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Abstract

Research in Acoustic Black Holes (ABHs) attracts increasing interests for its potential

applications in vibration control. ABH effect features the energy focalization of

flexural waves within a confined area inside a structure with a reducing power-law

profiled thickness. With conventional design of ABH structures, however, systematic

broadband ABH effects can only be achieved at relatively high frequencies while the

mid-to-low frequency application can hardly be envisaged without prohibitively large

ABH dimensions. We propose a kind of periodic plates carved inside with tunneled

ABHs to achieve directional broad band gaps for flexural waves at mid-to-low

frequencies. Analyses on the band structures and mode shapes show the generation of

the band gaps through locally resonant effects of the ABH cells. With additional

strengthening studs connecting the two ABH branches, Bragg scattering is produced

due to its large impedance mismatch with the residual thickness of ABH profile. With

the two effects combined, wide band gaps are achieved over a large frequency range

for flexural waves travelling along the direction perpendicular to the tunneled ABHs.

Both numerical and experimental results show significant attenuation gaps in finite

plates with only three ABH cells. The proposed periodic plates with 1D tunneled

ABHs and strengthening studs point at potential applications in wave filtering and

vibration isolation applications.
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1. Introduction

The Acoustic Black Hole (ABH) phenomenon features a reducing local phase

velocity of the flexural waves within a power-law profiled structure with a reducing

thickness, achieving zero reflection in an ideal scenario with thickness diminishing to

zero [1, 2]. As a result, compressed waves are stuck in the ABH region with a high

energy concentration, conducive to a wide range of applications such as vibration

control [3-5], sound radiation reduction [6, 7] and energy harvesting [8, 9].

Arousing increasing interests in the scientific community, the topic has been

widely investigated using single ABH element for both 1D beam [10-12] and 2D plate

[13-20] structures. Apart from popular numerical methods such as Finite Element or

Boundary Elements, various theoretical models have also been developed to study the

wave propagation characteristics in structures with single ABH element, exemplified

by the geometrical acoustic approach [2], the impedance method [13] and the

Rayleigh-Ritz method [10, 11, 14]. Results show the expected ABH effects in terms of

the reduction in the reflection coefficient, energy focalization as well as the potential

for vibration control. Experimental investigations have further demonstrated the

effectiveness of a single ABH element in damping flexural vibrations [15-18].

However, for a single ABH element, systematic broadband ABH effects can only be

achieved above a certain frequency when the incoming wavelength is comparable or

smaller than the characteristic dimension of the ABH cell [12, 19]. This seriously

impedes the application range of the ABH-based technology since the main and the

most challenging difficulty is rather in the mid-to-low frequency range. Therefore,

extending the ABH effect towards lower frequency region with reasonable structural

dimensions is of paramount importance. This dilemma can eventually be resolved by

embedding multiple or periodic ABHs into structures. Applying periodic ABHs in

beam structures, we demonstrate that broad band gaps can be achieved over a wide



frequency range both numerically and experimentally [20, 21]. Meanwhile, the

proposed structures only require a few ABH elements with small dimensions to

achieve considerable broad attenuation bands. This also overcomes the limitations of

conventional Phononic Crystals (PCs) based Bragg scattering or locally resonant

mechanism [22-26]. The former requires a large number of cells and a large lattice

constant to ensure Bragg-type band gaps at mid-to-high frequencies, while the latter

can generate resonance-type band gaps at quite low frequencies but with narrow

bandwidth. However, the possibility of designing periodic ABHs in 2D plate

structures to achieve similar effects remains unknown. It is therefore relevant to

investigate whether broad band gaps can also be achieved in plate structures by using

periodic ABHs, considering the wider applications of plate structures in practice.

Existing studies on multiple ABHs in plates mainly attempted to apply the ABH

effect to achieve vibration [15, 17] and sound radiation [6, 7] control, with little focus

on possible band gaps and wave filtering effect. To the best of our knowledge, based

on plane wave expansion method, the only paper dealing with periodic 2D ABHs

focuses on the ABH-induced dispersion properties [27], showing no obvious band

gaps, possibly due to the complex wave propagation modes/paths in plates.

Method-wise, other potential methods, such as the improved fast plane wave

expansion [28] and extended plane wave expansion [29] approaches, may be also

applied to study periodic structures with ABHs. While understanding that complete

band gaps may be difficult to achieve in the general 2D scenario when considering all

possible wave modes and paths, we investigate the possibility of generating

directional band gaps of flexural propagating waves by proposing a periodic plate

with tunneled ABHs. The so-called directional band gaps refer to those frequency

bands in which flexural waves are prohibited along a certain propagation direction,

specifically x direction in this paper. This study is based on two considerations: on

one hand, broad band gaps at mid-to-low frequencies in plate structures certainly

deserve more in-depth investigations; on the other hand, considering the complexity

of the wave propagations in plates, an effective tuning and manipulations of a certain

class of waves along a given direction is of great practical significance for vibration



isolation purposes.

In this paper, a plate structure with embedded periodic tunneled ABHs is

proposed and modelled by COMSOL Multiphysics in Section 2. The band structures

are analyzed in detail in conjunction with typical mode shapes involved. Finite

structures with a few ABH elements are compared with their infinite periodic

counterparts to understand the observed vibration attenuation bands. In Section 3,

strengthening studs are added, aiming at broadening the band gaps over an enlarged

frequency range. Then, experimental validations are presented in Section 4 to confirm

the numerically predicted phenomena. Finally, conclusions are drawn in Section 5.

2. Periodic plates with tunneled ABHs

As shown in Fig. 1, a unit cell of the proposed periodic plate consists of a plate

carved inside with a symmetrical double-leaf 1D ABH profiles forming a tunnel along

y-direction. The unit cell has a length, width and thickness of a, b and h, respectively.

The cross sectional details of the tunneled ABH are shown in the zoomed in Fig. 1(b).

The thickness of each ABH branch is tapered according to 0( ) mh x x h , where m is

a positive rational number,  is a constant and h0 is a residual thickness. The total

taper length of each ABH branch is lABH. The unit cells are 1D periodically arranged

along the axis x to form either an infinite or finite plate. The double-branch design

guarantees structural integrity over the surface and relatively high structural stiffness

and strength of the overall structure [30]. To obtain band structures, finite element

analyses using COMSOL Multiphysics are conducted to model the unit cell by Solid

Mechanics Module. For an infinite plate, the Floquet-Bloch periodic boundary

condition is imposed at the edges of the unit cell in x direction and a parametric sweep

is applied over the reduced wave vector ka/π. The mesh (as shown in Fig. 1(c)) is

physics-controlled with fine element size to ensure a minimum of 6 elements per

wavelength for the highest frequency of interest considered here, 8 kHz [31]. In the

calculation without specific illustration, a, b and h are set to be 120 mm, 120 mm and

6.4 mm, respectively, with lABH being 30 mm and h0 being 0.5 mm. The thickness



profile of each ABH branch follows 2( ) 0.003 0.5 (mm) h x x . The material is made

of steel with a mass density of 7800 kg/m3, Young’s modulus of 210 GPa, and

Poisson’s ratio of 0.28.

Fig. 1 (a) Unit cell of periodic plates with a uniform plate carved inside by a

symmetrical double-leaf ABH tunnel; (b) the cross section of the tunneled ABH

whose wall thickness is tapered by 0( ) mh x x h  with a total pater length of lABH

and a residual thickness of h0; (c) Mesh of the unit cell.

The calculated band structure is presented in Fig. 2. Several rather flat dispersion

curves are observed below 4 kHz as denoted by dark solid lines, which means the near

zero group velocity with waves stopping propagating and being confined to a region.

This is typical of local resonant characteristics induced by the unique energy

focalization feature of the ABH effect, similar to the phenomena observed in beam

structures [18, 19]. The difference is that these flat dispersion curves are intercepted

by a few upward colored curves. Analyses are made to delineate the different natures

of the corresponding vibrations. Fig. 3 shows the displacement component

distributions of the representative modes T1, T2, T3 and T4 (also marked in Fig. 2) in x,

y, and z directions. The displacement components of mode T1 show a dominant

in-plane vibration in x direction, with an amplitude value much larger than those in



the other two directions. These modes represent S0 wave, the dispersion curves of

which are marked correspondingly by red dashed lines in Fig. 2. The displacement

components of mode T2 suggest that the vibration in z direction overwhelms that in x

direction. The corresponding flexural vibration mainly concentrates on the central part

of the ABH cell, exhibiting strong locally resonant characteristics. This can be

attributed to the ABH-induced wave speed reduction and energy accumulation effects.

Because of the strong coupling between the S0 and the flexural waves induced by the

local resonance of the ABH cells, the S0 dispersion curves are split and transit into the

flat dispersion curves of flexural waves denoted by red solid lines. Similarly, SH0

dispersion curves, exemplified by the representative T3 mode with predominant

vibration in y direction, are also split and transit into the flat dispersion curves. This is

analogous to the well-known veering phenomenon reported in the literatures [32, 33].

The transition points are approximately sketched by examining the displacement

component distributions to distinguish the wave modes. Therefore, a band gap for all

wave modes appears from 3391 Hz to 3698 Hz, as denoted by the blue area in Fig. 2.

If only flexural waves are of interest, other types of wave modes can be overlooked.

This results in several band gaps as marked by grey areas, which are quite broad at

mid-to-low frequencies.

As to the mode T4 shown in Figs. 3 (j), 3(k), and 3(l), the dominant vibration is

in z direction, representing the A0 flexural waves with variations along y direction

rather than x direction. As the reduced wave number k approaching 1, representing the

limit value for the first irreducible Brillouin zone, the flexural waves propagating at x

direction are coupled with those at y direction, marked as yellow solid line. Again, the

transition point is approximately sketched. Roughly speaking, when the flexural

waves propagating at x direction are coupled in, the dispersion curve trends to be flat.

Therefore, directional band gap at x direction exists at very low frequency range,

approximately from 370 Hz to 770 Hz in the present case.



Fig. 2 Band structures in periodic plates with 1DABH profiles: the blue area denotes

band gaps for all wave modes; grey areas denote band gaps only for flexural waves.

Figure 4 shows the effects of geometrical parameters of the tunneled ABHs,

including the power index m and the residual thickness h0, on the band gaps. It can be

seen that considerable band gaps can be achieved and tuned through changing

different geometrical parameters. Specifically, increasing m or reducing h0 would

decrease the frequencies of the first band gap for flexural waves and the band gap for

all waves as denoted by blue lines. To be noted, when m is excessively large to violate

the smoothness criteria [34] or h0 is too thick, the band gaps for all waves would no

longer exist (see m=4 or h0=1 mm). This is because the local resonance is weak

resulting from the reduced ABH effect. Overall, we can design reasonable geometrical

parameters of the tunneled ABHs to obtain band gaps in targeted frequency bands. In

practice, out-of-plane excitations on the plates would mainly generate flexural waves.

Therefore, the proposed structures would find their use in the wave filtering design

and vibration isolation applications.



Fig. 3 Displacement component distributions of representative modes T1, T2, T3, T4 in

x, y, and z direction: first row (a), (b), (c) for T1, representing mode S0; second row

(d), (e), (f) for T2, representing local resonantly flexural mode; third row (g), (h), (i)

for T3, representing mode SH0; Forth row (j), (k), (l) for T4, representing mode A0

propagating in y direction.



Fig. 4 Effects of (a) the power index m and (b) the residual thickness h0 on the band

gaps, where dark lines represent band gaps only for flexural waves while blue lines

represent band gaps for all wave modes.

To examine the feasibility of achieving the phenomenon in more practical

scenarios, finite plates with different number of ABH cells are analyzed to evaluate

the vibration attenuation property under free boundary conditions. The damping loss

factor of the material is set to be 0.001. A unit harmonic force is applied at one free

edge of the plate, 10 mm away from the center along y-direction. Fig. 5 shows the

vibration transmissibility, which is defined as
2

out
2

in

10log VT
V

 


 
with 2

inV  and

2
outV  being the mean quadratic velocities at the excitation free end and the other

output free end, respectively. A uniform plate with the same dimension as the one

when n=3 is included as a reference, showing no noticeable vibration attenuation

effect with transmissibility typically oscillating around 0 dB. However, obvious

vibration attenuation bands (corresponding to large T values) are visible to cover a

large part of the frequency range below 4 kHz for the ABH plates, consistent with the

band gaps observed in the infinite periodic plate (marked by shadowed areas). As can

be seen, even two ABH cells can achieve considerable attenuation effect. Moreover,

an increase in the number of unit cells can create even lower transmissibility to

achieve better vibration isolation. The maximum vibration reduction can be up to

nearly 70 dB for four ABH cells. It is relevant to note that the extended plane wave

expansion (EPWE) can also be used to calculate the attenuation of the unit cell [25,

29]. In conclusion, with a few ABH cells, the proposed plate displays high potential in

vibration attenuation because of the highly ABH-induced locally resonant effects.



Fig. 5 Transmissibility in finite plates with different number of ABH cells with

shadowed areas denoting band gaps in the corresponding infinite periodic plate; a

uniform plate with the same dimension as the one when n=3 is also included as a

reference.

The role of damping layers in achieving ABH effect and in affecting the

transmissibility is studied in Fig. 6. The damping layers covering the ABH part of

three cells have a thickness of 0.5 mm. The material has a mass density of 950 kg/m3,

Young’s modulus of 5 GPa, and Poisson’s ratio of 0.3. Uniform plates with and

without damping layers are also included as references. As can be seen, for the

uniform plate, adding damping layers shows negligible effect on the transmissibility.

For the plate with tunneled ABHs, the damping layers do reduce the transmissibility

of some resonant peaks because of the local ABH modes. However, systematic ABH

attenuation effect by the damping layer cannot be observed because the frequency

range is far below the so called cut-on or characteristic frequency of ABHs [12, 19],

which is 17.4 kHz in the present case. Particularly, damping layers show little effect

on the transmissibility within attenuation bands, which confirms that the attenuation

bands (corresponding to band gaps in infinite periodic plates) are the inherent

characteristic of plates with tunneled ABHs. This is mainly attributed to the local



resonance induced by energy focalization of the ABH effect. Therefore, the proposed

structures show the superiority in attenuating vibration without applying additional

damping layers.

Fig. 6 Transmissibility in a finite plate containing 3 ABH cells with and without

damping layers; the uniform cases are included as references.

Since energy flux, known as the structural intensity, is useful to visualize the

vibration energy propagation, the energy flux and displacement distributions at some

typical frequencies in and out of the attenuation bands are also illustrated in Fig. 7.

The intensity components in x and y direction can be obtained by

 1- Re ( , , )
2

ij jiI V i j x y
     , where ij is the stress tensor and jV is the velocity in

the j-direction; the superscript ~ and * denote complex number and conplex conjugate.

As can be seen, at 3180 Hz in the attenuation bands, the displacement field shows that

the vibration only concentrates on the first half of the ABH part, close to the

excitation. The vibration is significantly reduced after passing through the first ABH

cell and becomes barely noticeable in the third ABH cell. The energy flux distribution

is exhibited in log scale to reveal the energy flow details with arrows denoting the



direction and their corresponding length denoting the magnitude. It confirms that the

energy is passing from the excitation point to center of the first ABH element.

Because of the locally resonant effect, energy is accumulated in the vicinity of the

ABH indentation and dissipated by the natural material damping. Therefore, little

energy would propagate further or be reflected back, as shown in Fig. 7(a). At 6000

Hz which is outside the attenuation bands, both the displacement and energy flux

distributions spread over the three ABH elements and show no wave filtering effect.

Fig. 7 Displacement and energy flux distributions at typical frequencies in and outside

the attenuation bands, respectively: (a) 3180 Hz and (b) 6000 Hz

3. Periodic plates with strengthening studs

The above periodic plates allow achieving broad band gaps at mid-to-low

frequencies. To further enlarge the band gaps to also cover the mid-to-high

frequencies, a strengthening stud with a length of l is added as shown in Fig. 8. In

the numerical calculation, the geometrical and material properties of the plate and the

ABH profiles are kept the same as before. The length of the strengthening stud is set

to be 10 mm. The calculated band structure is plotted in Fig. 9. It can be seen that in

addition to the flat dispersion curves below 4 kHz, flat dispersion curves also appear

above 4 kHz. Similar to the case without strengthening studs in Fig. 2, these curves

are intercepted by S0 and SH0 as marked by red dashed and green dashed lines. For

the same reason stated above, band gaps (marked by grey areas) exist from low to



high frequencies within a very large range if only flexural waves are to be taken into

consideration. Meanwhile, directional flexural band gaps along x direction also exist

at very low frequency range since flexural waves marked as dashed yellow line

propagate only at y direction. These unique properties point at a wider application of

the proposed structure in broadband flexural vibration attenuation application.

Fig. 8 Unit cell of periodic plates with inside carved by ABH profiles, which are

connected by strengthening stud with length of l .

Fig. 9 Band structures in periodic plates with strengthening studs; grey areas denote

band gaps for flexural waves.



To clarify the band gap formation mechanism, the total displacement

distributions of some selected modes are plotted in Fig. 10. It can be seen that mode

L1 behaves like local resonance of the strengthening stud with ABH branches acting

as springs. For modes L2, L3 and L4, however, the ABH parts act as local resonators,

which are very similar to the case without strengthening stud. The difference is that

the added strengthening stud causes a large impedance mismatch with the thin ABH

walls to which it is attached, thus generating the Bragg scattering at mid-to-high

frequencies. Meanwhile, owing to the strong energy concentration within the tunneled

ABHs, high intensity waves are reflected when reaching the studs. Therefore, the

local resonance of ABHs helps to enhance the Bragg scattering effect. With the

combined locally resonant and the Bragg scattering effects, these broad band gaps are

generated.

Fig. 10 Total displacement distributions of typical local modes (L1, L2, L3, L4) marked

in Fig. 9

Figure 11 further shows the effect of the length of the strengthening stud on the

band gaps. It can be seen that even a very short strengthening stud ( l =5 mm) would

enlarge the band gaps to higher frequencies above 4 kHz because of the induced

Bragg scattering effect. Meanwhile, increasing the length of the strengthening length



allows enhancing the Bragg scattering effect and therefore enlarging the band gaps at

mid-to-high frequencies. This is consistent with the observations made on beam

structures [21].

Fig. 11 Effects of length of the strengthening stud l on the band gaps, where dark

lines represent band gaps only for flexural waves while blue lines represent band gaps

for all wave modes.

Analyses are also conducted on a finite plate with three ABH cells and the

strengthening studs under the same boundary and excitation conditions as above. As

shown in Fig. 12, the vibration transmissibility curve is plotted and compared with the

band gaps, marked by the shadowed areas obtained in the corresponding infinite

periodic plate. An untreated uniform plate without obvious attenuation effect is also

included as a reference. We can see several attenuation bands both below and above 4

kHz. These attenuation bands are all in good agreement with the band gaps obtained

from the infinite periodic plate. It is demonstrated that the proposed plate can be used

to efficiently attenuate vibration over a large frequency range by only applying a few

cells.



Fig. 12 Vibration transmissibility in a plate containing three tunneled ABHs with

strengthening studs; the shadowed areas denote the band gaps corresponding to the

infinite periodic plate.

The displacement and energy flux distributions at 6040 Hz in the bottommost of

the attenuation bands are also shown in Fig. 13. The concentration of the vibration

energy on the first half of ABH element can be clearly observed. Little can be noticed

in the subsequent elements as expected, which again confirms the vibration

attenuation effect in the proposed plates. Zooming into the details of the energy flux

map (bottom sub-figure), we can see that the vibration energy transmits from the

excitation point to the thin thickness part of the of the ABH branches, and is then

reflected back due to the Bragg scattering from the strengthening stud.



Fig. 13 Displacement and energy flux distributions at selected frequency 6040 Hz

4. Experimental validation

A plate with three ABH elements and strengthening studs was fabricated by

3D printing with steel powder. The material has a mass density of 7765 kg/m3,

Young’s modulus of 131 GPa, Poisson’s ratio of 0.28, and damping loss factor of

0.001. The length, width and thickness of the plate are 240 mm, 160 mm, and 6

mm, respectively. Each ABH profile

follows 3( ) 0.0003125( 5) 0.5 (mm)h x x   with a total length of 20 mm. The length

of each strengthening stud is 10 mm. The experiment setup is shown in Fig.14.

The plate was supported by two thin strings to mimic free boundary conditions.

Through an electromagnetic shaker amplified by a power amplifier, a periodic

chirp signal from 0 to 9 kHz was applied at the point offset the middle of one free

end by 10 mm. The excitation force was measured by a force transducer and

amplified by a charge amplifier. A Polytec scanning laser vibrometer was used to

measure the vibration response of the plate by scanning 95 × 47 equally

distributed points.



Fig. 14 Experiment setup

The experimentally measured vibration transmissibility curve is plotted in Fig.

15 and compared with the results from COMSOL simulation. Results agree

reasonably well. The differences may be caused by the material property differences

due to the special processing technology and the torsional modes emerging at higher

frequencies, which were not considered in the simulations. Nevertheless, we can see

several obvious attenuation bands which indeed cover a large portion of the frequency

range considered, especially above 4 kHz. The maximum reduction in experiments is

up to 40 dB, albeit a bit lower than the numerically predicted level. One plausible

reason is that the vibration level within these attenuation bands is too weak to be

accurately measured. Once again, the inevitable excitation of the torsional vibration is

also partly responsible. The measured displacement shapes at two selected

frequencies, respectively inside and outside the attenuation bands, are given in Fig. 16.

It can be seen that beyond the attenuation bands at frequency 3430 Hz, the vibration is

more evenly distributed over the entire plate. At 7665 Hz however, in the attenuation

gaps, the vibration energy mainly concentrates on the first ABH element, and is

significantly reduced after passing through the subsequent ABH elements. Reaching

the last element, the remaining vibration becomes unnoticeable. Therefore, we

experimentally demonstrate that this kind of plates with only a few ABH elements

allows a good flexural wave attenuation.



Fig. 15 Vibration transmissibility comparison between the experimental and

COMSOL results.

Fig. 16 Displacement shape distributions out and in of the attenuation bands: (a)

f=3430 Hz and (b) f=7665 Hz

5. Conclusions

By capitalizing on the ABH-specific features in terms of wave focalization and

rich dynamics inside the indentation, we propose a periodic plate with embedded

tunneled ABHs. The band structures are studied by using finite element simulations.

Results show flat flexural dispersion curves at mid-to-low frequencies due to the

ABH-induced locally resonant effects. The S0 and SH0 waves are split as a result of



their strong coupling effect with the local flexural waves, leading to the formation of a

complete band gap. Meanwhile, several broad band gaps are also achieved at

mid-to-low frequencies if only considering the flexural waves. These band gaps

would have significantly practical applications in wave filtering and vibration

attenuation provided that excitation is mainly out of plane to generate flexural waves.

A finite plate with three ABH cells under harmonic excitation is also studied by

examining the vibration transmissibility. Considerable attenuation bands are achieved

in the mid-to-low frequency range, which is in good agreement with the band gaps

obtained from the corresponding infinite periodic plate. The displacement and energy

flux distributions in the attenuation bands confirm that the vibration and energy only

concentrate on the first ABH part owing to the ABH-specific energy focalization

effect.

To enlarge the band gaps towards the mid-to-high frequencies, strengthening

studs are added to connect the two branches of tunneled ABHs. The strengthening

studs are shown to create a large impedance mismatch with the thin walls of the

tunneled ABHs, thus generating effective Bragg scattering. Combined with the locally

resonant effect, broad band gaps are obtained within a much broader frequency range.

A finite beam with only three ABH cells and strengthening studs confirms the

superior vibration attenuation performance of the proposed plate design both

numerically and experimentally.
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Figure Captions



Fig.1 (a) Unit cell of periodic plates with a uniform plate carved inside by a

symmetrical double-leaf ABH tunnel; (b) the cross section of the tunneled

ABH whose wall thickness is tapered by 0( ) mh x x h  with a total pater

length of lABH and a residual thickness of h0; (c) Mesh of the unit cell.

Fig. 2 Band structures in periodic plates with 1D ABH profiles: the blue area denotes

band gaps for all wave modes; grey areas denote band gaps only for flexural

waves.

Fig. 3 Displacement component distributions of representative modes T1, T2, T3, T4 in

x, y, and z direction: first row (a), (b), (c) for T1, representing mode S0; second

row (d), (e), (f) for T2, representing local resonantly flexural mode; third row

(g), (h), (i) for T3, representing mode SH0; Forth row (j), (k), (l) for T4,

representing mode A0 propagating in y direction.

Fig. 4 Effects of (a) the power index m and (b) the residual thickness h0 on the band

gaps, where dark lines represent band gaps only for flexural waves while blue

lines represent band gaps for all wave modes.

Fig. 5 Transmissibility in finite plates with different number of ABH cells with

shadowed areas denoting band gaps in the corresponding infinite periodic

plate; a uniform plate with the same dimension as the one when n=3 is also

included as a reference.

Fig. 6 Transmissibility in a finite plate containing 3 ABH cells with and without

damping layers; the uniform cases are included as references.

Fig. 7 Displacement and energy flux distributions at typical frequencies in and outside

the attenuation bands, respectively: (a) 3180 Hz and (b) 6000 Hz.

Fig. 8 Unit cell of periodic plates with inside carved by ABH profiles, which are

connected by strengthening stud with length of l .

Fig. 9 Band structures in periodic plates with strengthening studs; grey areas denote

band gaps for flexural waves..

Fig. 10 Displacement distributions of typical local modes (L1, L2, L3, L4) marked in

Fig. 7.



Fig. 11 Effects of length of the strengthening stud l on the band gaps, where dark

lines represent band gaps only for flexural waves while blue lines represent

band gaps for all wave modes.

Fig. 12 Vibration transmissibility in a plate containing three tunneled ABHs with

strengthening studs; the shadowed areas denote the band gaps corresponding

to the infinite periodic plate.

Fig. 13 Displacement and energy flux distributions at selected frequency 6040 Hz
Fig. 14 Experiment setup.

Fig. 15 Vibration transmissibility comparison between the experimental and

COMSOL results.

Fig. 16 Displacement shape distributions out and in of the attenuation bands: (a)

f=3430 Hz and (b) f=7665 Hz.




