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Abstract

The partition of unity finite element method (PUFEM) is developed and applied to compute the
vibrational response of a Timoshenko beam subject to a uniformly distributed harmonic load-
ing. In the proposed method, classical finite elements are enriched with three types of special
functions: propagating and evanescent wave functions, a Fourier-type series and a polynomial
enrichment. Different formulations are first assessed through comparisons on the frequency re-
sponse functions at a specific point on the beam. The computational performance, in terms of
both accuracy and data reduction, is then illustrated through convergence analyses. It is found
that, by using a very limited number of degrees of freedom, the wave enrichment offers highly
accurate results with a convergence rate which is much higher than other formulations. Evanes-
cent waves and the constant term in the wave basis are also shown to play an important role. In
all cases, the proposed PUFEM formulations clearly outperform classical finite element method
in terms of computational efficiency.

Keywords: Partition of Unity Finite Element Method, Timoshenko beam, Wave propagation,
Lagrange multiplier
PACS:

1. Introduction

The numerical simulation of mechanical waves in the so-called mid-frequency range has
been the subject of intensive research in the past two decades and continues to be a very chal-
lenging topic for many research engineers and applied mathematicians (see [1], [2] and [3]).
This mid-frequency gap in modelling capabilities separates the low frequency range for which
standard Finite Element Method (FEM) are applicable and largely used and the high-frequency
range which is normally dealt with by statistical methods such as the very popular Statistical En-
ergy Analysis (SEA). To better tackle short-wave simulation problems, enriched methods have
been developed in recent decades. These numerical techniques have been tailored to incorporate
a prior knowledge of the propagating waves in the formulation. A rather complete survey on
the topic can be found in a recent review paper [4]. Among these methods the Partition of Unity
Finite Element Method (PUFEM) has the advantage of possessing high similarities with the
classical FEM (see Refs. [5, 6]). It can be easily implemented for numerical analysis using the
existing finite element meshes and simulation codes. The PUFEM has been applied to simulate
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the acoustic and elastic wave propagation (see Refs. [7, 8, 9] and Refs. [10, 11] respectively). In
particular, numerical simulations of acoustic waves propagating in air, porous and poro-elastic
media [12, 13, 14] have also been attempted in our previous work, which constitutes a natural
extension of the method for noise control applications.

Up to now, there are few works on the modelling of vibrations of beams and plates with
the PUFEM. The first paper relating to this topic is probably the static analysis of Timoshenko
beams with elastic supports presented by Babuska in Ref. [15], which shows that shear locking
disappears with PUFEM enrichments, contrary to classical FEM. Vibrational modes of a can-
tilever beam have been studied independantly by Arndt et al. [16, 17] and Shang-Hsu [18] with
an enrichment based on trigonometric sine expansions, hierarchical polynomial functions and
modal expansion (this latter is based on an idea presented by Craig [19]). This type of enrich-
ment, though failing to capture the essential wave characters of the solution, except maybe for
the modal expansion which somehow contains the geometry and material properties of the beam
in the formulation, has the advantage of being frequency-independent thus allowing the use of
standard algebraic modal analysis solvers. Polynomial functions in PUFEM have also been
used to the development of enriched Mindlin plate elements [20] and in this context, the method
shares similarities with p-FEM technique. De Bel et al. [21] used flexural waves propagating
in different directions as the enrichment functions. The originality of the approach is that the
propagation angle is generated iteratively at each node of the PUFEM mesh. However, shear de-
formations and rotary inertia effects are neglected in their analysis. Finally, though the method
does not formally fit in with the PUFEM approach, we can cite the early work of Hashemi et
al. [22] who developed a Dynamic Finite Element for the vibrational analysis of spinning beams,
by including frequency dependent trigonometric shape functions in their formulation.

Motivated by the above analyses, the aim of this paper is to develop and investigate the ap-
plicability of PUFEM to the dynamic analysis of thin vibrating structures. To this end, a simply
supported beam under a distributed harmonic loading is chosen as a benchmark for further de-
velopments involving vibro-acoustic coupling in one and two dimensions. Timoshenko beam
theory is adopted to ensure a correct description of the vibration behaviour at high frequencies,
when the wavelength is comparable to the thickness of the beam. Furthermore, as opposed
to the classical fourth-order wave equation of the Euler-Bernoulli beam whose numerical treat-
ment requires the use of specificC1 elements [17], Timoshenko theory leads to a coupled system
of second order partial differential equations for the translational and rotational displacements
which permits to employ conventional piecewise-continuous Lagrangian finite element shape
functions for the partition of unity. As one of the key ingredients of the method, particular
attention is paid to choosing an appropriate function space for the finite element enrichment,
which should have good approximation properties for the solutions to a given differential equa-
tion [5]. In the present work, exact solutions of an unloaded infinite beam including both the
propagating and evanescent waves [23] are exploited, with the addition of additional terms to
account for the pressure loading. Comparisons are made with classical type of enrichments such
as Fourier-type series and polynomials. Finally, the treatment of the boundary conditions needs
particulate attention. Although classical finite element procedures can be followed for some
particular types of enrichment functions, penalty or Lagrange’s multiplier technique [21, 17] is
adopted to accommodate all types of enrichment functions. Numerical analyses are conducted
with comparisons among different types of enrichment functions, in terms of computational ac-
curacy and data reduction. It is concluded that the wave basis in the PUFEM is the best approach
leading to the best convergence rate.

The paper is organized as follows. After recalling the classical Timoshenko beam theory
as well as its associated variational formulation in Section 2, PUFEM Timoshenko beam ele-
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ments, with three type of enrichments, are constructed and explained in Section 3. In Section
4, classical FEM formulations including linear elements with exact and reduced integration
and an enhanced formulation based on a cubic and quadratic interpolation for the transverse
displacement and the rotation are presented. This should serve as a reference solution and al-
lows to identify, wherever necessary, shear-locking effects. In the last section, performance of
PUFEM elements is shown and compared with classical FEM. In all cases, a reference solution,
is obtained using linear interpolation calculated on a very refined mesh. Convergence curves,
corresponding to h-refinement’, i.e. by reducing the element size, and ‘p-refinement’, i.e. by
increasing the number of enrichment functions, are given and analyzed. The role of evanescent
waves in the PUFEM wave basis is also discussed.

2. Timoshenko beam theory

The flexural vibration of beams is under investigation. Figure 1 presents a schematic repre-
sentation associated with the two main theories dedicated to beams: Euler-Bernoulli and Timo-
shenko theories. For the latter the displacements of the beam are denoted by u(x, z) = zβ(x)

Figure 1: Beam description in the x-z plane.

and w(x, z) = w(x) where β is the total angle of rotation of the section, and w is the displace-
ment of the mid-surface in the z-direction. These two independant variables obey the equations
of motion:

fz + κGSγ,x = ρSẅ, (1)

EIβ,xx − κGSγ = ρIβ̈, (2)

where γ = β + w,x is the shear deformation angle and fz is the distributed load. The material
properties are the Young’s modulus E, the shear modulus G and the density ρ. The geometrical
parameters are the shear correction factor κ = 5/6, the second moment of area I , the cross
section area S and the beam length L. With simply supported boundary conditions, the dis-
placement and the bending moment vanish at the locations of the two supports , i.e. at x = 0, L.
In this case, the associated variational formulation writes∫ L

0

(
δwρSẅ + δβρIβ̈ + δβ,xEIβ,x + δγκGSγ − δwfz

)
dx− δw0λ0 − δwLλL = 0, (3)

where δ(·) donates the virtual quantity and w0 and wL are the displacement at x = 0, L, respec-
tively. In formulation (3), the transverse shear forces appear naturally as Lagrange multipliers
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λ0 and λL. Though it is common to discard these terms by simply choosing δw0 = δwL = 0,
the best way to handle the boundary terms with PUFEM is to weakly enforce the essential
conditions as:

δλ0w0 = δλLwL = 0, ∀(δλ0, δλL). (4)

This has the advantage of preserving the symmetry of the linear sytem and permits to handle
efficiently the coupling conditions between two media (see for instance [9, 12, 13]).

3. Application of the PUFEM

In this work, we only investigate the Timoshenko beam vibration subject to a harmonic
loading at an angular frequency ω and the time-dependent term e−iωt is omitted hereafter. As
done in classical FEM, the beam is partitioned into non-overlapping elements and the degrees
of freedom are interpolated over each elements with nodal unknowns. The key ingredient of the
PUFEM relies on the enrichment of the conventional finite element approximation by including
special functions in order to enhance the convergence of the numerical solution. For an infinite
beam, the two propagating and two evanescent waves characterized by the wavenumbers write
(see Ref. [23] for more details):

kp =

√
ρIω2(1 + E/(κG)) +

√
δ

2EI
, (5)

ke =

√
−ρIω2(1 + E/(κG)) +

√
δ

2EI
, (6)

with δ = (ρIω2)2(1− E/(κG))2 + 4EIρSω2. Each PUFEM element of length le = x2 − x1
is given by the geometric mapping x(ξ) = N1x1 + N2x2 where xi are the nodes and ξ is the
coordinate in the reference frame ξ ∈ [0, 1]. Here, N1 = ξ and N2 = 1 − ξ are the classical
linear shape functions. The transverse displacement and the rotation are then expanded as:

w =
2∑
i=1

Ni(ξ)
N∑
n=1

Ani Ψn
i , (7)

β =
2∑
i=1

Ni(ξ)
N∑
n=1

Bn
i Ψn

i . (8)

For wave enrichment, we consider N = 5 functions Ψn
i defined as:

Ψn
i ∈ {1, cos[kp(x− xi)], sin[kp(x− xi)], cosh[ke(x− xi)], sinh[ke(x− xi))]}, (9)

where the constant term Ψ1
i = 1 has been added in the enrichment in order to capture contribu-

tions of the distributed load, i.e. the particular solutions of the governing equations [24]. Two
other kinds of enrichment are also considered in the present work. The first one is a polynomial
enrichment:

Ψn
i ∈ {1, ηi, η 2

i , η
3
i , η

4
i , . . .} , (10)

where ηi = (x − xi)/le. For N = 2, there are four enrichment terms associated with one
polynomial-enriched element whilst the highest order of the corresponding bases (7) and (8) is
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two. Therefore, these basis functions are linearly dependent since only three polynomial terms
form a complete quadratic basis. The second one is a Fourier-type series

Ψn
i ∈ {1, cos(πηi), sin(πηi), cos(2πηi), sin(2πηi), . . .} . (11)

Note that (i) Fourier and polynomial enrichments can be built with an arbitrary orderN whereas,
by construction, the wave enrichment is necessarily limited to N = 5. (ii) Since the PUFEM
element can contain many wavelengths, the elementary mass and stiffness matrices associated
with the PUFEM expansion (7) and (8) must be constructed using sufficient Gaussian integration
points in order to ensure convergence.

4. Classical FEM

In order to evaluate the PUFEM efficiency in comparisons with classical FEM formula-
tions, two beam finite elements are reminded here: a linear element used as a reference, and an
enhanced element which is also commonly used.

4.1. Linear element

The beam is discretized with linear shape functions:

w =

2∑
i=1

Ai Ni(ξ) and β =

2∑
i=1

Bi Ni(ξ). (12)

The associated elementary stiffness matrix can be evaluated with exact integration method.
However, this formulation over-emphases the effect of shear deformation in comparison with
the bending effect, which would generate shear-locking effects for the cases where the Euler-
Bernoulli or thin beam model is applicable. To tackle the problem, a reduced integration tech-
nique is usually employed [25, 26, 27]. The linear element with reduced integration serves as a
reference solution and permits to identify, wherever needed, the shear-locking effects. Details
of linear elements using reduced and exact integration schemes are given in the Appendix.

4.2. Enhanced element

A specific timoshenko beam element is also often encountered in the litterature (see Refs. [28,
29, 26]). This enhanced element is also tested in this work, and compared with the PUFEM. It is
based on a cubic and a quadratic interpolation for the transverse displacement w and the rotation
β, respectively, with an added constraint between w and β in order to satisfy the static equilib-
rium equation. This type of enhanced element is also free of shear locking. The displacement
and rotation are expanded as

w =

4∑
i=1

Ci N̂i(ξ) and β =

8∑
i=5

Ci N̂i(ξ), (13)

where N̂i(ξ) is the shape function of the enhanced element and the Appendix gives their detailed
expressions.
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Geometrical parameters Material parameters
L = 1 m E = 70 GPa
h = 0.01 m ρ = 2780 kg/m3

b = 0.01 m G = 27 GPa

Table 1: Parameters used in our computations.

5. PUFEM performance

The tested configuration is a simply supported beam subject to a uniformly distributed har-
monic loading with a unit amplitude. The geometrical and material parameters of the beam are
tabulated in Table 1.

The performance of the PUFEM with different enrichment functions is evaluated through
the comparisons of their Frequency Response Function (FRF), as shown in Figure 2. The ref-
erence solution is obtained using classical linear elements with reduced integration and with
50’000 elements (in grey). The calculations of the FRF curves with PUFEM using different
enrichment methods, i.e. wave enrichment, Fourier and polynomial enrichment, are all carried
out using 2 elements and 5 enrichment functions (N = 5) which corresponds to a total number
of degrees of freedom of 3 × 2 × 5 = 30. It can be seen from Figure 2 that PUFEM can pro-
vide accurate predictions up to a certain frequency limit, depending on the enrichment function.
Clearly, the wave enrichment (blue solid line) offers best performance and a good agreement
with the reference solution up to 3000 Hz, above which small, but growing, discrepancies start
to appear. The other two enrichments, using the Fourier series (green dotted line) and the poly-
nomial functions (red mixed line), are only accurate up to a reduced frequency range, around
1400 and 500 Hz, respectively. Of course, the frequency band can be extended by applying
either a h-refinement or a p-refinement, as evidenced by the following convergence analyses.
Figure 3 shows the deformed shape along the beam close to the upper limit frequency for each
enrichment. It can be seen that the PUFEM with waves can capture multiple wavelenghs per
element (up to 3 for the present case), which is a typical feature of wave enriched elements.
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Figure 2: FRF comparison wo/Fe (at L/4 from left end): reference solution with classical FEM, PUFEM
with the wave enrichment, PUFEM with the Fourier enrichment, PUFEM with the polynomial enrichment.

Figure 4 compares the convergence of the different formulations obtained using a h-refinement
for two specific frequencies: 1000 and 3500 Hz while keeping the same enrichment order
(N = 5) with PUFEM. The L2 errors are plotted versus the number of degrees of freedom
Ndof . Here, errors are estimated via L2-norm as

ε =

√∫ L
0 |wcomputed − wref |2dx√∫ L

0 |wref |2dx
× 100% , (14)
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Figure 3: Illustration of the deformed shape at 3000Hz, 1200Hz and 400Hz from left to right. reference solution
with classical FEM, PUFEM with the wave enrichment, PUFEM with Fourier enrichment, PUFEM
with polynomial enrichment.

where wref is the reference solution. The superiority of the PUFEM with wave enrichment can
be clearly seen: the highest convergence rate and very good accuracy with a very small number
of degrees of freedom even at high frequencies. It should be noted that the error is limited
here by the accuracy of the reference solution. This explains the visible plateau by the wave
enrichment at a very low error level (around 10−5% for 1000Hz and 10−4% for 3500Hz). The
PUFEM with the polynomial enrichment is also very efficient with a high convergence rate.
Indeed, results indicate that the error behaves like ε ∼ Clαe where α ≈ 8 (recall that le is the
element length and the total number of degrees of freedom Ndof is inversely proportional to le).
The convergence law of the classical FEM with complete polynomial expansions does not apply
to the PUFEM with polynomial enrichment. It is remarkable to see that classical linear elements,
with and without reduced integration, as well as the enhanced element formulation give the
same convergence rate and ε ∼ C ′l2e , which is line with the classical linear interpolation. What
differentiates the three formulations is that (i) results obtained with the enhanced element are
100 times more accurate than the linear formulation with reduced integration and (ii) classical
linear FEM with exact integration suffers from slow convergence due to shear-locking effects
which can be avoided at the expense of a very refined mesh. Finally, the Fourier-type enrichment
performs similarily to classical FEM once the length of the element is sufficiently small, this is
because the mesh spacing is decreased and the oscillating nature of the solution within a single
element is lost and the Fourier series, with a fixed order of approximation (here N = 5), does
not show any advantage with respect to classical FEM [30]. The fact that the exact solution has a
strong wave component with wavenumber kp = 2π/λp explains the peculiar behaviour clearly
observed when finite elements are larger. Since the Fourier enrichment is chosen to capture
half of a wavelength up to one wavelength per element, the formulation is expected to yield
best results around 0.5 ≤ le/λp ≤ 1 and this is confirmed in Table 2 where numerical errors
are shown with respect to that criteria. Finally, none of the PUFEM formulations suffers from
shear-locking and this is consistent with observations made in Ref. [18].

As mentioned before, a p-refinement analysis is possible with Fourier and polynomial en-
richments. Results are shown in Figure 5 for two selected frequencies, 1000 and 3500 Hz. For
the sake of comparison, the previous results using h-refinement are also reported. In the present
case, the beam is meshed with 2 elements (same as in Figure 2 and 3) while the approximation
order N is increased. As expected, p-refinement performs better than h-refinement does. The
Fourier enrichment behaves nearly as well as the wave enrichment. However, if the polynomial
shows similar trends for low and moderate appproximation order N , results quickly deteriorate
as soon as the exponent in the polynomial exceeds a certain value. The reason for this probably
stems from the linear dependence and the loss of orthogonality properties of the polynomial
bases, and the occurrence of very ill-conditioned matrices [20]. In an attempt to clarify this, the
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Figure 4: Convergence curves obtained with a h-refinement at 1000Hz (left) and 3500Hz (right). × classical
FEM, × linear FEM with exact integration, + enhanced FEM, © PUFEM with wave enrichment,
� PUFEM with Fourier enrichment, 4 PUFEM with polynomial enrichment.

1000Hz 3500Hz
Ndof le/λp ε (%) le/λp ε (%)

20 3.33 53.38 6.28 58.45
30 1.66 1.14 3.14 59.69
50 0.83 0.08 1.57 12.58
60 0.66 0.11 1.25 0.43
90 0.41 0.19 0.78 0.37
110 0.33 3.83 0.62 0.19
170 0.20 19.97 0.39 0.22
210 0.16 2.11 0.31 7.29
260 0.13 1.30 0.25 36.68
410 0.08 1.14 0.15 0.23
510 0.06 0.80 0.12 0.64

1010 0.03 0.21 0.06 0.28
... ... ... ... ...

Table 2: Convergenve of Fourier-type enrichment (corresponding to � in Figure 4) (in bold are values below
0.5% at the cup).

associated conditioning numbers of the system matrices are shown in Figure 6. As opposed to
classical FEM, PUFEM formulations clearly produce matrices with a higher condition number,
a well-known feature which is inherent to the method [20]. This, however, does not necessarily
impede on the quality of the results (some explanations are given by one of the present authors
in [31] in a BEM context). For instance, wave and Fourier enrichments show very good sta-
bility despite a growing condition number wich is comparable, though smaller, with that of the
polynomial enrichment. An alternative would be to employ orthogonal polynomials instead, in
which case the method would share some similarities with hierachical FEM [32].

Since the wave enrichement offers best performance. It is relevant to assess the influence of
each term in the wave basis Figure 7 shows the convergence at 1000 Hz and 3500 Hz using h-
refinement with the complete wave basis, and the one with certain terms removed, in comparison
with the classical linear FEM results. When the constant term is removed from the wave bais,
i.e. Ψ1

i = 1, the PUFEM is only enriched with free vibration solutions. With a uniform loading,
this has noticeable effects on the convergence rate and on the number of degrees of freedom
required to produce accurate results. When the evanescent waves are removed, the nearfield
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Figure 5: Comparison of convergence at 1000Hz (left) and 3500Hz (right). × h-refinement with classi-
cal FEM, × h-refinement with linear FEM and exact integration, + h-refinement with enhanced FEM,
© h-refinement for PUFEM with wave enrichment, � p-refinement for PUFEM with Fourier enrichment,
4 p-refinement for PUFEM with polynomial enrichment.
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effects of the decaying waves near the beam supports cannot be properly modelled and this,
again, has noticeable effects on the convergence rate. In all scenarios, however, all PUFEM
formulations clearly outperforms classical FEM to various extent.
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Figure 7: Convergence curves obtained with h-refinement at 1000Hz on the left and 3500Hz on the right.
× Linear FEM with reduced integrations, © PUFEM with complete wave enrichment, 4 PUFEM

wave enrichment without the constant term, � PUFEM wave enrichment without the envanescent waves.
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6. Conclusions

In this study, PUFEM Timoshenko beam elements are developed for solving forced vibra-
tion problems. Three types of enrichment are investigated: the wave enrichment based on the
solutions of the governing equations, Fourier series and the polynomials. The performance of
different enrichment functions is numerically evaluated in terms of frequency response functions
and convergence properties.

Analyses lead to the prevailing conclusion that the wave enrichment, through the embodi-
ment of specific information based on physical features, offers the best performance in terms
of both computational accuracy and data reduction. In all cases, all three PUFEM formulations
outperform the classical finite element discretization and the best convergence is obtained using
a p-refinement strategy. However, it is found that, due to a lack of orthogonality property, the
polynomial basis is recommended to adopt a h-refinement strategy instead. Finally, the constant
term in the wave basis shows its importance to account for the loading effects.

As a final remark, one direction of particular interest is to further extend the method to the
numerical prediction of complex vibrating structures involving vibro-acoustic coupling. In this
regard, it would be interesting to analyse more specifically the type of enrichment needed to
correctly capture the spatially oscillating pattern of the loading due to surface acoustic waves.
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Appendix A

Linear element

The stiffness matrix of the classical linear element using exact integrations has the form

Ke =
EI

l3eφ


12 −6le −12 −6le

l2e(4 + φ) 6le l2e(2− φ)
12 6le

sym. l2e(4 + φ)

 , (15)
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with φ = 12EI/GκSl2e . This formulation is known to suffer from shear-locking effects and a
reduced integration technique is usually employed [26], this gives

Ke =
EI

l3eφ


12 −6le −12 −6le

l2e(3 + φ) 6le l2e(3− φ)
12 6le

sym. l2e(3 + φ)

 , (16)

More details of the stiffness matrix can be found Refs. [25, 26, 27] (here some signs can change
depending on the convention for the rotation angle). The associated mass matrix is

Me = ρSle


1/3 0 1/6 0

r2/3 0 r2/6
1/3 0

sym. r2/3

 , (17)

where r =
√
I/S is the radius of gyration. This matrix can also be found with more details in

Refs. [33, 26]. Note the differences between the two resulting stiffness matrices appears in the
components K22, K24, K42 and K44. This difference is due to the different integration points
adopted for evaluating the shear modulus matrix. When using exact integrations, the shear
locking effects appear for the cases where the Euler-Bernoulli or thin beam model is applicable.
The shear-locking effects can be overcome by h-refinement, which makes the stiffness matrix
obtained by exact and reduced integrations consistent.

Enhanced element

A specific timoshenko beam element is also often used to solve beam problems in the lit-
terature [29, 26, 34, 28, 35, 36]. This enhanced element is based on a cubic and a quadratic
interpolation for the transverse displacement w and the rotation β, respectively, with an added
constraint between w and β in order to satisfy the static equilibrium equation. The shape func-
tions N̂i in Eq. (13) are given below

N̂1 =
1

1 + φ

[
1 + φ− φξ − 3ξ2 + 2ξ3

]
, N̂2 =

le/2

1 + φ

[
(2 + φ)ξ − (4 + φ)ξ2 + 2ξ3

]
,

N̂3 =
1

1 + φ

[
φξ + 3ξ2 − 2ξ3

]
, N̂4 =

le/2

1 + φ

[
−φξ − (2− φ)ξ2 + 2ξ3

]
,

N̂5 =
2/le

1 + φ

[
−3ξ + 3ξ2

]
, N̂6 =

1

1 + φ

[
1 + φ− (4 + φ)ξ + 3ξ2

]
,

N̂7 =
2/le

1 + φ

[
3ξ − 3ξ2

]
, N̂8 =

1

1 + φ

[
−(2− φ)ξ + 3ξ2

]
,

with φ = 12EI/GκSl2e . The resultant stifness matrix remains of the same size as they corre-
pond to nodal values and

Ke =
EI

l3e(1 + φ)


12 −6le −12 −6le

l2e(4 + φ) 6le l2e(2− φ)
12 6le

sym. l2e(4 + φ)

 . (18)
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This matrix can be found with all necessary details in [28, 29, 26]. This enhanced element is
also free of shear locking. The the mass matrix writes :

Me =
ρSle

(1 + φ)2


m1 −m2 m3 −m4

m5 m4 m6

m1 m2

sym. m5

+
ρSle

(1 + φ)2

(
r

le

)2


m7 −m8 −m7 −m8

m9 m8 m10

m7 m8

sym. m9

 ,
(19)

where coefficients mi are given below and this mass matrix can also be found with more details
in Refs. [28, 29, 26].

m1 =
13

35
+

7φ

10
+
φ2

3
, m2 =

(
11

210
+

11φ

120
+
φ2

24

)
le ,

m3 =
9

70
+

3φ

10
+
φ2

6
, m4 = −

(
13

420
+

3φ

40
+
φ2

24

)
le ,

m5 =

(
1

105
+

φ

60
+

φ2

120

)
l2e , m6 = −

(
1

140
+

φ

60
+

φ2

120

)
l2e ,

m7 =
6

5
, m8 =

(
1

10
− φ

2

)
le ,

m9 =

(
2

15
+
φ

6
+
φ2

3

)
l2e , m10 =

(
− 1

30
− φ

6
+
φ2

6

)
l2e .
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