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ABSTRACT 

A truthful description of the energy transport process is vital for the understanding 

of the Acoustic Black Hole (ABH) effect and its applications. One of the parameters, 

which can depict such a physical process is the power flow, whose calculation 

involves higher-order derivatives of the structural displacement function. This 

however requires an accurate and sufficiently smooth fitting of the structural 

responses which can hardly be achieved by the existing semi-analytical models on 

ABH structures. To tackle the problem, an energy formulation, in conjunction with a 

Rayleigh-Ritz procedure, is proposed for an ABH beam, whose thickness variation is 

described as a general Fourier expansion. The transverse displacement of the beam is 

constructed using Fourier series with supplementary auxiliary functions. This 

treatment ensures the continuity and the smoothness of all relevant derivatives terms 

in the entire calculation domain, thus allowing the calculation of the power flow and 

structural intensity. Numerical examples are presented to illustrate the reliability and 

the effectiveness of the established model. Numerical analyses on power flow and 

structural intensity show the spatial and frequency characteristics of the energy 

transmission process and reveal the ABH-specific mechanisms. While providing an 

efficient analysis tool, this work enriches the existing understanding on the dynamic 

behavior of ABH structures. 
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1. Introduction 

The Acoustic Black Hole (ABH) phenomenon, featuring a gradual phase velocity 

reduction of the flexural waves in a thin-walled structure with a power-law tailored 

decreasing thickness, has been explored for various applications such as vibration and 

noise control [1,2], energy harvesting [3,4] and wave manipulations [5,6]. Thanks to 

the ABH-specific wave retarding and energy focalization feature, significant vibration 

attenuation can be achieved by using a small amount of damping near the tip of the 

ABH taper. Meanwhile, the creation of subsonic waves (acoustically slow structural 

waves) reduces the sound radiation efficiency of the structure, also conducive to noise 

reduction. Since the pioneer work of Mironov [7] and a series of significant work of 

Krylov et al. [8-11], interest in exploring various aspects of ABH effects has 

experienced a flourishing development during the past twenty years. Typical work 

ranges from theoretical to experimental studies as well as various applications using 

both ABH beams [12-14] and plane structures of various shapes such as circular 

[15,16], elliptical [17,18] and rectangular plates [19]. 

The realization of the effective ABH effect and its successful application require a 

thorough understanding of the wave propagation process and a meticulous handling of 

various structural parameters. This requires a truthful description and the modelling of 

energy transport process. Efforts have been made using different metrics such as 

reflection coefficient [20], cross-point mobility [14,21,22] and energy distribution 

[23,24] etc. Although these works allow the quantification of the ABH effect from 

different angles, they mainly focus on the end result of the ABH effect instead of the 

wave propagation process itself. As a useful attempt, experimental approach was 

adopted to visualize the wave propagation using a combined laser excitation 

technique and laser scanning vibrometer measurement [23].  

A predictive model, capable of characterizing the energy transport process in ABH 

structure, is of great interest to guide the practical design of ABH structures. One of 

the physical parameters which are able to inform the energy propagation process is 

the structural power flow, or the structural intensity. Power flow is a physical quantity 
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that synthetically considers the vibratory velocity and internal force in a structure and 

gives information on the input power, dominant transmission paths as well as energy 

dissipation within the structure. Through decades of development, power flow 

analysis has been applied to study many types of complex structures, both 

numerically and experimentally [25-34]. As far as ABH structures are concerned, only 

numerical simulations using Finite Element Analysis have been attempted so far [24, 

35]. 

Apart from the widely used FEM/BEM methods, effort has also been made in 

developing semi-analytical modeling techniques for beams [14] and plates [36] based 

on different types of wavelets [14, 21]. Although these works show the advantages of 

the semi-analytical modeling and its accuracy in predicting the structural response, 

these models cannot provide the accuracy needed for the higher order differential 

calculation of displacement functions which is required for the calculation of internal 

forces for power flow or structural intensity determination.  

Motivated by this, a revamped semi-analytical modeling approach is proposed in 

this paper for the power flow analysis of an elastically restrained ABH beam, whose 

thickness profile is expressed in a general form via Fourier series. An energy 

formulation in conjunction with Rayleigh-Ritz procedure is employed for the dynamic 

description of the ABH beams, in which the standard Fourier series, supplemented by 

the boundary smoothened auxiliary terms, is constructed as the admissible function 

for the structural displacement decomposition. This treatment is demonstrated to 

ensure the continuity and the smoothness of the displacement function of the system 

so that all the relevant spatial derivatives of various order required for the calculation 

of internal forces in the power flow calculation can be obtained straightforwardly 

through the standard term-by-term differential operation. Numerical examples are 

then presented to validate the correctness and the effectiveness of the proposed model 

through comparisons with results from other approaches. Using the proposed model, 

power flow and structural intensity in ABH beam are investigated to show the energy 

flow across the structure and its dissipation in spatial domain in relation to the 
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damping layers. Finally, conclusions are given.  

 

2. Theoretical formulation 

2.1 Elastically restrained beams with arbitrary thickness variation 

 

Figure. 1 A model of elastically retrained beam with arbitrary thickness variation and fully 

coupled damping layers 

As illustrated in Fig.1, we consider a general Euler-Bernoulli beam undergoing 

transverse vibration under a concentrated force excitation F at xf, with the coordinate 

origin being located at the left end of the beam. The whole system is assumed to be 

symmetrical with respect to the mid-line of the beam. The beam, having a length L 

and a constant width b, has an arbitrary thickness profile h(x) and is symmetrically 

covered by a damping layer of thickness hd. Boundary conditions of the beam are 

simulated by introducing a set of elastic springs at both ends against translation and 

rotation, respectively. For example, kb0 and Kb0 denote the translational and rotational 

spring stiffness at the end x=0. Through a proper assignment of the restraining spring 

coefficients, all the classical boundary conditions as well as their combinations can be 

readily simulated. Structural damping is simulated through a complex Young’s 

modulus E=E(1+jη), with η being the damping loss factor, taking different values for 

the beam and the damping layer. 

The existing description of the ABH profile in the literature is mainly confined to a 

power-law form, thus limiting the tuning of the ABH design to the adjustment of the 
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power-law index and its coefficients. To envisage a more general thickness profile, 

which may eventually expand the design space of the ABH structure, a general 

thickness distribution function h(x) is considered and transformed into Fourier series. 

The corresponding cross-section area Sbeam(x)=2bh(x) and the moment of inertia 

Ibeam(x)=2bh3(x)/3 write, respectively 
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  For the damping layer, which is considered in a fully coupled manner, 

Sdamp(x)=2bhd and Idamp(x)=2b[3h2(x)hd+3h(x)hd
2+hd

3]/3. They are also transformed 

into Fourier series, similar process is followed and the corresponding coefficients are 

expressed as
/beam damp

n and
/beam damp

n . In this way, all the thickness variation 

information can be covered and stored in its Fourier series coefficients. The potential 

benefits can be understood from two aspects. The first is that all the subsequent 

spatial integration will be performed for these Fourier cosine series. The calculation 

can be analytically conducted, thus ensuring a much higher calculation accuracy and 

efficiency. Secondly, further optimization of the thickness profile can be implemented 

by easily adjusting these Fourier coefficients
/beam damp

n and
/beam damp

n , accordingly.  

The above described beam with a general thickness profile retreats to an ABH 

beam by setting the thickness variation h(x) as a power-law function in the right part 
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of the beam as illustrated in Fig.1 (bottom plot). The thickness variation function 

across the entire ABH beam (including a uniform part and ABH part) is expressed as:  
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  As shown in Fig.1, other geometrical parameters, such as the total length Ltotal and 

the inevitable thickness truncation resulting from the practical manufacturing 

limitation, h0, should satisfy the following relationship: 
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The ABH profile described in Eq. (5) can be converted into Fourier space by using 

the profile information transformation Eqs. (1-4). By substituting the obtained Fourier 

series coefficients into the original dynamic model established above, vibration 

analyses on the ABH beam with the specified thickness profile can be performed.  

 

2.2 Fully coupled dynamic modeling of the beam structure 

A fully coupled dynamic model is established based on the Euler-Bernoulli beam 

theory and energy principle. The system Lagrangian sL can be written as 

 sL V T W= − −                          (7) 

where V and T are the total potential and kinetic energies, including the elastic 

boundary restraints as well as the damping layers. W is the work done by the 

concentrated force applied at the beam structure.  

  The potential energy V writes 
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in which the two terms in the first row are related to the strain potential energies due 
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to the deformation of the host ABH beam and that of the damping layers, respectively. 

Here, damping layers are assumed to be fully coupled with the host beam over its 

coated region [xd1, xd2]. The remaining four terms in the second row represent the 

elastic potential energies stored in the rotational and translational springs at both ends.  

  The kinetic energy T can be written as 
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  The work W done by the external point force excitation is 
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where F denotes the external force and δ(x) is the Dirac delta function.  

 

2.3 Improved Fourier series solution of the beam structure 

  The discretization of the above formulation requires the construction of a set of 

admissible functions with sufficiently smooth properties. Fourier series is usually 

employed for the displacement expansion in dynamic the modeling of beam structure 

as 
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corresponding first and third order derivatives at the end x=0 write 
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Similar results can be obtained on the other end of the beam x=L. It can be seen that 

the first and third order derivatives with respect to the spatial coordinate at both ends 

are systematically zero. However, for the general elastic boundary restraints 

considered in this work, the non-zero spatial differentials of these orders will be 

required to represent the following force equilibrium and geometric coordination 
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relationship; namely, taking the end x=0 as an example,  
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  Submitting Eq. (11) into Eqs. (12, 13), clearly shows that the standard Fourier 

cosine or sine series cannot satisfy such elastic boundary conditions due to its 

differential discontinuities of various order spatial derivatives at the boundaries. To 

satisfy the differential continuity requirements by the force equilibrium and geometric 

coordination at the general elastic end supports [37-39], the standard Fourier series is 

supplemented by boundary smoothened auxiliary functions as follows: 
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in which 1(x), 2(x), 3(x) and 4(x) are four auxiliary functions, weighted by four 

coefficients a, b, c and d, respectively.  

  The main purpose of introducing auxiliary functions is to remove the boundary 

discontinuities of the first and third order spatial derivatives associated with the 

original Fourier series, as shown in Eqs. (12) and (13). The construction of these 

supplementary functions is not unique mathematically, while appropriate choice of 

their forms will simplify the subsequent mathematical operations. With this in mind, 

they are chosen as: 
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  In each supplementary function above, the choice of trigonometric function and 
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their combination are made based on the criteria of removing the first and third 

differential discontinuities encountered in the general elastic boundary conditions Eqs. 

(14, 15). The corresponding weighting coefficients are assumed to realize the 

normalization condition for the subsequent functional value as well as their spatial 

derivatives at both ends of the beam. It is easy to verify that 
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  To better demonstrate the first and third order differential properties of these 

supplementary functions, their corresponding functional graphs are calculated and 

presented in Fig. 2. It can be seen that these supplementary function terms can 

effectively remove the differential discontinuities of the original Fourier series Eqs. 

(11-13). Then, the improved Fourier series expansion of ABH flexural displacement 

Eq. (16) will be sufficiently smooth in the whole solving range, including both 

general elastic ends, which is vital to improve the series solution convergence and 

accuracy. More importantly, all the spatial derivatives of various order needed for the 

power flow and structural intensity calculation can then be derived in any field point 

of ABH beam structure, as to be demonstrated later.  

 

Figure. 2 Graphs of the first and third order derivatives for these four auxiliary functions 
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2( )− =K M R F                        (22) 

where M and K are the mass and stiffness matrices, respectively; ω is the angular 

frequency; R and F are the coefficient vectors of the improved Fourier series 

expansion and the external force loading, respectively. Eq. (22) can be solved through 

standard matrix inversion operation. By removing the force vector on the right-hand 

side, all the modal information can be obtained by solving a standard eigen-value 

problem. Substitution of the corresponding eigenvectors into the improved Fourier 

series displacement expression, one can get the mode shapes of the ABH beam 

structure.  

 

2.4 Power flow and structural intensity of ABH beam 

Thanks to the derivative continuity characteristics of the constructed displacement 

expression, all the internal forces required for the structural intensity calculation can 

be determined in a straightforward way through a term-by-term differential operation. 

The time-averaged input power flow Pinput is defined as  

  
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P F t v t t
T

=                      (23) 

where v(t) is the transverse velocity at the force application position; t and Tp are the 

time and observation period, respectively. For a harmonic excitation, with F(t)=Fejωt 

and v(t)=vejωt, Eq. (23) becomes 

     * *1 1
( ) Re Re

2 2
inputP F v Fv = =                 

 
(24) 

where * denotes the complex conjugate and Re{ } the real part of the complex 

variable. Using the driving point mobility, namely v=YF, Eq. (24) can be rewritten as 

   
2*1 1

( ) Re ( ) Re ( )
2 2

inputP F Y F F Y  = =              (25) 

  As to the vibration energy transmission in the beam structure, the structural 

intensity Ix,transfer， defined as the power flow through per unit cross sectional area of 

the beam, is expressed as 
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in which Qx and Mx are the transverse shear force and bending moment, respectively. 

These two quantities can be calculated through the higher order spatial derivatives of 

beam displacement function, namely 
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  As mentioned before, the supposition of the standard Fourier series and auxiliary 

functions Eqs. (17-20) can guarantee sufficiently continuous and spatially smooth 

derivatives of various order in the entire solving domain, including the general elastic 

end supports. Making use of the dynamic response information R obtained from Eq. 

(22), the power flow and structural intensity can be derived through a straightforward 

post-processing operation.  

 

3. Numerical results and discussions 

  In this section, numerical examples are presented to demonstrate the correctness 

and the effectiveness of the proposed model. With the model, power flow and 

structural intensity of ABH beams with or without damping layers are investigated in 

details. 

  

3.1 Model validation 

  To check and demonstrate the ability of the current model in reaching the high 

frequency range, a uniform simply-supported beam is first chosen for the comparative 

study, due to the existence of the exact solutions. Simulation parameters used are 

given in Table 1.  

Table 1 Parameters for the simply supported uniform beam 

Geometrical parameters Material parameters 

L=0.72m E=210GPa 

h(x)=0.00125m η=0.005 

b=0.01m ρ=7800kg/m3 
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Figure 3 Comparison of modal parameters of a uniform beam from exact and current 

solutions (a) natural frequencies; (b) relative error with representative mode shapes 

In the current model, the uniform beam can be obtained by setting the thickness 

profile function h(x) as a constant. Simply-supported boundary condition is realized 

by setting the spring stiffness into zero or infinity, accordingly. Plotted in Fig. 3 is the 

comparison between the modal parameters calculated from the current model and the 

analytical results, in which the first 1000 modes are considered. Fig. 3(a) shows a nice 

agreement between the two sets of results. Quantitatively, the relative error in terms of 

natural frequencies and representative mode shapes are given in Fig. 3(b). Overall 

speaking, the accuracy of the model and its ability in reaching very high-order modes 

are deemed satisfactory.  

To demonstrate the properties of the series expansion Eq. (16), various truncation 

terms are chosen for the calculation of the frequency response curve of the beam 

displacement and the shear force, respectively. In the numerical simulations, a unit 

point force is applied on the beam at xf =0.15m, and the observing response point is at 

x=0.65m. Shown in Fig. 4 is the acceleration curves computed using various 

truncation terms, alongside the results from the analytic solution. It can be observed 

that the current model rapidly converges to the analytic solution with the increase of 

the truncated number M, whose value is to be determined depending on the frequency 

to be reached. 
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Figure 4 Convergence of vibration acceleration frequency response at x=0.65m under various 

truncation numbers 

  The calculation of structural intensity requires the higher order spatial differentials. 

It is therefore surmised that more terms in the truncated series would be required to 

obtain an accurate evaluation of the internal forces. To demonstrate this, the shear 

force at x=0.65m is calculated using different truncation terms, as shown in Fig. 5. 

Comparing with Fig. 4, it can be found that, for the internal shear force calculation, 

tiny difference with the analytic solution exists at those frequencies corresponding to 

the system resonant resonances. With the further increase of the truncated number to 

M=50, this difference reduces to a trivial level, as compared with the analytic 

solution.  

 

Figure 5 Frequency response of internal shear force at x=0.65m predicted using various 

truncated numbers 
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the present model, the ABH beam can be obtained by substituting the Fourier 

expansion coefficients of the ABH thickness variation profile into the solution 

framework. The cantilever conditions can be achieved by setting the spring restraining 

stiffness into infinity on x=0, and those into zero on x=L, respectively.  

 

Table 2 Simulation model parameters of a cantilever ABH beam 

Geometrical parameters Material parameters 

=0.5m-1 Eb=210Gpa 

m=2 ρb=7800kg/m3 

hb=0.00125m ηb=0.005 

xb=0.05m Ed=5Gpa 

L=0.09m ρd=950kg/m3 

Ltotal=0.1m 

ho 

ηd=0.3 

h0=0.0001m  

   

Tabulated in Table 3 is the comparison of the first forty modal frequencies of the 

ABH beam obtained from the current model and a Finite Element model in COMSOL 

Multiphysics. In order to capture the dynamic behavior more accurately in COMSOL, 

a refined model with a mesh size of 910-5m is employed. Further decrease of mesh 

size would not generate noticeable variations in the predicted results. The current 

model uses M=180 due to the increasing complexity of the ABH taper. The 

comparison in Table 3 shows that the current model can give very accurate prediction 

of the modal parameters as compared with those from FEM, even at very higher 

frequencies.  

 

Table 3 Comparison of natural frequencies of ABH beam calculated from current model and 

FEM 

Mode 

order 

Current 

(Hz) 

FEM 

(Hz) 

Error 

(%) 

Mode 

order 

Current 

(Hz) 

FEM 

(Hz) 

Error 

(%) 

1 433.22 432.91 0.0716 21 146267.3 146270 -0.0018 

2 1664.1 1669.5 -0.3235 22 160688.1 160690 -0.0012 

3 2981.4 2972.8 0.2893 23 175984.7 175980 0.0027 
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Figure 6 Comparison of vibration acceleration response of ABH beam calculated from the 

current model and FEM in COMSOL 
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the figure. It can be observed that both the trend and the magnitude of vibration 
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to the structural modes of the ABH beam. When frequency increases, the expected 

ABH effect exhibits more clearly in terms of wave compression and amplitude 

increase towards the tip of the beam. 

 

3.2 Power flow and structural intensity of an ABH beam without damping layers 

The total input power can be estimated from the applied force amplitude and the 

point mobility at the excitation position xf=0.02m. Two representative observing 

points are also chosen for the computation of transfer power flow, for which one 

(xm=0.04m) is located in the uniform region of the beam, whilst the other (xm=0.07m) 

in the ABH region. Fig. 7 presents the variation of the total input power and power 

flow at the two observing points. It can be observed that, dominated by the resonant 

peaks of the structure, the transfer power flow is systematically smaller than the input 

component. In the entire frequency range, due to the energy separation at the 

excitation point and the dissipation caused by the structural damping, the further away 

from the excitation source is, the lower the transfer power flow across that location is. 

At certain excitation frequency, e.g. 23200Hz, the transfer power flow decreases 

significantly. This observation is consistent with that made in [40] when a loss of the 

ABH was observed. From the viewpoint of power flow, it is clear that there is little 

energy transfer across that location at such a frequency, and the vibration energy 

mainly concentrates within the uniform part of the ABH beam delimitated by the 

left-side beam boundary and the excitation point. 

 

Figure 7 Frequency response of the total input and transfer power flow in ABH beam 
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structure 

  In order to better understand the energy transport process and its underlying 

mechanism associated with the ABH effect, the structural intensity distribution across 

the entire beam is examined for some representative modal frequencies, namely 

f4=5072Hz, f7=15564Hz and f11=39070Hz, as shown in Fig. 8. In the sub-plots, the 

positive and negative values of the structural intensity denote the power flow to the 

right and left directions across each field point, respectively. To eliminate the effect of 

the total input power amplitude, which is frequency dependent, the normalized 

structural intensity is utilized, by normalizing the structural intensity to the total input 

power. In Fig. 8(a), the excitation position clearly separates two different zones with 

positive and negative intensity values, in accordance with two opposite energy flow 

directions. It is clear that the energy flows into the structure from the excitation 

position and spreads over to both sides of the beam, and the structural intensity 

gradually approaches to zero at the two ends. Compared with the left part, the 

vibrational power mainly flows to the right part into the ABH region. With the 

increase of the distance from the excitation position, there is a decreasing trend for the 

structural intensity, along with an oscillation of the decreasing speed during this 

process. Note the spatial gradient of the structural intensity, namely the divergence, 

actually represents the strength of the energy dissipation. Therefore, the 

afore-observed changes indicate that energy is dissipated along the beam, which is 

accentuated when approaching the ABH tip. With the increase of frequency, at 

15564Hz and 39070Hz, a relatively uniform gradient of structural intensity 

distribution can be observed (Fig. 8(b) and (c)). This suggests that the vibrational 

energy is dissipated more uniformly along the beam structure due to its structural 

damping at high frequencies. Note that in the above simulations, only internal 

structural damping is included without any damping layer. In a sense, although the 

energy focalization is achieved, dissipation at the tip of the beam is still not enough. 

Therefore, the totality of the ABH effect cannot be materialized in the present 

scenario. 
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Figure 8 Normalized structural intensity distribution in ABH beam under resonant excitation 

frequencies: (a) 5072Hz; (b) 15564Hz; (c) 39070Hz 
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termination when frequency is high enough.   

 

Figure 9 Normalized power components due to the shear force and bending moment at two 

representative frequencies: (a)5072Hz; (b)39070Hz 

 

Figure10 Distribution of structural intensity and vibration displacement across the beam at 

ABH-failed frequency: (a) structural intensity; (b) vibration displacement 
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in mind, the same beam as the one used above but with additional damping layers is 

investigated. The same group of parameters as those presented in Table 2 is used. 

Damping layers (hd=0.0001m) are bonded over the ABH region from xd1=0.07m to 

xd2=0.09m. Note the model considers the full coupling of the layers, albeit very thin, 

with the host beam. For the energy transmission study, however, analysis is only 

focused on the part related to the host beam, although the energy flows into the 

damping layer part is also inherently calculated. Plotted in Fig. 11 is the comparison 

of the input power flow of the ABH beam with and without damping layers. It can be 

observed that the introduction of the damping layers causes a significant attenuation 

of power input amplitude at various modal frequencies, but a general increase at other 

frequencies.  

 

Figure11. Comparison of input power flow frequency response of ABH beam structure  

with and without damping layers 
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Figure12 Influence of damping layers on the normalized structural intensity distributions of 

ABH beam under excitation frequencies: (a) 5072Hz; (b) 15564Hz; (c) 39070Hz 

  Presented in Fig. 12 is the structural intensity distribution of the ABH beam with 

damping layers at the same three frequencies investigated before, with results denoted 

by a black square. For comparison purpose, the results of the ABH beam without 

damping layers shown in Fig. 8 are also given here again, marked as a red circle. For 

convenience, different regions of the beams are marked as shadowed areas of different 

colors. Generally speaking, a relatively flat structural intensity distribution is observed 

within the uniform portion of the beam (on both sides of the excitation point), 

suggesting a relatively weak energy dissipation inside the structure. The trend persists 

until the entrance of the coating area, starting from which a sudden and rapid decrease 

is produced, testifying an accentuated energy dissipation within this area. At 5072 Hz, 

fluctuations associated with the structural intensity variation can be observed. When 

frequency increases, the overall trends become more uniform and smoother. Different 

from the energy dissipation effect of structural damping shown in Fig. 8, the 

application of the damping layers significantly enhances the ABH effect by making 

the tip region an energy sink, evidenced by the gradient variation of structural 

intensity distribution within the ABH area.  
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Figure 13 Normalized power components due to the shear force and bending moment at two 

representative frequencies of ABH beam with damping layers: (a)5072Hz; (b)39070Hz. 
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trigonometric terms. Owing to the spatial derivative property of the decomposition 

series, internal force/moment terms required for the power flow and structural 

intensity calculations can be achieved through a term-by-term differential operation.  

  Numerical examples are presented to validate the proposed model through 

comparisons with exact solutions and Finite Element results using both uniform and 

ABH beams. Results show that high-order modal parameters can be accurately 

predicted, and a rapid convergence can be achieved in both free and forced vibration 

analyses. For the determination of the internal forces leading to the structural intensity, 

in which up to third order derivative terms of the structural displacement are involved, 

a suitable truncation of the decomposition can guarantee the accuracy of the power 

flow calculation. Using the model, power flow and structural intensity analyses on 

ABH beams without and with damping layers are carried out, leading to the following 

main conclusions. 

(1) For the bare ABH beam without damping layer, vibrational energy, as 

characterized by the structural intensity distribution, diverges from the 

excitation position to the ABH region with fluctuations. Its spatial gradient, 

characterizing the local energy dissipation, shows obvious position-dependent 

characteristics. With the increase of the frequency, the gradient of the structural 

intensity distribution becomes more uniform, suggesting that the energy 

dissipation takes place across the entire beam due to the structural damping, 

with observable yet limited ABH effect at the tip area. 

(2) With the damping layers covering the tip part of the ABH beam, ABH shows its 

effect in multiple aspects. First, a global increase in the normalized structural 

intensity is observed as compared with its counterpart without damping layers. 

Second, the structural intensity distribution shows rather uniform distribution 

before the coated area, after which a sudden and drastic decrease is observed, 

more obviously when frequency increases. Both observations confirm the fact 

that the presence of the damping layers enhances the ABH effect in making the 

tip area as an energy sink. 
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(3) Energy components associated with the internal shear force and the bending 

moment in the ABH beam commute to each other and gradually take equal part 

when approaching the ABH tip and when frequency increases. This 

phenomenon becomes more obvious with the addition of the damping layers in 

ABH region, making the ABH tip a quasi-anechoic termination with behaviors 

analogues to an infinite beam. 

This work establishes a semi-analytical model for the power flow analyses of 

elastically restrained ABH beams for the first time, which can be used for energy 

transmission mechanism study and further optimal design of ABH beam structures. 

The special feature of the model in dealing with arbitrary thickness variation of the 

beam will further be exploited to maximize the ABH-specific effects in future 

applications.  
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APPENDIX  

Formulas for M, K, and F: 

beam dampM M M= +
 

beam dampK K K= +
 

5~1=i , 5~2=j , 1+= ms , 






=+
=

1,1

1,1'

i

im
t , == ~0'mm  

For the beam part, the M and K matrices are expressed as follows. When it comes 

to the damping layer part, the M and K matrices are similar, via making the upper and 

lower limits of the integral as xd2 and xd1, instead of L and 0 and using material 
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parameters of the damping layers accordingly. 
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For illustrating the variations of energy transfer behavior due to rotating motion, the 

normalized structural intensity flows through points x1=0.18(from the uniform part 

near driving point), x2=0.24m(from the uniform part near junction point) and 

x3=0.3m(from the ABH part) with rotating speed varying from η=0 to η=20 have been 

calculated and displayed in Figure 8. 
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It can be observed easily, as shown in Figure 8, that the energy decreases step by 

step when it transports through the three points x1, x2 and x3, caused the energy 

dissipated by the structural damping. In the frequency domain, however, with the 

rotating speed growing up, the entire structural intensity response will move to the 

higher frequency. Meanwhile, the cut-on frequency will rise, when the rotating speed 

increases. 

 

Figure 9 Variation of normalized Structural intensity at (a) x1=0.18m; (b) x2=0.24m; (c) x=0.30m 

with the rotating speed raising  

 

The structural intensity distributions in the frequency domain under different 

rotating parameters have been displayed in Figure 9, with the force applied at x=0.1m. 

It can be indicated obviously that the rotating motion will enlarge the cut-on 

frequency and the efficiency ABH frequency band will shrink within 10 kHz.  
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