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Abstract: 

Interfaces in bi-materials such as film-substrate systems are often subjected to shear stress due to 

the distinct deformation responses of two bonded materials to the external stimuli such as mechanical 

loading, change of temperature or humidity, or variation of internal structure induced by for example 

phase transformation. The distribution of such shear stress over the interface normally exhibits high 

concentration, which tends to initiate crack and evoke interface delamination. In such a crack 

propagation-mediated process of failure, the load-carrying capacity of interface has not been fully 

exerted as most of the interface bears little stress. To enhance the interface’s resistance to delamination 

in bi-materials, homogenizing interfacial shear stress becomes a matter of necessity. In this paper, we 

propose to suppress the stress concentration on the interface by adopting films with gradient thickness. 

This strategy is illustrated through two typical examples of bi-material: a) a continuous film bonded 

on a disk-like substrate, and b) a discrete island film on a half-space substrate. For each case, theoretical 

solution to the optimal gradient film thickness is obtained, followed by computational and 

experimental validations. The results of this paper are believed to be of great and universal value to 

the enhancement of resistance to interfacial delamination in bi-materials.  
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1. Introduction 

 

Fig. 1. (a) Ceramic thermal barrier coating delaminated from superalloy substrate after thermal 

cycles (Adapted with permission from Vaßen et al., 2009. Copyright 2009, Springer Nature). (b) Si-

based electrode film of lithium-ion battery detached from the current collector (copper foil) after 

lithiation/delithiation cycles. 

 

Bi-materials are broadly adopted in nature and engineering due to their ability to take advantage 

of the merits of individual constituents and to minimize their weaknesses. Different from their 

monolithic counterparts, bi-materials contain two materials with distinct properties. When subjected 

to change of external environment such as temperature and humidity or variation of internal structures 

due to, for example, phase transformation, the individual components may exhibit different extents of 

volume change, resulting in shear stress on the interface between them (Brun and Singh, 1988). 

Typically, such shear stress does not distribute uniformly over the interface. Instead, high stress 

concentration exists at the edge of interface (Akisanya and Fleck, 1997; Hein and Erdogan, 1971; Rao, 

1971), where interfacial crack is apt to occur, resulting in crack propagation and subsequent interface 

delamination. Fig. 1(a) shows a thermal barrier coating delaminated from substrate after multiple 

thermal cycles (Vaßen et al., 2009) and Fig. 1(b) displays a Si-based anode film in lithium-ion battery 

detached from current collector after many charge-discharge cycles (Guo et al., 2019). The advent of 

such interfacial failure directly impairs the functionalities of the bi-material systems. Prevention of the 

interface delamination in bi-material systems entails mitigation of stress concentration on the interface. 

Over the past few decades, a lot of efforts have been devoted to the study on interfacial stress in 
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bi-materials, yielding various strategies for homogenizing interfacial stress. For example, by 

moderating the transition slope of mechanical property across the interface between coating and 

substrate, functionally graded materials (FGM) were found effective in mitigating the stress 

concentration on the interface (Lee and Erdogan, 1994). It was reported that application of FGM could 

not only suppress the detachment of thermal barrier coating from substrate during thermal cycling 

(Wang et al., 2015) but also enhance the resistance of protective coatings to contact damages 

(Jitcharoen et al., 1998; Pender et al., 2001; Suresh et al., 1999). Moreover, materials with designed 

gradient in elasticity were also found to homogenize distribution of adhesion stress between materials 

and therefore enhance the adhesion strength (Yao and Gao, 2010). Recent studies on natural 

biomaterials revealed that gradient interlayers in natural composites play an important role in 

strengthening the interfaces between distinct materials (Bruet et al., 2008; Chen et al., 2012; Yao et al., 

2010). In addition to FGM, size reduction is an alternative approach to mitigating stress concentration 

on interface. For instance, it was found that silicon island would not detach from current collector 

during charge-discharge cycling if its size is reduced to below a critical value around 7-10 µm (Xiao 

et al., 2011). Similar size effect was also found in adhesion mediated by intermolecular interactions 

between two contacting surfaces (Gao et al., 2005; Gao and Yao, 2004). It is noteworthy that the 

interfacial stress in bi-materials caused by strain misfit is shearing-dominant while the adhesion 

between two contacting surfaces is primarily normal traction. For the inter-surface adhesion, our 

previous study indicated that the traction distribution over the contacting region can also be 

homogenized by optimizing the profile shapes of the surfaces (Gao and Yao, 2004; Yao and Gao, 2006). 

Whether such strategy of shape optimization is capable of homogenizing the shear stress caused by 

strain misfit in bi-materials remains an open question. In this paper, theoretical analysis will be carried 

out to explore the feasibility of shape/geometry optimization as a novel strategy to homogenize the 

interfacial shear stress in bi-materials. Two sorts of bi-material systems will be considered, including 

continuous film on disk-like substrate and island film on half-space substrate. Our objective is to find 
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the optimal design of the film thickness in each case, whereby the shear stress induced by strain misfit 

between the film and substrate, if developed, is uniformly distributed over the whole interface. 

2. Theoretical modelling 

2.1 Continuous film on disk-like substrate 

We first consider a bi-material consisting of a continuous thin-film coating perfectly bonded on a 

disk-like substrate with radius R and thickness 𝑡s, as schematically shown in Fig. 2(a). The thickness 

of the film, which may not necessarily be uniform, is to be determined to achieve such an optimal 

scenario that uniform shear stress (𝜏de) is developed over the interface upon strain misfit (𝜀mis) in 

between them. In other words, if such optimal thickness profile of the film, designated as 𝑡f(𝑟), is 

found and adopted, the shear stress on the interface should be uniform and equal to 𝜏de. Determination 

of 𝑡f(𝑟) can be made based on the equilibrium conditions and deformation compatibility between the 

film and substrate, as illustrated below. Such reverse approach for problem solving will also be applied 

to find the optimal thickness profile for other bi-material configurations.  

Fig. 2(b) and (c) show the free body diagrams of infinitesimal elements in the substrate and film, 

respectively. For the substrate, equilibrium condition along the radial direction requires 
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where 𝜎𝑟
(s)  and 𝜎𝜃

(s)  denote the normal stresses along the radial and circumferential directions, 

respectively. In Eq. (1), variables with super- or subscript ‘s’ pertain to the substrate. 
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Fig. 2. (a) Schematics of a bi-material consisting of a circular film on a disk-like substrate. The 

nonuniform thickness of the film is to be determined so that the interfacial shear stress induced by 

strain misfit, if available, is uniform and equal to 𝜏de. Here, the direction of the shear stress plotted is 

based on the assumption that 𝜀f0 > 𝜀s0. If 𝜀f0 < 𝜀s0, the direction of the shear stress should be opposite 

or 𝜏de < 0. (b, c) Free body diagrams of infinitesimal elements in the substrate and film, respectively. 

 

For an axisymmetric problem, the normal strains in the substrate can be expressed in terms of 

displacement as 
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where 𝑢𝑟
(s) denotes the radial displacement of the substrate. Eq. (2) implies an important correlation 

between 𝜀𝑟
(s) and 𝜀𝜃

(s), namely 
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The total strain of the substrate contains two parts. One is the intrinsic, equiaxed strain (𝜀s0) caused by 

volume change due to factors such as thermal expansion, phase transformation or moisture absorption. 

The other is the strain caused by stress applied on it. This part of strain can be calculated by Hooke’s 

law if the materials are elastic as we assume here. Therefore, strains of the substrate in the radial and 

circumferential directions are given by 

 s0
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where 𝐸s and 𝜈s stand for the Young’s modulus and Poisson’s ratio of the substrate, respectively. In 

Eq. (4), the normal stress along z direction is neglected due to the thin thickness and free surface of 

the substrate. Rearrangement of Eq. (4) yields the stresses in terms of strains as 
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Substituting Eq. (3) into Eq. (5) to eliminate 𝜀𝑟
(s) leads to 
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Inserting Eq. (6) into Eq. (1), the equilibrium equation can be rewritten in terms of circumferential 

strain 𝜀𝜃
(s) as  
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Solving Eq. (7) for 𝜀𝜃
(s) yields 

 1

ss

2

sde)s(

3

)1(
Cr

tE
+

−
−=


    

where constant C1, according to Eq. (6) and boundary condition of 𝜎𝑟
(s)

|𝑟=𝑅 = 0, is determined as 

𝐶1 = 𝜀s0 +
(2+𝜈s)(1−𝜈s)𝜏de𝑅

3𝐸s𝑡s
. Consequently, the circumferential strain 𝜀𝜃

(s) is given by 
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where 𝑘 ≡ −
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.  

On the other hand, for the thin film, force equilibrium along the radial direction (see Fig. 2(c) for 

the free body diagram) implies 
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where 𝜎𝑟
(f)  and 𝜎𝜃

(f)  represent the normal stresses along the radial and circumferential directions 

respectively. In Eq. (9), variables with super- or subscript ‘f’ pertain to the film. The opposite signs of 

𝜏de in Eqs. (9) and (1) are due to the opposite direction of the shear stresses applied on the film and 

substrate.  

Likewise, the normal stresses in the film can also be expressed in terms of circumferential strain 

𝜀𝜃
(f) as 
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where 𝐸f and 𝜈f represent the Young’s modulus and Poisson’s ratio of the film respectively, and 𝜀f0 

is the intrinsic strain of the film caused by volume change. Assume that the film and substrate are 

perfectly bonded during deformation. No slip between them implies that 𝑢𝑟
(f)

= 𝑢𝑟
(s) or 𝜀𝜃

(f)
= 𝜀𝜃

(s) 

on the interface. Substituting 𝜀𝜃
(f)

= 𝜀𝜃
(s)

= 𝑘 ⋅ 𝑟 + 𝑏 + 𝜀s0 into Eq. (10), we have 
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Defining strain misfit between the film and substrate as 𝜀mis ≡ 𝜀f0 − 𝜀s0 , Eq. (11) thus can be 

rewritten as 
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From Eq. (12), it is easy to see that the radial normal stress 𝜎𝑟
(f) in the thin film increases linearly from 

the center to the edge. This distribution of the normal stress is quite different from the uniform-

thickness case, in which the radial normal stress is almost uniform along the radial direction. For the 

gradient thin film, therefore, failure such as fracture or buckling is prone to happen near the edge. 

Inserting Eq. (12) into Eq. (9), the equilibrium equation becomes 
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Solving Eq. (13) for 𝑡f(𝑟) gives rise to 
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where C2 is a constant to be determined. Stress-free condition at the edge of the film requires 
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It can be demonstrated that the condition of Eq. (14) is unrealistic and cannot be satisfied (see Appendix 

A). Alternatively, a weak-form boundary condition is thus proposed that the radial force per unit length 

𝜎𝑟
(f)

𝑡f or 𝑡f, rather than stress 𝜎𝑟
(f), vanishes at the edge r=R. In doing so, constant C2 is determined 

as  
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Eventually, the analytical solution to the optimal thickness profile is given by 
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By taking 𝐸f = 100 GPa , 𝜈f = 0.3 , 𝐸s = 200 GPa , 𝜈s = 0.25 , 𝑅 = 10 mm , 𝑡s = 10 μm , 𝜀mis =
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1% and 𝜏de = 1 MPa, the thickness profile of the nonuniform film given above is plotted in Fig. 3(a), 

which appears like a cone. 

Finite element analysis was carried out to examine the shear stress developed on the interface 

between a film with thickness given by Eq. (15) and a disk-like substrate. In our simulation, both the 

film and substrate were depicted as linear elastic materials, while the interface between them was 

modelled by zero-thickness cohesive element. The intrinsic strain was equivalently implemented by 

thermal expansion with expansion coefficient misfit between the film and substrate taken as 𝜀mis. The 

simulated results at different levels of strain misfit, which were implemented by applying different 

temperature increments, are displayed in Fig. 3(b). As expected, the shear stress, except that in the 

vicinity of the central symmetric point, displays a uniform distribution over the interface. The 

magnitude of the uniform shear stress is linearly proportional to the applied strain misfit with slope 

being 𝜏de/𝜀mis, which stands for the shear stress developed by unit strain misfit. 

 

Fig. 3. (a) Profile of the optimal gradient film thickness. (b) The simulated shear stress field on the 

interface between the thin film and substrate at different degrees of strain misfit. Parameters adopted: 

𝐸f = 100 GPa , 𝜈f = 0.3 , 𝐸s = 200 GPa , 𝜈s = 0.25 , 𝑅 = 10 mm ,  𝑡s = 10 μm , 𝜀mis = 1%  and 

𝜏de = 1 MPa. The stiffness of the cohesive interface is taken as 100 GPa/mm.  

 

It is worth pointing out that in the above analysis, the bending effect has not been taken into 

account since in many cases of bi-material, such as the electrode-current collector system in lithium-

ion batteries, the out-of-plane deformation is firmly constrained. But for free-standing bi-materials, the 

strain misfit would result in curved configuration which in return affects the interfacial shear stress 
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distribution. In that case, the above solution to the optimal gradient thickness for homogenizing the 

shear stress may not be applicable anymore. Separate study is needed to shed light on the effect of 

bending on the interfacial shear stress distribution.  

 

2.2 Island film on half-space substrate 

Above solution to the optimal thickness profile applies to bi-material systems in which the film 

continuously and fully covers the substrate. In some circumstances, however, film and substrate may 

have quite distinct sizes in plane and/or thickness. Examples include discontinuous wear-resistant 

coating on cutting tools (Antonyuk et al., 2007; Ramachandra and Ovaert, 2000; Soroka et al., 2011; 

Volosova et al., 2016) and silicon islands on current collector in electrodes of lithium-ion batteries 

(Haftbaradaran et al., 2012a; Haftbaradaran et al., 2012b; Soni et al., 2011; Xiao et al., 2011). To extend 

our conception of stress homogenization to these cases, we keep on exploring the optimal thickness 

profile for an island film attached on a half-space substrate, as schematically shown in Fig. 4(a). 

Similarly, we designate the optimal thickness profile of the film as 𝑡f(𝑟), whereby uniform shear stress 

𝜏de  is developed over the interface when strain misfit of 𝜀mis  takes place between the film and 

substrate. The determination of function 𝑡f(𝑟) is made as follows. 

For the half-space substrate, when a uniform shear stress with magnitude of 𝜏de is applied over a 

circular region of radius R (see Fig. 4(b)), the resulting radial displacement in this region is given by 

(Johnson, 1987) 
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where 𝐸s and 𝜈s represent the Young’s modulus and Poisson’s ratio of the substrate, respectively. 

Here, super- and subscript ‘s’ pertain to the substrate. The corresponding circumferential strain is given 

by 
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Thus, the total circumferential strain, including the intrinsic portion, can be expressed as 
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Fig. 4. (a) Schematics of a bi-material consisting of a circular island film on a half-space substrate. 

The thickness of the film is to be optimized so that the interfacial shear stress induced by strain misfit, 

if available, is uniform and equal to 𝜏de as shown in (b).   

 

For the circular island film, Eqs. (9) and (10) still apply. We therefore have 
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Assuming that the island film and substrate are perfectly bonded during deformation, we have 𝜀𝜃
(f)
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+ 𝜀s0. Substitution of this relationship into Eq. (18) to eliminate 𝜀𝜃
(f) gives 
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where 𝜀mis ≡ 𝜀f0 − 𝜀s0. Substituting Eq. (19) into (17) yields 
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The mathematical complexity of Eq. (20) implies the difficulty of finding the analytical solution to the 

function 𝑡f(𝑟). Finite difference method was adopted to solve the equation numerically. As the stress-

free condition that 𝜎𝑟
(f)

= 0 at the edge (r=R) can be proved unrealistic (see Appendix B), alternative 

weak-form boundary condition of 𝜎𝑟
(f)

𝑡f = 0 or 𝑡f = 0 at r=R is adopted to determine the profile 

function  𝑡f(𝑟) . If we take 𝐸f = 100 GPa , 𝜈f = 0.3 , 𝐸s = 200 GPa , 𝜈s = 0.25 , 𝑅 = 10 mm , 

𝜀mis = 1% and 𝜏de = 1 MPa, the calculated solution to the thickness profile of the optimal island 

film is displayed in Fig. 5(a). Likewise, finite element analysis was carried out to examine the shear 

stress distribution over the interface between an island film with thickness profile shown in Fig. 5(a) 

and a substrate of sufficiently large size. As shown in Fig. 5(b), the shear stress on the interface, except 

that in the area very close to the symmetric center, keeps uniform under different levels of strain misfit 

with magnitude growing at a rate of 𝜏de/𝜀mis . Therefore, the validity of the numerical result is 

confirmed.  

 

Fig. 5. (a) Profile of the optimal nonuniform island film thickness. (b) The simulated shear stress field 

on the interface between the thin film and substrate at different degrees of strain misfit. Parameters 

adopted: 𝐸f = 100 GPa , 𝜈f = 0.3 , 𝐸s = 200 GPa , 𝜈s = 0.25 , 𝑅 = 10 mm , 𝜀mis = 1%  and 𝜏de =

1 MPa. The stiffness of the cohesive interface is taken as 100 GPa/mm.  

 

It is observed from Fig. 5(a) that 𝑡f(𝑟)  is very close to a linear function, implying the possible 
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presence of a linear approximation of 𝑡f(𝑟) . It can be demonstrated that if the nondimensional 

parameter 𝜑 =
𝐸s𝜀mis(1+𝜈f)

𝜏de(1−𝜈s
2)

  is large enough, the thickness profile can be approximated by a linear 

function as (see Appendix C) 

 )(
)1(

)(
fmis

fde
f rR

E
rt −

−





, (21) 

which describes a cone with included angle of 2arctan
𝐸f𝜀mis

𝜏de(1−𝜈f)
 . It is worth noting that the ratio 

𝜏de/𝜀mis in Eq. (21) also represents the interfacial shear stress developed by unit strain misfit. The 

validity of this approximation and its dependence on the nondimensional parameter 𝜑 were examined 

by finite element analysis. Fig. 6 displays the linear approximations of the optimal thickness profiles 

(namely Eq. (21)) for cases with different 𝜑 and the corresponding calculated shear stress distribution 

on the interface under strain misfit of 𝜀mis. As can be observed, if 𝜑 is on the order of magnitude of 

103 or above, the stress field, except that in the vicinity of the central symmetric point, is uniform 

throughout the interface. When 𝜑 is on the order of magnitude of 102 or below, the stress field exhibits 

nonuniform distribution, implying the significant deviation of Eq. (21) from the actual solution to the 

optimal thickness.  

 

Fig. 6. (a) Linear approximations of the optimal thickness profiles of island film for different 𝜑. (b) 

The simulated shear stress field on the interface between the island film and substrate under the strain 

misfit 𝜀mis. Here, 𝐸f = 100 GPa , 𝜈f = 0.3 , 𝐸s = 200 GPa , 𝜈s = 0.25 ,  𝑅 = 10 mm , 𝜀mis = 1% 

and 𝜏de = 0.277, 2.773, 27.733, or 277.333 MPa. The stiffness of cohesive interface is taken as 100 
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GPa/mm.  

 

2.3 Solutions to plane-strain configurations 

In addition to the above axisymmetric configurations of bi-material, thin film strips bonded on 

substrate have also been widely used. Typical examples include metal conduction lines in 

microelectronic devices (Yu and Hutchinson, 2003) and optical waveguides in photonic devices (Yu 

and Hutchinson, 2003). To tackle the stress concentration problem in these configurations, we further 

extend our study to the configuration of a thin film strip attached on a substrate (see Table.1), where 

plane-strain condition prevails. Similarly, we aim to find the optimal thickness profile 𝑡f(𝑥) for the 

film strips, whereby a uniform shear stress field 𝜏de will be developed on the interface when strain 

misfit 𝜀mis takes place between them. 

The approach to solving 𝑡f(𝑥) for the plane-strain configurations is similar to that applied in 

the preceding axisymmetric cases. Firstly, we need to determine the strain field of the substrate 𝜀𝑥
(s) 

which can be obtained based on equilibrium conditions or by referring to existing solutions in contact 

mechanics (Johnson, 1987). Then with the assumption that film and substrate are perfectly bonded, the 

strain field in the film (𝜀𝑥
(f)) and substrate (𝜀𝑥

(s)) should be equal. Knowing the strain field in the film 

𝜀𝑥
(f), the film thickness 𝑡f(𝑥) can be determined based on equilibrium conditions. This method was 

repeatedly used here to determine the optimal film thickness under different plane-strain configurations.  

Table 1 lists the analytical solutions to 𝑡f(𝑥)  (in normalized form) for different plane-strain 

configurations. Case (a) describes a bi-material consisting of a strip film and substrate which have 

comparable sizes in plane and thickness. The film and substrate have different intrinsic deformation. 

In case (b), no intrinsic deformation occurs in the film, while the substrate deforms along transverse 

direction under uniaxial loading. Both cases (c) and (d) depict a strip film attached on a half-space 

substrate. In case (c), the film and half-space substrate have different intrinsic deformation, while in 

case (d) only the substrate deforms due to the external mechanical loading along the transverse 

direction. For each case, the theoretical solution to the optimal thickness of the film was well verified 
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via finite element simulation, as shown in Table 1. It is worth pointing out that the solutions for cases 

(c) and (d) provided in Table.1 are the asymptotic solutions under conditions as indicated. 

 

 

 

 

Table 1. The optimal film thickness for different plane-strain configurations 
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3. Experimental validation 

The preceding section gives the theoretical solutions to the optimal film thickness, whereby the 

shear stress field on the interface of bi-material is expected to be homogenized. In this section, 

experimental validation of this strategy was carried out. For the sake of simplicity, we choose the 
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plane-strain configuration displayed in Table.1(b) for illustration, namely, a substrate expands by strain 

𝜀s0 along x direction under a tensile loading 𝜎t. Based on Hooke’s law and plane-strain condition, it 

is easy to demonstrate that 𝜀s0 =
𝜎t(1−𝜈s

2)

𝐸s
. Thus, the optimal film thickness can be rewritten in terms 

of 𝜎t as 

 ( )
1)(

)1()1(

dets

f
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ss
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fs
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−−
=


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axt

EEt
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To verify this solution to the optimal thickness, acrylonitrile butadiene styrene (ABS) and Al 6061-T6 

were employed to produce film-substrate bi-materials. Taking 𝐸f = 2.2 GPa, 𝜈f = 0.35 (Ingrole et 

al., 2017), and 𝐸s = 68.9 GPa , 𝜈s = 0.33  (Kurniawan and Ko, 2013), |𝜎t 𝜏de| = 300⁄  , 𝑎 =

30 mm and 𝑡s = 5 mm, the optimal film thickness can be calculated as displayed in Fig. 7(a). The 

gradient films were manufactured by 3D printing (µPrint SE Plus, Stratasys) using ABS (ABSplus-

P430, Stratasys) and adhered onto the substrate surface with all-purpose superglue (Aron Alpha), as 

schematically shown in Fig. 7(b). For comparison, uniform films were also prepared with thickness 

profile shown in Fig. 7(a). Since direct measurement of stress field is challenging, the shear strain field, 

which is believed proportional to the shear stress filed for elastic deformation, was measured instead 

by using Digital Image Correlation technology (DIC) (Pan et al., 2009). For this purpose, before the 

experiment the side surfaces to be tracked were spray-pained with uniform random speckle pattern as 

schematically shown in Fig. 7(b). Tensile loading was then applied on the substrate with a universal 

testing machine (GP-TS2000M, Gopoint) at a crosshead speed of 2 mm/min. During deformation, 

digital images of speckle pattern were captured every 10 s using a digital camera (Sony ) with 

resolution of 31-33 pixels/mm. Based on the obtained images, DIC analysis was carried out with Ncorr 

(Blaber et al., 2015), an open-source subset-based 2D DIC software package, to gain the shear strain 

field. 

Fig. 7(c) shows the obtained shear strain field of the side surface under tensile loading of t = 

173.3 MPa, from which the shear strain along the interface was extracted and displayed in Fig. 7(d). 
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As expected, in the case with gradient film, the shear strain field developed along the bonded interface 

is almost uniform despite of some fluctuations. In contrast, in the control case with uniform-thickness 

film, severe strain concentration occurred at interface edge. It is confirmed that gradient film thickness 

in bi-materials could effectively homogenize the shear stress on the interface, and consequently 

improve their resistance to interfacial crack initiation. As the shear stress along the interface is 

homogenized, the whole interface, upon sufficiently high loading, would fail simultaneously if the 

interfacial strength is uniform everywhere. In reality, however, interfacial crack would be firstly 

initiated at the weakest point on the interface. Once the crack is initiated, the distribution of shear stress 

along the interface is changed and becomes non-uniform. After that, gradient thickness would not be 

too much different from a uniform counterpart in resisting crack propagation. 

 

 

Fig. 7. (a) Thickness profiles of the optimal gradient film and uniform control. (b) Schematics of the 

experimental setups (units: mm). (c) Shear strain field (𝜀𝑥𝑦) on the side surface under a tensile loading 

𝜎t = 173.3 MPa , which was obtained by DIC analysis using software Nccor with the subset size, 

subset spacing and strain radius being taken as 40 pixels, 1 pixel and 15 pixels, respectively. (d) Shear 
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strain (𝜀𝑥𝑦 ) distribution along the interface between film and substrate under tensile loading 𝜎t =

173.3 MPa. 

4. Conclusion and discussion 

In summary, in this paper we proposed to homogenize interfacial shear stress in bi-materials 

caused by strain misfit via thickness gradient. The solutions to the gradient thickness were obtained 

and the effectiveness of this strategy was demonstrated based on two typical bi-material systems: 

continuous film on disk-like substrate and island film on half-space substrate. The results in this paper 

are believed to be of great value to the enhancement of resistance to interface delamination, either 

instant or fatigue-caused, in a variety of thin films such as thermal barrier coating (Choi et al., 1999), 

wear-resistant coating (Qin et al., 2009), electrode film on current collector in batteries (Basu et al., 

2018) and discontinuous islands coating on biomedical devices (Schaldach and Kranz, 2004). In 

practice, however, there might be some occasions in which the film thickness has to be uniform due to 

some specific functional requirement. Under such kind of circumstances, adopting gradient stiffness 

(i.e., elastic modulus) would be an alternative strategy, because it is easy to see from our theoretical 

solutions above that gradient stiffness actually plays an equivalent role in homogenizing the interfacial 

shear stress distribution as gradient thickness does. Different from the traditional FGMs with stiffness 

gradient along the thickness direction, here stiffness varies in an appropriate manner along the direction 

parallel to the interface. Implementation of such gradient stiffness, however, is more challenging in 

manufacturing compared to that of the gradient thickness. 

Another potential contribution of our results may lie in the measurement of shear strength of 

interfaces between coating and substrate or fiber and matrix in composites. Traditionally, shear test 

(Zhu et al., 1999) or pull-out test (Valadez-Gonzalez et al., 1999) is adopted to characterize the shear 

strength which is often taken as the pull-off force divided by the contact area. Such method tends to 

underestimate the shear strength because of the presence of stress concentration on the interface (Era 

et al., 1998; Piggott, 1997). If a uniform shear stress distribution is achieved with the application of 

the proposed strategy of gradient thickness, more accurate measurement of shear strength is expected. 
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However, limitations remain present in our work. First, our analysis assumed that both the film and 

substrate are elastic. This might not be always the case as the mechanical properties of a material may 

change in service as exemplified by the electrode of lithium-ion battery in process of lithiation and 

delithiation (Shenoy et al., 2010). Additionally, in our theoretical analysis for determining the optimal 

gradient thickness of film, the possible buckling of the film caused by compressive stress has not be 

considered. Further investigations are needed to take these issues into account.  
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Appendix A: Discussion on the stress-free boundary condition for continuous film  
For the case of continuous film on disk-like substrate, as the intrinsic strains of the film and 

substrate 𝜀f0  and 𝜀s0  represent their deformation at stress-free state, the interfacial stress should 

affect their deformation in an either positive or negative way, depending on the direction of the 

interfacial stress. Without loss of generality, we assume that 𝜀f0 > 𝜀s0 or 𝜀mis ≡ 𝜀f0 − 𝜀s0 > 0. Such 

strain misfit causes opposite shear tractions on the film and substrate as shown in Fig. 2(a), resulting 

in contracting and expanding additional displacements in the film and substrate, respectively. Since 

𝜀𝜃 = 𝑢𝑟/𝑟, we have 𝜀f0 > 𝜀𝜃
(f)

= 𝜀𝜃
(s)

> 𝜀s0, which implies  𝜀𝜃
(s)

−𝜀s0 < 𝜀f0 − 𝜀s0 = 𝜀mis. Recalling 

Eq. (8), we have 
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which unveils the implicit upper limit of the ratio of 𝜏de/𝜀mis in our design. This limit also exists in 

the case with 𝜀f0 < 𝜀s0. Eq. (A1) implies that 𝜎𝑟
(f)

|𝑟=𝑅 ≠ 0, namely the boundary condition of Eq. 

(14) is unrealistic and can hardly be satisfied. 

Appendix B: Discussion on the stress-free boundary condition for island film 
For the case of island film on half-space substrate, we would examine whether the stress-free 

boundary condition in the film, i.e., 𝜎𝑟
(f)

|𝑟=𝑅 = 0, can be satisfied. We denote 𝜀𝜃̃
(s) as 
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where 𝑓(𝑟̅) =
1

𝑟̅2 ∫
𝜆2[ln(1+√1−𝜆2)−ln𝜆]

√𝑟̅2−𝜆2
d𝜆

𝑟̅

0
, 𝑟̅ = 𝑟 𝑅⁄ ∈ [0,1]. Substituting Eq. (B1) into Eq. (19), we 

have 
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Stress-free boundary condition requires 𝜎𝑟
(f)

|𝑟̅=1 = 0, that is, when 𝑟̅ = 1, 
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Further simplification gives 
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Since 𝑓(𝑟̅ = 1) ≈ 0.416 , 𝑟̅
𝑑𝑓(𝑟̅)

𝑑𝑟̅
|(𝑟̅→1) → −∞  and 

π𝐸s𝜀mis

4𝜏de(1−𝜈s
2)

> 0 , Eq. (B2) cannot be satisfied, 

namely, the stress-free boundary condition of 𝜎𝑟
(f)

= 0 at the edge (r=R) is unrealistic. 

 

Appendix C: Linear approximation of the gradient thickness 

For an island film on half-space substrate, the solution to the optimal gradient film thickness 𝑡f(𝑟) 

shown in Fig. 5(a) seems like a cone, which inspires us to look for the possible linear approximation 

of 𝑡f(𝑟) at least under some proper conditions.  
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Suppose the thickness profile function can be approximated by a linear function as 

 )()(f Rrmrt −=  (C1) 

where R is the radius of the island film and m is the slope to be determined. Substituting Eq. (C1) into 

Eq. (20), we have  
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Inserting Eq. (B1) into Eq. (C2) to eliminate 𝜀𝜃̃
(s) gives 

 




−

−−
=

)(

)1()1(
2

sf

2

fs

rg

EE
m  (C3) 

where 

 ( ) )()1()(34)()1(
π

4
)( f rfrrrfrrfrg −+−++=  ,  (C4) 

 



d

]ln)11[ln(1
)(

0 22

22

2 
−

−−+
=

r

rr
rf , (C5) 

 
)1(

)1(
2

sde

fmiss






−

+


E
.  (C6) 

Numerical integration was adopted to calculate 𝑓(𝑟̅) and 𝑔(𝑟̅) above. Fig. C1 shows the calculated 

variation of 𝑔(𝑟̅) with 𝑟̅. As 𝑟̅ varies from 0 to 1.0, it can be seen that function 𝑔(𝑟̅) takes finite 

value except in the vicinity of 𝑟̅ = 0. Further analysis indicated that as 𝑟̅ → 0, 𝑔(𝑟̅) asymptotically 

approaches 2/𝑟̅  which is also plotted in Fig. C1 for comparison. Considering that the Young’s 

modulus of the substrate (𝐸s) is more than 4-5 orders of magnitude higher than the design shear stress 

(𝜏de) and the strain mismatch (𝜀mis) is around a few percent, the value of 𝜑 in Eq. (C6) should be 

on the order of magnitude of 1000. In most of the region of 𝑟̅ ∈ [0,1] , 𝑔(𝑟̅) ≪ 𝜑  except in the 

vicinity of 𝑟̅ = 0. Therefore, m in Eq. (C3) can be approximated as a constant of 𝑚 ≅ −
𝜏de(1−𝜈f)

𝐸f𝜀mis
. 

Then the thickness profile can be approximated by a linear function as follows 
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Eq. (C7) can be regarded as the approximate solution of 𝑡f(𝑟) as 𝜑 is large enough. The validity of 

this approximate solution was discussed in Section 2.2 for different 𝜑. 

 

Fig. C1. Variation of 𝑔(𝑟̅) with 𝑟̅ in comparison with its asymptotic form of 2/𝑟̅. Here, the 

Poisson’s ratio of the film is taken as 𝜈f = 0.3.  
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