. (24) to precisely control the variation of 

eff

x  and Keff at the sampling frequency points. In terms of the discrete positive eff

x +
 and effK +

, their possible 

variation with the increase of frequency can be generalized into two major categories: one is the simultaneous 

increasing tendency (i.e., case 1); the other is the simultaneous non-increasing tendency (i.e., case 2). Throughout 

this paper, we will demonstrate the crucial role of these two mechanism constraints for inducing two novel 

double-negative microstructures.        

Obviously, the optimization problem in Eqs. (18)-(24) involves different kinds of constraints, intensifying the 

difficulties of optimization search in a large design space. Many topology optimization methods can effectively 

solve the various structural optimization problems in different fields [49-52]. Here, owing to the strong versatility, 

the improved two-stage single-objective genetic algorithm (GA) [11-12, 53-54] is utilized to solve the proposed 

optimization problem. GA treats the microstructure in N1N1 pixels as a binary chromosome and mimics the 

evolutionary process by applying the natural selection principle to every generation towards the best design 

solution. First, an initial population of Np individuals is randomly generated. To improve the effectiveness of any 

microstructures, a special “abuttal entropy filtering” [54] is applied for every microstructure to slightly fill up 

some isolated voids and remove some isolated elements. Secondly, every individual is evaluated for the fitness 

function and constrains. Then, GA uses the repetitive operators including the tournament selection, 

uniformed-matrix crossover and uniformed-matrix mutation to produce the offspring generation. Finally, the 

representative elitism strategy [53] is utilized to improve and accelerate the optimization. After the prescribed 

number of generations, GA produces the optimized individual at the first stage. Introducing the optimized 

individual as the “seed” structure with N2N2 pixels, GA are performed through the corresponding genetic 

operators at the second stage. Repeat all procedures generation by generation, and then bring about the final 

optimized microstructure towards to optimization problem in Eqs. (18)-(24).  

 

3. Results and discussions 

 

In this section, the proposed topology optimization formulation in Eqs. (18)-(24) is applied to design the 

square-latticed subwavelength metamaterial to obtain the broadband double negativity within a target frequency 

range [min, max]. Three representative symmetries including the square, chiral and orthogonal cases are 

investigated to give the synthetical and thorough insight into the beneficial topological feature of microstructures. 

All optimizations reported in this paper start from a random initial population. We adopt the following mass 

densities and speeds of sound for the air and solid materials: air=1.204 kg/m3, cair=343 m/s, solid=1230 kg/m3 and 

csolid=2230 m/s [55]. In fact, our numerical tests indicate that the acoustic-structural interaction has only a 

negligible effect on the performance of the effective parameters in the subwavelength range for the cases 

investigated in this paper. In general, the effects of the acoustic-structural interaction may have a visible difference 

between the “harder” and “softer” solids. For the analyses of the optimization performance, unless otherwise stated, 

the target frequency range is defined as [100 Hz, 8000 Hz]. The normalized frequency =a/2c is introduced for 

convenience, where a denotes the lattice constant, and c is the acoustic velocity of the air. The normalized target 

range is [min, max]=[0.002476, 0.198061]. The number of sampling frequency points M is set as 11, which is 

suggested by the numerical tests considering the computing cost and effectiveness of the discrete description. The 
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solid constrained parameter is selected as 
*

sw =a/30 in all optimizations. The parameters of the GA are the 

population size Np=30, the crossover probability Pc=0.9, the mutation probability Pm=0.02, and the championship 

selection size Nc=18. At the first stage, the optimization is performed by 2500 generations in 3030 pixels. For the 

fine description of topologies, the optimization with other 2500 generations is executed in 6060 pixels. 

Meanwhile, the optimized microstructure in the first stage is introduced as an initial configuration in the second 

stage. All two-stage optimization processes are implemented within 34.5 hours on a Linux cluster with Intel Xeon 

X5650 Core @ 2.66 GHz. The numerical simulations of dispersion relations, effective parameters, eigenstates, 

transmission spectra and evanescent wave transmission are carried out by ABAQUS 6.14-1. Simulations of 

negative refraction and acoustic subwavelength imaging are accomplished by COMSOL Multiphysics 4.4. An 

acoustic experiment is conducted to demonstrate the subwavelength imaging of topology-optimized space-coiling 

AMM to exhibit the correctness of explored double-negative mechanisms and then to show the potential of our 

topology optimization framework.  

      

3.1. Optimized double-negative AMMs under simultaneous increasing tendencies of the effective parameters 

 

This subsection presents the optimization results with the prescribed simultaneous increasing tendencies (>0) 

of the effective parameters, eff

x  and Keff (i.e., case 1 in Eq. (24)) for the normalized subwavelength target range 

[0.002476, 0.198061]. Some representative topological features, evolution history, various physical 

characterizations, negative properties of optimized metamaterials are analyzed and discussed in details. The typical 

and novel LC resonances contributing to the acoustic broadband double negativity are revealed through the 

resonance-cavity-based AMMs for the first time. All mentioned frequencies in the following contents refer to the 

normalized ones. 

 

3.1.1. Topology-optimized resonance-cavity-based AMMs 

 

3.1.1.1 Square, chiral and orthogonal symmetries 

 

We firstly design the microstructure with square symmetry and explore the effects of  and air channel width 

on optimized topologies and double negativity, as shown in Fig. 2(a). Extracting their macroscopic geometry 

features, it is interesting to observe some common characteristics: (1) big air cavities connected through narrow air 

channels, and (2) big solid regions separated by the air domains. Like the Helmholtz resonator [2], multiple 

cavities in Fig. 2(a) can induce the negative effective bulk modulus. The distributions of hard solids can cause the 

large reflection with the limited space, which is beneficial for the occurrence of large refractive index. The above 

characteristics of resonance and large refractive index are dovetailed with the settings of the objective function in 

Eq. (19). With a larger , the metamaterial S2 has more cavities than S1. For the air-solid metamaterials with the 

viscous losses [47], the widths of air channels have appreciable impact on the efficacy of metamaterials. 

Fortunately, increasing this feature size can admittedly reduce the viscosity factor of metamaterials. To show the 

effect of air channels, we illustrate the optimized metamaterial S3 for the typical feature sizes of 
*

a 15w a=  in Fig. 

2(a). Compared with S1, S3 has the similar topological features except four additional slender hard solid plates. 

For clearly showing the desired negative properties, we present in Fig. 2(d) the double-negative ranges and 

quasi-static refractive index and impedance
 
of the AMMs in Fig. 2(a). Since the effect of  is non-monotonic, we 

can only suggest its suitable range of [1.0, 1.5] in which double negativity can be effectively realized. The 

javascript:void(0);


11 
 

relatively larger refractive index usually enables a relatively wider double negativity. Combing the microstructure 

topologies, the variation of impedance shows that a reduction of air cavity domains can cause an increase of the 

impedance. Hence S1 can keep the relatively large refractive index while maintaining the reasonable wave 

transmission. The difference between S1 and S2 shows that the superabundant cavities may result in the 

narrow-band double negativity. The difference between S1 and S3 suggests that wider air channels will evoke 

smaller regions of air cavities, ultimately leading to a narrow-band double negativity. 

To check the effectiveness of the proposed optimization formulation, we further investigate the topology 

optimization with chiral and orthotropic symmetries, see Figs. 2(b) and 2(c). Figure 2(d) displays their 

double-negative ranges and quasi-static refractive indices and impedances. All chiral metamaterials in Fig. 2(b) 

contain a large air cavity in the center and four rotationally distributive solid blocks. For the unit-cell domains 

marked by dashed lines, four corner regions of the metamaterial can be regarded as four small air cavities. With 

the same 
*

aw , S5 has double negativity property than S4 and S6. So =1.0 is effective to balance the large 

refractive index
 
and appropriate dispersion extent. Unlike the square-symmetry case in Fig. 2(a), the topology of 

S7 demonstrates that large 
*

aw
 

prescribed in optimization can naturally make the solid components thinner. 

Moreover, the chiral symmetry is superior to the square symmetry if the complexity of structure is ignored. The 

double-negative ranges of optimized chiral metamaterials are apparently larger than those of the square-symmetry 

ones in Fig. 2(a). Therefore, multiple air cavities combined with the zigzag air channels and solid parts provide the 

ideal geometrical platform for the broadband double negativity.  

Figure 2(c) presents the optimized orthogonal-symmetry metamaterials. For the subwavelength imaging, it is 

essential to make sure that the effective bulk modulus is isotropic during optimization for all potential designs. 

Although the effective bulk modulus is normally isotropic if the operating wavelength is larger than 5a (recall that 

a is the lattice constant) [45-46], many highly complex orthogonal-symmetry metamaterials in optimization may 

have distinct behaviors along two principle directions, resulting in the high anisotropy and even possible coupling 

of effective bulk modulus using the present simulation model in Fig. 1(a). As a remedy approach, we force the 

relative difference between Keff retrieved from the x and y directions to be smaller than 5%. We can observe from 

S8 and S9 that the multiple air cavities and several isolated solid blocks become the main topological features for 

double negativity. Similar with the results in Fig. 2(a), increasing  tends to increase the numbers of the air 

cavities and solid blocks. The difference between S8 and S10 shows that the geometry would be simpler and has 

the thinner hard solid plates when wider air channels are needed. 

Through comparing the results in Fig. 2(d) for the three cases, we can make the following observations. For 

the low-frequency property, the optimized AMMs show good double negativity, with chiral symmetry being the 

best followed by orthogonal symmetry. The behaviors of refractive index and impedance are positively correlated. 

The orthogonal-symmetry AMMs can realize the similar refractive index with the chiral-symmetry ones. But the 

chiral-symmetry AMMs have to face the relatively large impedance. Comparing the double-negative ranges of 

S4-S7, we find that the effect of  is smaller than that of the minimal air channel width. Similar feature can be 

observed from the orthogonal-symmetry case. Therefore, the control over the feature size of the air channels 

should be a pivotal factor in designing the double-negative AMMs for practical applications. Given the same 

topological features, increasing the air channel widths will result in a decrease of the refractive index and 

impedance for the optimization under simultaneous increasing tendencies. For the chiral symmetry, the relatively 

large (1.5) or small (0.5)  will result in a smaller refractive index. However, for the orthogonal symmetry, larger 

 can lead to a larger refractive index for double negativity.  
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Fig. 2. Topology-optimized resonance-cavity-based AMMs with three representative symmetries. (a)-(c) Optimized metamaterials. All 

topology-optimized metamaterials are under the constraint of >0. The target spectrum of S1-S10 is selected as [0.002476, 0.198061]. For 

the microstructures S8-S10, to guarantee the isotropy of effective bulk modulus, the relative difference between Keff retrieved from the x 

direction and y direction wave simulations are forced to be smaller than 5%. (d) Comparisons of the double-negative range, quasi-static 

effective refractive index 
,1

eff

xn +
 and impedance 

,1

eff

xZ +

 
at min for S1-S10. More performances are summarized in Appendix A.  

 

Based on the solid-air system, the present topology optimization can effectively realize the novel 

multi-cavities microstructures having ideal double negativity, and overcome the limitations of single negativity of 

the Helmholtz metamaterials [2, 25]. From the prospective of double negativity, introducing the chirality is the 

best design approach; followed by the orthogonal symmetry and the square symmetry. Similarly, the chiral 

symmetry can induce the largest refractive index. From the prospective of topological features, three symmetric 

AMMs share the common ground for double negativity: multiple air cavities, solid blocks and relatively narrow air 

channels.  
 

3.1.1.2 Analysis of representative AMM S1 

 

In view of the most concise topological features and satisfactory double negativity, the AMM S1 is suitable to 

be systematically analyzed as the representative metamaterial. To clarify the evolution for the optimized topology 

of S1 in Fig. 2, Figure 3 shows the evolutionary history of the maximal fitness with the generation number during 
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the “coarse to fine” optimization process. Topology optimization starts from a randomly generated microstructure 

(G=0), which cannot satisfy the particular constraints of Eqs. (21)-(24). From the generation G=20 (F=0.1066) to 

G=215 (F=0.2563), GA can quickly capture the beneficial topological feature during the early evolution stage, i.e., 

four air cavities and two solid blocks. The maximal fitness change between G=215 (F=0.2563) and G=320 

(F=2.6097) implies that the small central solids can contribute to the formation of double negativity. From the 

generation G=320 (F=2.6097) to G=3435 (F=3.7124), the microstructure turns to possess the longer air channels 

at four corners between the air cavities. Furthermore, the microstructure obtains the clearer edge descriptions and 

more smooth geometrical layouts. From G=3435 (F=3.7124) to G=4276 (F=3.7213), the slightly increased fitness 

demonstrates that the larger cavities should be a better choice under the circumstance with unchanged air channels. 

Therefore, we can generalize the beneficial topological features for the square-symmetry AMMs: four large 

enough air cavities, two independent solid blocks, narrow enough air channels and several slender hard solid 

plates.  

 

Fig. 3. Evolutionary history for the generation of topology-optimized AMM S1 in Fig. 2. Illustrations display eight representative 

topologies during the “coarse to fine” optimization. The objective function values of eight microstructures are 0 (G=0), 0.1066 (G=20),   

0.1789 (G=149), 0.2563 (G=215), 2.6097 (G=320), 2.6149 (G=955), 3.7124 (G=3435) and 3.7213 (G=4276), respectively. The maximal 

fitness greater than or equal to 1.0 means emerging of double negativity.  

 

To systematically characterize S1, we show in Fig. 4 the corresponding dispersion relations, effective 

constitutive parameters, wave transmission property and pressure magnification. Band structure in Fig. 4(a) 

displays a single band of [0.156384, 0.226167] with negative curvature. The near-linear trait of the first band 

indicates the homogenous wave behaviors in the deep-subwavelength scale. The effective parameters in Fig. 4(b) 

show the simultaneous negative properties for eff

x  and Keff within the negative band range illustrated in Fig. 4(a). 

The positive values of eff

x  and Keff  increase simultaneously at the established sampling frequency points (i.e., 
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hollow circles and triangles). Indeed, their variations are consistent with the constraints imposed by Eq. (24). More 

importantly, eff

x  and Keff approach their resonance responses near the same frequency of 0.156384, and turn into 

the negative values simultaneously. This characteristic declares the best opportunity supplied by topology 

optimization for exploring the broadband double negativity. As plotted in Fig. 4(c), eff

xn
 
and eff

xZ
 

have 

relatively large values and keep the simultaneous increasing variation as well. Negative eff

xn
 

is generated within 

the same range as double-negative band in Fig. 4(a). There is a complete bandgap above the negative band, 

confirming the zero values of Re( eff

xn ). Using the effective parameters, we can obtain in Fig. 4(a) the retrieved 

dispersion relations which perfectly match the band structures. The transmission spectrum in Fig. 4(d) shows that 

regardless of the thickness of the AMM, the total transmission always appears near the lower edge of the 

double-negative range. In view of the dramatic change in Re( eff

xZ ) near the lower-edge frequency, the 

perfectly-matched effective impedance Re( eff

xZ )=1 should be the physical origin of the total transmission. When 

the number of unit-cell increases (N=1, 2, 10), the Fabry-Perot resonance conditions can be satisfied at more 

frequencies, consequently causing more standing waves with high transmission compressed within the AMM. 

Subsequently, wave transmission based on a microstructure S1 is calculated to demonstrate the essential 

resonances, see Fig. 4(e). Clearly, the localized pressure generates two peaks with the increase of frequency, 

confirming the pressure magnification in the region of the upper cavity. To include the influence of the 

viscous-thermal losses on the material performance, we adopt the simplified equivalent model in Ref. [47] for 

simplicity. More specifically, we add the loss explicitly into the wavenumber of air as 0 air loss airk c i c  = −   

where loss is the loss factor. The simulations with the loss factor of 0.004, 0.0093 and 0.022 are performed and 

depicted in Fig. 4(e). It is obvious that S1 can strike a good balance between the resonance transmission and 

immunity to dissipation losses.  

It is noticed here that we did not adopt the sophisticated thermal-acoustic model considering the 

viscous-thermal losses for the metamaterials with the Fabry-Perot resonances in Refs. [56-58]. This is based on the 

fact that the double negativities of the present metamaterials are mainly induced by the overlapping local 

resonances other than the Fabry-Perot resonances.  

Note that the specific resonance mechanisms will be analyzed and discussed in the following section.  
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Fig. 4. Various characterizations of topology-optimized AMM S1 in Fig. 2. (a) Band structures along the  direction (solid lines) 

based on the band theory (BT) and the retrieved dispersion relation Re(k)− (triangular scatters) based on the effective medium theory 

(EMT). (b) Relative effective mass density in the x direction and the bulk modulus. (c) Relative effective index and impedance along the x 

direction. All effective parameters in (b) and (c) are normalized to the background medium. (d) Transmission spectrums of a finite AMM 

sample with different periodicities N along the x direction for the acoustic plane wave excitation. (e) Frequency dependence of pressure 

magnification in the region of upper cavity.  

 

3.1.2. Mechanisms of the optimized double negativity   

 

To understand the physics of the double negativity in the resonance-cavity AMMs, we systematically study 

the eigenstates in the bands of S1-S6, S9 and S13. Figure 5 shows that optimized AMMs support typical LC 

resonances to guarantee the overlapping of different multipolar (monopolar, dipolar and quadrupolar, etc.) 

resonances. The eigenstates MS1 and KS1 give the understanding about the physical origin of negative band 

shown in Fig. 4(a). To be specific, MS2 shows the clear dipolar resonance caused by the highly localized energy in 

the left and right cavities. The infinite value of the effective mass density in Fig. 4(b) indicates that MS2 is 

responsible for the negative effective mass density. As for KS2, most energy is localized in four cavities, forming 

the quadrupolar resonance and causing the infinite effective bulk modulus. Meanwhile, the negative value of Keff 

in Fig. 4(b) confirms the negative bulk modulus produced by KS2. In this case, the combination of the dipolar and 

quadrupolar resonances can generate the double negativity. Since the range of negative effective bulk modulus is 
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smaller than that of the negative effective mass density, the range of the negative effective bulk modulus 

dominates the bandwidth of double negativity. Similarly, eigenstates MS2 and KS2 also clearly exhibit dipolar and 

quadrupolar resonances with different locations and occupied spaces of localized energy, respectively. Because the 

double negativity originates from the overlapping resonances, the double-negative range is determined by the 

common spaces which can support two kinds of resonances. Consequently, S2 has a smaller double-negative range 

than S1. Base on the same principle, the resonance space of eigenstate KS3 implies that S3 should have the 

smallest double-negative range for the square-symmetry case. Unlike the square-symmetry cases, however, MS5 

and KS5 show the quadrupolar and hybridization of quadrupolar and monopolar resonances for the negative 

effective mass density and bulk modulus, respectively. Apparently, their overlapping enlarges the double-negative 

range. Eigenstate KS6 also shows similar hybridization effect only with different chiral resonance spaces. 

Nevertheless, MS9 and KS9 indicate that the orthotropic symmetry mainly alters the locations and topologies of 

the four cavities in the topology optimization, rather than the forms of resonances for double negativity.  

To reveal the above LC-resonance mechanisms, we take S1 and S5 in Fig. 2 as examples to illustrate their 

equivalent physical models ES1 and ES5 in Fig. 5, respectively. In fact, an acoustic resonator is analogous to an 

inductor-capacitor circuit in terms of resonance properties [2], whose enclosed cavity acts as a capacitor; and 

relatively narrow air channels as inductor. Obviously, the optimized resonance-cavity-based AMMs can be 

regarded as a combined system comprising several inductor-capacitor circuits. When pressure variation occurs in 

the channels, the distributions of the inductors and capacitors determine the excited forms of LC resonances. In 

other words, the model ES1 can support the eigenstates MS1 and KS1 under two kinds of excitations, yielding the 

negative mass density and bulk modulus, respectively. However, the model ES5 has different topological feature, 

i.e., four capacitors locate in the corners and one capacitor in the center. On one hand, this distribution can induce 

the quadrupolar resonance for negative effective mass density. On the other hand, if five capacitors are excited 

simultaneously, the hybridization of quadrupolar and monopolar resonance can arise from model ES5 as well. 
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Fig. 5. Specific eigenstates of topology-optimized AMMs S1−S3, S5, S6 and S9. Eigenstates MS1 and KS1 are marked in Fig. 4(a). 

Eigenstates MS1 (S1), MS2 (S2), MS5 (S5) and MS9 (S9) correspond to the resonant modes, which induce the infinite effective mass 

density. Eigenstates KS1 (S1), KS2 (S2), KS3 (S3), KS5 (S5), KS6 (S) and KS9 (S9) correspond to the resonant modes, which induce the 

infinite effective bulk modulus. Sketches ES1 and ES5 represent the equivalent physical models of S1 and S5, respectively.  

 

3.2. Optimized double-negative AMMs under simultaneous non-increasing tendencies of the effective 

parameters 

 

This subsection presents the optimization results with the prescribed simultaneous non-increasing tendencies 

(0) for both eff and Keff (i.e., case 2 in Eq. (24)). To show the great potential of “non-increasing” mechanism, 

the optimization uses the more strict geometrical constraint, i.e., 
*

aw
 

is set as a/15. Similarly, some representative 

topological features, evolution history, various physical characterizations, negative properties of the optimized 

metamaterials are analyzed and discussed in details. The emblematic and novel Mie resonances causing the 

acoustic broadband double negativity are perfectly revealed through the space-coiling AMMs.  

 

3.2.1. Topology-optimized space-coiling AMMs 
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3.2.1.1 Square, chiral and orthogonal symmetries 

 

Owing to the general feature of the proposed optimization framework in Eqs. (18)-(24), we apply it to design 

the broadband double-negative AMMs under the simultaneous non-increasing tendencies (0) considering square, 

chiral and orthotropic symmetries, see Fig. 6. Interestingly, these AMMs exhibit the common topological features 

essentially different from those shown in Fig. 2: (1) several separated solid blocks in the coiling up space, (2) 

zigzag air channels forming the labyrinth layouts, and (3) a number of local air regions. Intuitively, like the 

extreme metamaterials reported by Liang et al. [7], waves can freely propagate inside the curled space with 

materials of negligible loss, arousing the large phase delays within a small space and then realizing the large 

refractive index. Consequently, the band folding [7] supporting the double negativity should emerge at the 

subwavelength scale. Compared with the AMMs in Fig. 2, S11 has more separated solid blocks and complex air 

channels, achieving the large effective refractive index without the resonance cavities. Note that S11 can only 

generate the double negativity within [0.25438, 0.379423], see Appendix A. This means that, with the 

square-symmetry assumption, a better driving force for the low-frequency double negativity should have 

simultaneous increasing tendencies (>0). However, with the same 
*

aw , the chiral- and orthotropic-symmetry 

AMMs in Fig. 6 offer wider double negativities in the lower frequency ranges. Consequently, the simultaneous 

non-increasing tendencies (0) are more beneficial for the low-frequency broadband double negativity than the 

increasing tendencies (>0). In addition, both the optimized chiral- and orthotropic-symmetry AMMs can deliver 

the preferable double negativity. This testifies the robustness of the space-coiling topology for generating double 

negativity. The comparison of S12 and S13 shows that increasing  can reduce the air paths and induce the thinner 

hard solid plates. Since S14 is generated with the different target spectra, similar topology and double negativity of 

S14 demonstrate that the proposed optimization strategy is robust for specific frequencies. Results in Fig. 6(b) also 

show that wide air regions, except the interconnection core regions, and relatively thick hard solid plates can result 

in the degenerations of double negativity. Therefore, the most beneficial space-coiling topology should include 

suitable zigzag channels, thin curved hard solid plates and interconnection core regions in the center.  

To further check the negative properties of the space-coiling AMMs in Fig. 6(a), Figure 6(b) presents their 

double-negative ranges and quasi-static refractive index and impedance. For the low-frequency performance, the 

optimized AMMs, S12, S14, S15 and S16, have the conspicuous broadband double negativity transcending the 

previous extreme metematerials [7]. Moreover, all optimized space-coiling AMMs in Fig. 6 possess larger air 

channels than those of the previous extreme metematerials [7, 46], thus obviously reducing the viscous loss. In 

spite of the more strict constraints on air channels than those in Fig. 2, the optimized AMMs in Fig. 6 can also 

provide the desired negative bands. With the same symmetry, the variations of the impedance are positively related 

to refractive index. Differences between S12, S14, S15 and S16 show that the orthotropic-symmetry AMMs can 

generate similar refractive index with the chiral-symmetry ones. However, the corresponding impedance will 

be obviously increased. This further illustrates that the chiral symmetry can result in ideal double negativity and 

wave transmission simultaneously. For the chiral symmetry, the difference between the performance of S12 and 

S13 shows that a relatively large  can induce a smaller refractive index and impedance, causing a relatively small 

double-negative range. In the other words, the variation of the refractive index dominates the optimization in this 

case. However, for the orthotropic symmetry, the relatively large  mainly reduces the dispersion extent of eff

x  

and Keff, resulting in a smaller double-negative range.  
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Fig. 6. Topology-optimized space-coiling AMMs with three representative symmetries. (a) Optimized microstructures. All 

topology-optimized metamaterials are under the constraint of 0. The target spectrum of S14 is selected as [0.09903, 0.198061] (i.e., 

*=0.09903. The ranges of the other structures are set as [0.002476, 0.198061]. For the microstructures S15 and S16, to guarantee the 

isotropy of effective bulk modulus, the relative difference between Keff retrieved from the x direction and y direction wave simulations are 

forced to be smaller than 5%. (b) Comparisons of double negativities, the quasi-static effective refractive index 
,1

eff

xn +
 and impedance 

,1

eff

xZ +

 
at min for S11-S16. More performances are summarized in Appendix A. 

 

With the prescribed typical symmetries, the present topology optimization can effectively realize the novel 

space-coiling microstructures having ideal double negativity, which breaks the restrictions of single negativity [47] 

or narrow-band double negativity of the labyrinth metamaterials [7]. From the prospective of double negativity, 

both the chiral and orthogonal symmetries provide an attractive and effective design approach, outperforming the 

square symmetry. From the prospective of topological features, three symmetric AMMs share the common ground 

for negative properties: suitable zigzag channels, thin curved hard solid plates and interconnection core regions in 
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the center. Mindful of the manufacturing difficulty, it is easy to fabricate all space-coiling microstructures 

containing mainly straight hard solid plates.  

 

3.2.1.2 Analysis of representative AMM S12 

 

To understand the origin of the space-coiling topology shown in Fig. 6, we show the evolutionary history of 

the maximal fitness with the generation number for the AMM S12 in Fig. 7. The noteworthy change from the 

generation G=0 (F=0) to G=10 (F=0.2859) illustrates the strong searching ability of the GA in determining the 

separated thick hard solid plates and interconnection core regions. The creation of the double negativity at 

generation G=117 (F=1.5521) suggests that making channels and solids parts more curved is an effective way for 

getting double negativity. From G=117 (F=1.5521) to G=4680 (F=4.0818), the solid components become thinner 

while the curved portion of the zigzag paths increases, thus producing a bigger double negativity range. 

Meanwhile, the interconnection core region in the center maintains a relatively large size. In spite of the similar 

space-coiling topology with the extreme metamaterials reported by Liang et al. [7], the AMM S12 shows the 

emblematic features of larger interconnection regions and more curved degree of the hard solid plates, which gives 

rise to better double-negative property.  

 

Fig. 7. Evolutionary history for the generation of topology-optimized AMM S12 in Fig. 6. Illustrations display eight representative 

topologies during the “coarse to fine” optimization. The objective function values of eight microstructures are 0 (G=0), 0.2859 (G=10),   

1.5521 (G=117), 2.7063 (G=224), 3.9155 (G=455), 4.0487 (G=1560), 4.056 (G=1850) and 4.0818 (G=4680), respectively. 

 

To characterize the double negativity of S12, we systematically study the dispersion relations, effective 

parameters and transmission spectrum, see Fig. 8. For the second band range displayed in Fig. 8(a), the different 

physical quantities coincide mutually. Interestingly, owing to the band folding, the slopes around the  point in 

both the X and M directions are almost the same in the first, second, forth, sixth, eighth and tenth bands. In fact, 
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this band folding not only indicates the isotropic indices, but also gives rise to the ideal negative properties at both 

subwavelength and long-wavelength regimes. Just as the constraints of simultaneous non-increasing tendencies in 

Eq. (24), the positive eff

x
 

and Keff decrease simultaneously below the negative range. The simultaneous negative 

eff

x
 

and Keff in Fig. 8(b) and negative eff

xn
 

clearly demonstrate the double-negative property of the negative band 

depicted in Fig. 8(a). Unlike the results in Fig. 8(b), the positive eff

xn
 

and eff

xZ
 
have the opposite variation 

patterns. Using the effective parameters in Figs. 8(b) and 8(c), the retrieved dispersion relations based on EMT can 

perfectly match the band structures. Benefitting from the perfectly-matched effective impedance Re( eff

xZ )=1, total 

transmission appears near the lower edge of the double-negative range no matter whether the metamaterial layer is 

thin (N=1, 2) or thick (N=10), see Fig. 8(d). Besides, the high transmission at other frequencies can also be 

obtained because of the satisfied Fabry-Perot resonance conditions. 

The wave transmission based on a microstructure of S12 is further calculated to demonstrate the essential 

resonances, as shown in Fig. 8(e). Clearly, large magnitude pressure is mainly localized in the central 

interconnection region, showing a pressure magnification in the region of the upper cavity. Obviously, S12 allows 

striking a good balance between the resonance transmission and immunity to dissipation losses. Note that the 

specific resonance mechanisms will be analyzed and discussed in the following section.   
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Fig. 8. Various characterizations of AMM S12 in Fig. 6. (a) Band structures (solid lines) based on the band theory (BT) and the retrieved 

dispersion relation Re(k)− (triangular scatters) based on the EMT. (b) Relative effective mass density in the x direction and the bulk 

modulus. (c) Relative effective index and impedance along the x direction. All effective parameters in (b) and (c) are normalized to the 

background medium. (d) Transmission spectrums of a finite AMM sample with different periodicities N along the x direction for the 

acoustic plane wave excitation. (e) Frequency dependence of pressure magnification in the region of central interconnection core.  

 

3.2.2. Mechanisms of optimized double negativity  

 

To reveal the origin of the double negativity in the space-coiling AMMs, we take four metamaterials S12-S15 

as examples and scrutinize their specific eigenstates in Fig. 9. Obviously, eigenstates MS12 and KS12 portray the 

quadrupolar and hybridization of quadrupolar and monopolar Mie resonances which can essentially induce the 

negative effective mass density and bulk modulus, respectively. It is relevant to note that these artificial Mie 

resonances distinctly differ from the LC resonances shown in Fig. 5. In principle, the Mie resonance usually 

appears in the structure having a high refractive index relative to the background medium [27, 47]. Instead of 

highly localizing all energy within several cavities, the Mie resonances enable energy concentration in the air 

regions while producing apparent radiation, showing the feature of resonance scattering. Eigenstates MMS12 and 

KKS12 behave like a second-order quadrupolar and hybridization of the quadrupolar and monopolar Mie 

resonances, and characterize the double-negative essence of the sixth band in Fig. 8(a). Similarly, the 

high-frequency negative band (tenth band) in Fig. 8(a) also has the double negativity resulted from the 

higher-order Mie resonances. Eigenstates MS13 and KS13 also show that the double negativity of S13 is generated 

by the quadrupolar and hybridization of the quadrupolar and monopolar Mie resonances. Comparing the field 

distributions of MS12, KS12, MS13 and KS13, we can infer that the relatively large interconnection core region 

will cause the double negativity in the lower frequency range, see the negative ranges of S12 and S13 shown in Fig. 

6(b). In addition, eigenstates MS14 and KS14 show that the Mie resonances can also be induced by more complex 

labyrinth structures. This means that the space-coiling topology is very robust for generating the multipolar Mie 

resonances. In addition, eigenstates MS15 and KS15 show that the ortho-symmetric labyrinth topology 

is conducive to similar Mie resonances as well. Hence the AMMs presented in Fig. 6 provide unanticipated 

topological features for both Mie resonances and double negativity. Note that the bandwidth of the double 

negativity is determined by the size of the overlapping regions for two resonances. However, in case of the 

quadrupolar and hybridization of the quadrupolar and monopolar Mie resonances, the largest overlapping regions 

should be the four corner areas, which indicates the corresponding limited bandwidth. In particular, it is the 

combination of multipolar resonances that provide the broadband double negativity over the previous studies on 

space-coiling AMMs [7]. Overall, eigenstates in Fig. 9 disclose that the optimal mechanism with space-coiling 

topology for broadband low-frequency double negativity should be the combination of quadrupolar and 

hybridization of quadrupolar and monopolar Mie resonances.  

To reveal the above Mie-resonance mechanisms, we also present in Fig. 9 the equivalent physical models 

ES12 and ES13 of the AMMs S12 and S13, respectively. Because S12 has the high effective refractive index and 

an air cavity in the center, the whole microstructure can be equivalent to four channels composed of the ultraslow 

medium connected with an air interconnection core. And they are separated by the solid frame materials. When 

waves propagate in the four channels with different phases, the model ES12 can produce the quadrupolar Mie 

resonance MS12 or the hybridization of the quadrupolar and monopolar Mie resonance KS12. In particular, the 

relatively large interconnection core further promotes this hybridization. Since the holistic effective refractive 

index of S13 is smaller than that of S12, the corresponding equivalent model ES13 has different straightened 

channels while ensuring similar geometrical feature. In addition, since S13 has smaller air cavities in the center 

than S12, ES13 should have smaller air interconnection core as well. As a result, the difference between ES12 and 
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ES13 mainly affects the frequency range of double negativity.  

 

Fig. 9. Specific eigenstates of topology-optimized AMMs S12-S15. Eigenstates MS12 and KS12 are marked in Fig. 8(a). Eigenstates 

MS12 (S12), MMS12 (S12), MS13 (S13), MS14 (S14)and MS15 (S15) correspond to the resonant modes, which induce the infinite 

effective mass density. Eigenstates KS12 (S12), KKS12 (S12), KS13 (S13), KS14 (S14) and KS15 (S15) correspond to the resonant modes, 

which induce the infinite effective bulk modulus. Sketches ES12 and ES13 represent the equivalent physical models of S12 and S13, 

respectively.   

 

3.3. Brief summary on two categories of AMMs   

 

Due to the tremendous inverse-design ability, topology optimization has explored two categories of novel 

AMMs with broadband double negativity, namely the resonance-cavity-based and space-coiling metamsaterials, 

respectively. For the desired negative properties, the space-coiling metamaterials can realize a wider double 

negativity within the lower frequency ranges, showing superiority over the resonance-cavity-based ones. In 

addition, the double negativity of the space-coiling metamaterials is less affected by the width of the air channels. 

And space-coiling metamaterials can produce the double negativity by introducing larger air channels. A good 

resonance-cavity-based metamaterial should possess the multiple air resonance cavities, several hard solid plates 

and air channels. For the space-coiling metamsaterials, the beneficial topologies should include the suitable zigzag 

channels, thin curved hard solid plates and interconnection core regions in the center. For the double-negative 
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mechanisms, the resonance-cavity-based metamaterials benefit from the novel multipolar LC resonances. But the 

space-coiling metamaterials support the novel multipolar Mie resonances. In principle, both novel mechanisms 

overcome the limitations of the reported negative resonances [2, 7, 25, 46-47], representing the optimal physical 

essences for broadband double negativity so far. Because of the most straight hard solid plates, the space-coiling 

metamaterials are easier to be manufactured than the resonance-cavity-based ones. Anyway, the 

topology-optimized AMMs presented in this paper can achieve the double negativity in a brand-new structural 

style.  

 

3.4. Potential applications using topology-optimized double-negative AMMs   

 

This subsection presents the numerical results of broadband double negativity and the enhancement of 

evanescent wave transmission for LC-resonance and Mie-resonance optimized AMMs. Then we respectively show 

the negative refraction and acoustic subwavelength imaging with high transmission. Finally, the experimental 

demonstration of subwavelength imaging is successfully realized.  

 

3.4.1. Numerical demonstrations of wave behaviors 

 

To demonstrate the desired negative dispersions, we illustrate the equi-frequency surfaces (EFSs) of 

metamaterials S1 and S12 in Figs. 10(a) and 10(b), respectively. It is noted that two negative bands show the quite 

isotropic behavior within the whole range except the lower edge of the bands with the slight anisotropy. In 

addition, we can clearly observe the striking difference between the LC-resonance and Mie-resonance negative 

bands in Figs. 4(a) and 8(a), i.e., two bands are arc-shaped and nearly-straight, respectively. The variations of the 

EFSs with the increasing frequency in Figs. 10(a) and 10(b) suggest that the negative group velocities should occur 

along all directions. When waves are incident to the interface between the AMMs and background media, the 

refracted group velocity should be pointed to the direction of frequency increasing which is perpendicular to the 

contours, causing the expected negative direction. It is worth mentioning that the target frequency spectrum of 

[0.002476, 0.198061] can guarantee the all-angel negative refraction for the whole target frequency spectrum. 

Then the subwavelength imaging can be realized within the whole target frequency spectrum as well.   

 

Fig. 10. Equi-frequency surfaces of topology-optimized AMMs. Surface plots of the first negative band (the second band) over the whole 

Brillouin zone for S1 (a) and S12 (b).  
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To validate the negative refraction and subwavelength imaging, we display the corresponding simulation 

results for the metamaterials S1 and S12 in Figure 11. As predicted in Figs. 11(a) and 11(c), when the Gaussian 

beam (45) of an acoustic wave is incident from the left region, the desired negative refraction with high 

transmission can be clearly observed at =0.173303 and =0.160925, respectively. Since a recent study found 

that the acoustic-structural interaction may have a certain effect in the space-coiling AMMs [58], we display the 

numerical simulations with considering the acoustic-structural interaction in Figs. 11(b) and 11(d). The nearly 

identical beam patterns demonstrate that the acoustic-structural interaction has only a very slight effect on the 

wave propagation properties of the optimized AMMs in this study. Meanwhile, when a point source is excited in 

the left of the metamaterial slab, obvious imaging effect for S1 and S12 can be observed in the exiting surfaces of 

the slabs in Figs. 11(e) and 11(f). Their full widths at the half maximum (FWHM) of images are 0.44 and 0.39, 

respectively, which are beyond the diffraction limit. Therefore, topology-optimized metamaterials S1 and S12 are 

demonstrated to have the ability of realizing the subwavelength imaging. In addition, we also present the 

simulations for S12 at the different frequencies in Figs. 11(f)-11(i). Comparisons between the results in Figs. 

11(f)-11(i) show that the metamaterial lens can effectively generate the stable subwavelength imaging within the 

negative range. With the increase of frequency, the imaging resolution decreases and more energy is reflected by 

the lens due to the inevitable impedance mismatch.  

 

Fig. 11. Simulations of negative refraction and acoustic subwavelength imaging using topology-optimized AMMs. (a)-(d) Pressure 

fields under an incident Gaussian beam (45) of acoustic waves for S1 without (a) or with (b) considering the acoustic-structural interaction 
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at =0.173303 and S12 without (c) or with (d) considering the acoustic-structural interaction at =0.160925, respectively. (e) Imaging field 

pattern and intensity profiles (the source is located at the position a away from the left side of the 32×8 metamaterial slab) for S1 at 

=0.173303 (FWHM=0.44). (f)-(i) Imaging field patterns and intensity profiles for S12 at =0.160925 (FWHM=0.39) (f), 0.173303 

(FWHM=0.36) (g), 0.185682 (FWHM=0.42) (h) and 0.198061 (FWHM=0.44) (i), respectively.  

 

To establish the subdiffraction-limit resolution in Fig. 11, we present in Fig. 12 the zero-order transmission 

coefficient [2, 23-24] of a plane wave for evaluating the transmission of both propagating and evanescent waves 

through an 8-layered metamaterials of S1 or S12 immersed in air. Note that a value of zero-order transmission 

larger than 1.0 implies the enhancement of the propagating or evanescent waves. The regions representing the 

propagating waves locate in the left of the skew lines in Figs. 12(a) and 12(b). And the regions located in the right 

of the skew lines describe the case of evanescent waves. For every frequency within the double-negative range, it 

is clear that the transmission coefficient can be larger than 1.0 for the wave vector ky either near or far away from 

k0. And the lower-frequency range has the enhancements in the wider range of ky than the higher-frequency one. 

This emphasizes the importance of the frequency in enhancing evanescent waves for imaging. Consequently, 

benefiting from the enhancement of evanescent waves, the metamaterial lens can capture the subwavelength 

information of the object and then transfer the corresponding energy to the focal plane of the image.  

 
Fig. 12. Enhanced transmission of the evanescent waves through topology-optimized AMMs. Frequency and wave-vector dependence 

of the zero-order transmission coefficient for both propagating and evanescent waves through a layer consisting of 8 metamaterials S1 (a) 

or S12 (b). Two skew lines in (a) and (b) represent the dispersion curves for air. If kyk0 (k0 is the propagation constant of the fundamental 

waveguide mode), the transmission coefficient characterizes the transmission property for the propagating waves, while for kyk0 the 

corresponding waves represent the evanescent waves. 

 

3.4.2. Experimental verification of acoustic subwavelength imaging  

 

Above results show that the space-coiling AMMs can realize the ideal broadband double negativity with 

relatively large air channels. In addition, they are mainly composed of straight hard solid plates, showing good 

workability. To show the convincing potential of the optimized AMMs, we worked with the space-coiling AMM 

S12 and experimentally demonstrated the broadband subwavelength imaging in Fig. 13. We adopted 3D-priting to 

fabricate an AMM sample made of polylactice acid (PLA) with a mass density of 1250 kg/m3 and bulk modulus 

3.5×109 Pa. The fabricated metamaterial slab in Figs. 13(a) and 13(c) consists of 20×5 microstructures depicted in 

Fig. 13(b). Experimental apparatus for the acoustic experiment inside a waveguide is illustrated in Fig. 13(a) 

where the slab sample was surrounded by the acoustic absorbing foams to avoid reflections. A loudspeaker, 
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located 3cm away from the input interface of the slab, was used as the point source of waves; while the mounted 

microphone measured the acoustic pressure by moving in the scanning area. Signals at each position were 

averaged over four measurements. Using the Fourier transform, the whole acoustic filed was obtained after the 

scanning measurement.  

We first tested the subwavelength imaging of the metamaterial slab at 2200 Hz which is within the 

double-negative frequency range. The measured results in Fig. 13(e) agree well with the simulation results in Fig. 

13(d) in terms of the acoustic magnitude for the dashed area. The measured results at 2350 Hz in Fig. 13(f) also 

show the desired imaging pattern. The measured imaging resolutions of Figs. 13(e) and 13(f) are 0.38 and 0.44, 

respectively, certifying the subwavelength property well. Then we study the performance of the subwavelength 

imaging within the range of [1700Hz, 2500Hz], as displayed in Fig. 13(g). One peak with high transmission can be 

clearly observed at all measured frequencies, demonstrating the broadband characteristic of the subwavelength 

imaging. Moreover, the non-monotonic curve in Fig. 13(h) exhibits all imaging resolutions less than or equal to the 

diffraction limit. Overall, the low operating frequency is beneficial to the high resolution. Clearly, the measured 

subwavelength imaging in Fig. 13 is attributed to the double negativity of the metamaterials.  
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Fig. 13. Experimental demonstration of acoustic subwavelength imaging using topology-optimized AMM S12. (a) Experimental 

apparatus. A loudspeaker acting as a point source is placed 3cm away from the metamaterial slab. (b) Fabricated 3D-printing microstructure 

of S12 using the polylactice acid (PLA). (c) Top view of the metamaterial slab. (d) Simulation result of 20×5 metamaterial slab based on 

S12 at 2200 Hz. (e)-(f) Measured magnitude fields at 2200 Hz (e) and 2350 Hz (f) of the dashed region in (d). Their corresponding imaging 

resolutions are FWHM=0.38 (e) and FWHM=0.44 (f), respectively. (g) Measured magnitude fields along the exiting surface of the 

metamaterial slab within the operating frequency range of [17000 Hz, 2500 Hz]. (h) Measured imaging resolutions within the operating 

frequency range.  

 

4. Conclusions  

 

In summary, for the first time, we construct a unified topology optimization framework for systematic 

designing the double negativity with any manual requirement including the expected microstructure symmetry, 

derivable double-negative mechanisms, necessary structural feature sizes and dispersion extent control of effective 

parameters. We design various novel microstructures with broadband double negativity and reveal the most 

beneficial topological features of resonance-cavity-based and space-coiling metamaterials. One feasible design 

principle is the suitable assembling of multiple air resonant cavities, solid blocks and air channels for 

resonance-cavity-based structures. Alternatively, one can realize suitable combinations of zigzag channels, thin 

curved hard solid plates and interconnection core regions in the center. Exhaustive characterizations of the 

metamaterials indicate that the double negativity, originating from the novel multipolar LC or Mie resonances, can 

be induced by the simultaneous increasing or non-increasing mechanisms in optimization. Desired acoustic 

negative refraction and subwavelength imaging of the optimized AMMs are numerically demonstrated in details 

for two representative AMMs. The enhancements of evanescent waves propagating through the metamaterials are 
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found to be responsible for the subdiffraction-limit imaging resolution. In addition, we also experimentally 

validate the broadband subwavelength imaging of the space-coiling AMMs. 

More importantly, the proposed topology optimization framework, involving the derivable LC and Mie 

resonances, is not restricted to the double negative metamaterials presented here. In principle, the design strategy 

proposed here can be universal and applicable to other types of AMMs demanding negative constitutive 

parameters, no matter whether they are double-negative [26-30], single-negative [2, 23, 40] or even hyperbolic 

[23-24, 35]. The present optimized AMMs and superlens provide the subwavelength imaging with powerful and 

heuristic components, pushing the conceptual design to the specific practical applications. Our future work will 

focus on the in-depth design and realization of three-dimensional double-negative AMMs by topology 

optimization. 

Finally, we would like to mention that the present optimization excludes the effect of the viscous-thermal 

losses. Although our experimental results show that the double negativities are not visibly affected by the 

viscous-thermal losses, at least for the samples used in our experiments, the effect of the viscous-thermal losses on 

topology optimization is an interesting topic for the future work. 
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Appendix A. Performances of the optimized AMMs with double nativities 

 

Number 

of 

structures 

Topology of 

microstructures  

Mechanism 

(Resonance) 

Double-negative 

range in the target 

spectrum 

Negative range 

beyond the target 

spectrum 

Key 

optimization 

parameter 

 

 

S1 

 

 
 

LC 

<0: Dipolar 

K<0: Quadrupolar 

[0.156384, 0.198061] [0.198061, 0.226167] 
*

1.0

30

0

aw a





=

=



 

 

 

S2 

 

 
 

LC 

<0: Dipolar  

K<0: Quadrupolar 

[0.177318, 0.198061] [0.198061, 0.312607] 
*

1.5

30

0

aw a





=

=



 

 

 

S3 

 

 
 

LC 

<0: Dipolar  

K<0: Quadrupolar 

[0.190033, 0.198061] [0.198061, 0.311203] 
*

1.0

15

0

aw a





=

=



 

 

 

S4 

 

 
 

LC 

<0: Quadrupolar 

K<0: Monopolar+ 

Quadrupolar 

[0.13852, 0.198061] [0.198061, 0.208064] 
*

0.5

30

0

aw a





=

=



 

 

 

S5 

 

 
 

LC 

<0: Quadrupolar 

K<0: Monopolar+ 

Quadrupolar 

[0.133584, 0.198061] [0.198061,0.199365] 
*

1.0

30

0

aw a





=

=



 

 

 

S6 

 

 
 

LC 

<0: Quadrupolar 

K<0: Monopolar+ 

Quadrupolar 

[0.145441, 0.198061] [0.198061, 0.210904] 
*

1.5

30

0

aw a





=

=


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S7 

 

 
 

LC 

<0: Quadrupolar 

K<0: Monopolar+ 

Quadrupolar 

[0.167848, 0.198061] [0.198061, 0.264008] 
*

1.0

15

0

aw a





=

=



 

 

 

S8 

 

 
 

LC 

<0: Dipolar  

K<0: Quadrupolar 

[0.148489, 0.198061] [0.198061, 0.213618] 
*

1.0

30

0

aw a





=

=



 

 

 

S9 

 

 
 

LC 

<0: Dipolar  

K<0: Quadrupolar 

[0.140899, 0.198061] [0.198061, 0.212211] 
*

1.5

30

0

aw a





=

=



 

S10 

 

LC 

<0: Dipolar  

K<0: Quadrupolar 

[0.176696, 0.198061] [0.198061,0.243152] 
*

1.0

15

0

aw a





=

=



 

S11 

 

Mie 

<0: Quadrupolar 

K<0: Monopolar+ 

Quadrupolar 

None [0.25438,0.379423] 
*

0

15

0

aw a





=

=



 

S12 

 

Mie 

<0: Quadrupolar 

K<0:Monopolar+ 

Quadrupolar 

[0.147504, 0.198061] [0.198061,0.263384] 
*

0

15

0

aw a





=

=



 

S13 

 

Mie 

<0: Quadrupolar 

K<0: Monopolar+ 

Quadrupolar 

[0.191479, 0.198061] [0.198061,0.354621] 
*

1.0

15

0

aw a





=

=


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S14 

 

Mie 

<0: Quadrupolar 

K<0: Monopolar+ 

Quadrupolar 

[0.156749, 0.198061] [0.198061, 0.280516] 

*

*

0

15

0

0.09903

aw a







=

=



=

 

S15 

 

Mie 

<0: Quadrupolar 

K<0: Monopolar+ 

Quadrupolar 

[0.146731, 0.198061] [0.198061, 0.267489] 
*

0

15

0

aw a





=

=



 

S16 

 

Mie 

<0: Quadrupolar 

K<0: Monopolar+ 

Quadrupolar 

[0.161667, 0.198061] [0.198061,0.270861] 
*

1.0

15

0

aw a





=

=


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