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Abstract 

Mid-to-high frequency vibro-acoustic modelling has always been a challenging topic. 

Previous study shows the promise of a piecewise calculation scheme based on the 

Condensed Transfer Function (CTF) approach in a frequency range where the modal 

overlap factor roughly exceeds one. The piecewise scheme has shown its capability in 

terms of balancing the accuracy, efficiency and the wealth of information for the 

modeling of lightly coupled vibroacoustic systems. This paper extends the method 

beyond the weak-coupling assumption. A coupling strength factor is first proposed to 

quantify and adjust the coupling strength between two sub-systems. Two mutually 

connected sub-cavities are then used as an example to validate the piecewise scheme in 

relation to the changes in the coupling strength level, as well as the variations in the 

coupling strength factor itself. The effect of the coupling strength on the computational 

error of the piecewise scheme is systematically studied. Finally, the applicability of the 

piecewise calculation scheme is experimentally validated. 
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Highlights: 

• A mid-to-high frequency vibro-acoustic modelling method is presented. 

• A method for quantifying the coupling strength between two surface coupled 

systems is proposed. 

• The accuracy and efficiency of the proposed modelling method for strongly 

coupled systems are demonstrated. 

• The method is experimentally validated.  



 

 

1. Introduction 

Numerical methods for predicting the acoustic responses of structures have been 

attracting intensive research interests for decades. In the low frequency range, Finite 

Element Method (FEM) and Boundary Element Method (BEM) are the two most 

powerful and popular tools [1, 2]. However, they become cumbersome when the target 

frequency increases to reach the so-called mid-to-high frequency range because of the 

significant increase in the required Degrees of Freedom (DoF), roughly linearly for the 

FEM and quadratically for the BEM. This motivated the long-lasting effort in the 

acoustic community to explore more efficient modelling approaches, as reviewed in 

Ref. [3].  

Among existing methods, a typical one is the hybrid deterministic-statistical 

approach [4-7], which partitions the whole system into two types of components/sub-

systems based on their deformation wavelengths, with long wavelength ones modelled 

deterministically by FEM or Wave Based Method (WBM) and the short ones by the 

Statistical Energy Analysis (SEA). However, confined by the underlying assumptions 

of the SEA, detailed descriptions of the statistical sub-systems responses are 

unavailable. Another type of approach can be categorized as sub-structuring methods, 

exemplified by the model reduction methods [8-10] and mobility methods [11-13]. Sub-

structuring methods enable more detailed description of the short wavelength sub-

systems than hybrid methods do. One of the representative mobility methods is the 

Patch Transfer Function (PTF) method, applicable to either structural-acoustic 

problems [12] and pure acoustic problems [13]. The PTF method was further 

generalized to the so-called Condensed Transfer Function (CTF) method which allows 

the transfer functions, also named condensation functions (CF), over the interface to be 

any orthonormal set like complex exponential functions or Chebyshev polynomials.  



 

 

Using the full set of CFs, the effectiveness of the CTF method has been shown by 

investigating  a submerged shell structure with internal line-coupled non-axisymmetric 

substructures [14].  

One of the important developments on the CTF-based method is the previous 

attempt to increase its upper frequency limit without compromising its computational 

efficiency and its ability in providing detailed description of the physical system. Using 

a plate-cavity configuration, a piecewise calculation scheme was proposed for the mid-

to-high frequency modelling [3]. By capitalizing on the wavy feature of the complex 

exponential functions as CFs, the piecewise calculation scheme allows the description 

of the dynamic behavior of the coupling interface by using a truncated sub-set of the 

full CF series for any given frequency band in the mid-to-high frequency range (starting 

from a frequency with a modal overlap factor roughly equal to one). As a consequence, 

the size of the system matrix to be solved becomes smaller, leading to a reduction of 

the computational cost and an increase in the frequency outreach. The computational 

efficiency of the method was demonstrated using a plate-cavity system in air. Despite 

the relevance of the configuration for many engineering applications [15-19], the 

system is considered as a typical weak coupling case [11]. The so-called weak coupling 

assumption applies to either a structural-acoustic system or a pure acoustic system 

composed of multiple sub-cavities. For the former, the fluid-loading effect on a 

mechanically excited structure is considered to be weak and negligible; for the latter, 

the acoustic response of an acoustically excited sub-cavity remains essentially the same 

no matter whether the connecting interface with its adjacent acoustic neighbor is open 

or closed as a rigid wall.  

Therefore, examining the applicability of the piecewise calculation scheme in the 

context of increasing coupling strength is required. This, however, brings up two 



 

 

challenging issues that the present work attempts to address and contribute to the 

existing knowledge. The first one, which is of general relevance, is to establish a metric 

to quantify the coupling strength level in a coupled system. Along the same line of 

thinking, a very useful coupling strength quantification method was proposed earlier 

[11], which applies to two coupled single DoF sub-systems. For two continuous sub-

systems, the coupling coefficient in traditional modal theory can quantify the spatial 

matching level between two modes of the uncoupled sub-systems [20]. However, it 

does not reflect the frequency matching of these modes whereas it is known to be an 

important parameter of the energy exchanged between two coupled modes. Therefore, 

a more general assessment method depending also on the physical properties and the 

frequency characteristics is needed, especially under the context of the mid-to-high 

frequency. The second one, more specific to the CTF method itself, concerns the 

assessment of its applicability and the accuracy in dealing with cases when the coupling 

becomes stronger.  It is well accepted that the energy flow between a weakly coupled 

system is substantially less than the energy dissipated within each subsystem [21], so 

that the assumptions and simplifications made under the weak coupling conditions 

might become invalid in the strong coupling cases. More specifically, the underlying 

assumption of the piecewise calculation scheme is that the energy is only concentrated 

in a few dominated terms, which deserves a re-examination and assessment when 

energy exchange between sub-systems becomes more complex with an increasing 

coupling strength. Therefore, whether and to what extent the piecewise scheme is still 

applicable under various coupling strength levels remains unknown. This forms the 

main motivation of the present work. 

In this paper, the piecewise scheme is systematically scrutinized under different 

coupling strength levels. In Section 2, the CTF method and the piecewise scheme are 



 

 

briefly recalled, based on which a coupling strength factor is defined to quantify the 

coupling strength between two sub-systems. A cavity composed of two mutually-

connected chambers is then selected to conduct the analyses, whose coupling strength 

is tactically adjusted through tuning the geometrical parameters based on the proposed 

coupling strength factor.  The piecewise calculation scheme is then examined in Section 

3.  Computational errors are analyzed with respect to different coupling strength levels, 

leading to the establishment of a relationship between them. Finally, experimental 

validations are carried out in Section 4 before conclusions are summarized in Section 

5. Similar analyses on a structure-acoustic system are briefly presented in Appendix for 

reference.  

2. Theoretical Analyses 

For the sake of completeness, this section briefly recalls the CTF method and the 

piecewise calculation scheme. Then, a coupling strength factor is defined to quantify 

the coupling strength level between two sub-systems under the CTF framework. As an 

example, the theory is built upon an acoustic cavity system, although a structure-cavity 

system can also be treated in a similar way, as briefed in Appendix. Finally, the 

correlation between the coupling strength and the proposed coupling strength factor is 

validated. 

2.1 CTF method and piecewise calculation scheme 

2.1.1 CTF method 

Consider a system composed of two sub-systems coupled over an interface  as 

shown in Fig. 1, in which the left one is either structural or acoustical, being excited 



 

 

and noted as the main sub-system, and the right one is acoustical, noted as the attached 

sub-system,.  

 

Figure 1 2D illustration of a system composed of two sub-systems that are coupled 

through an interface. 

To illustrate the method, the case involving two acoustically coupled sub-cavities 

are used. To simplify the analyses process, the whole system is assumed to be 

coordinate separable so that the physical quantities, such as velocities or forces, on  

can be described as 𝑓(𝑥, 𝑦) . Then, a set of 𝑁𝑥 × 𝑁𝑦  orthonormal functions 

{𝜑𝑟𝑠}1≤𝑟≤𝑁𝑥,1≤𝑠≤𝑁𝑦
, referred to as Condensation Functions (CFs), is employed to 

approximate the velocities and the forces on .  For each acoustic sub-system, the 

condensed impedance 𝑍𝑘𝑙,𝑟𝑠 is defined by imposing a prescribed velocity 𝑈(𝑥, 𝑦) =

𝜑𝑟(𝑥)𝜑𝑠(𝑦) on  as: 

𝑍𝑘𝑙,𝑟𝑠 =
<𝑃̅𝑟𝑠,𝜑𝑘𝑙>

<𝑈,𝜑𝑟𝑠>
=< 𝑃̅𝑟𝑠, 𝜑𝑘𝑙 >,                                     (1) 

where 𝑃̅𝑟𝑠 is the blocked pressure on  when the subsystem is subjected to 𝑈(𝑥, 𝑦) and 

<𝑓, 𝑔> is a scalar product defined as ∫ 𝑓(𝑥, 𝑦)𝑔∗(𝑥, 𝑦)𝑑𝑆
Ω

 with 𝑔∗ being the complex 

conjugate of 𝑔. Then the normal velocity 𝑈𝛼 and the normal pressure distribution 𝑃𝛼 

on   for each subsystem can be decomposed as: 



 

 

{
𝑈𝛼(𝑥, 𝑦) = ∑ 𝑢𝑟𝑠

𝛼 𝜑𝑟(𝑥)𝜑𝑠(𝑦)𝑟,𝑠

𝑃𝛼(𝑥, 𝑦) = ∑ 𝑝𝑟𝑠
𝛼 𝜑𝑟(𝑥)𝜑𝑠(𝑦)𝑟,𝑠

,                                       (2) 

where 𝑢𝑟𝑠
𝛼  and 𝑝𝑟𝑠

𝛼  are the amplitudes of the normal velocity and the normal pressure 

distribution with respect to the condensation function 𝜑𝑟𝑠  for each uncoupled 

subsystem, with 𝛼=1 and 𝛼=2 referring to the main sub-cavity and the attached sub-

cavity, respectively. On the other hand, the velocity continuity and force equilibrium 

over  between the two sub-systems give 

{ 𝑈1 = 𝑈2

   𝑃1 = −𝑃2.                                                       (3) 

Then multiplying both sides of Eq. 2 by 𝑢𝑟𝑠
𝛼  for the first equation and 𝑝𝑟𝑠

𝛼  for the second 

equation, and integrating over , the orthogonality of the condensation functions 

alongside Eq. 3 gives: 

{
𝑢𝑟𝑠

1 = 𝑢𝑟𝑠
2

   𝑝𝑟𝑠
1 = −𝑝𝑟𝑠

2 .                                                     (4) 

Substituting Eq. 1 into Eq. 4 and assembling all equations into a matrix form give: 

−[𝐙𝐂
1 + 𝐙𝐂

2]𝐔𝐜 = 𝐏𝐞,                                                  (5) 

where 𝐙𝐂 is the matrix of the condensed impedance of an acoustic sub-system over the 

interface; 𝐔𝐜 and 𝐏𝐞 are the velocity and the blocked pressure induced by the sound 

source. Detailed derivation procedure can be found in [3]. The coupled velocity on  

can be finally resolved as 

𝐔𝐜 = −[𝐙𝐂
1 + 𝐙𝐂

2]−1𝐏𝐞.                                              (6) 



 

 

2.1.2 The Piecewise calculation scheme 

To warrant the convergence of the method, 𝑁𝑥 and 𝑁𝑦 should be selected in such a 

way that a sufficient number of CF functions are used per wavelength to cover the 

maximum frequency of interest. However, for the mid-to-high frequency modelling, 

the computational time would significantly increase as the matrix size becomes larger. 

It was shown recently that the convergence rule can be further relaxed if the CFs can 

match the oscillating wave feature over the coupling interface, exemplified by the 

complex exponential: 

 𝜑𝑟𝑠(𝑥, 𝑦) =
1

√𝐿𝑥𝐿𝑦
exp (𝑖

2𝑟𝜋𝑥

𝐿𝑥
)exp (𝑖

2𝑠𝜋𝑦

𝐿𝑦
),                               (7) 

in which 𝑟 ∈[0, ±1, ±2, …, ±𝑁𝑥], 𝑠 ∈[0, ±1, ±2, …, ±𝑁𝑦]. The function wavelength 

of each 𝜑𝑟𝑠(𝑥, 𝑦) is defined as: 

𝜆𝑐,𝑟𝑠(𝑥, 𝑦) =
2𝜋

√(
2𝑟𝜋

𝐿𝑥
)2+(

2𝑠𝜋

𝐿𝑦
)2

.                                            (8) 

For a targeted frequency band [𝑓𝑙 , 𝑓ℎ], corresponding to a wavelength range [𝜆ℎ, 𝜆𝑙], 

it has been shown that, for a plate-cavity system, the condensed velocity 𝐔c would 

converge by only including those dominating terms 𝜑𝑟𝑠 which satisfy 𝜆ℎ<𝜆𝑐,𝑟𝑠<𝛽𝜆𝑙, 

with 𝛽 =1.5 [3]. The truncated series is also shown to dominate the condensed 

impedance matrix and the condensed mobility matrix. As a result, the piecewise scheme 

can reduce the size of the matrix to be inversed on the right-hand side of Eq. 6 so that 

the computational time can be significantly shortened. In this paper, we will investigate 

the validity of this criterion in the cases of coupled cavities with different coupling 

strength. Theoretically, the scheme can be applied to pure structural coupling cases. 

Instead, CTF had already be validated and applied to different mechanical structures 



 

 

([14]). One can expect that the piecewise sscheme remains valids for the coupling of 

homogeneous structures (for instance, for coupled panels with constant thicknesses). 

For heterogeneous structures exhibiting different types of waves that can be coupled 

together, the criterion related to the piecewise scheme should certainly adapted. More 

investigations that are outside the scope of the present paper should be carried out in 

the future.   

2.2 Coupling strength  

2.2.1 Quantification of the coupling strength 

Based on the physical implication of the coupling, as described in Introduction, the 

coupling strength is quantified by evaluating the acoustic pressure differences over the 

coupling interface before and after the attached sub-cavity is added: e.g. |𝑷𝐶 − 𝑷𝑒|  

where 𝑷C  and 𝑷e  are the acoustic pressure over the interface before and after the 

coupling. In light of Eq. 6, one has 

𝐏𝐜 = −𝐙𝐂
2[𝐙𝐂

1 + 𝐙𝐂
2]−1𝐏𝐞.                                              (9) 

When e
C

P P , the coupling is considered to be weak.  

To quantify the coupling strength, a coupling strength factor  is defined, also to 

be further used to assist the validations of the piecewise scheme under different 

coupling strength conditions. Define the coupling strength matrix 𝐒 = −𝐙C
2[𝐙C

1 +

𝐙C
2]−1 from Eq. 9. Because 𝐙C

1 and 𝐙C
2 are both invertible,  (RK: I do not see the link 

between the fact that Z are both invertible and the diagonalization of S…As Z and the 

inverse of Z are symmetric (if we neglect the damping effect), S is symmetric and then, 

diagonalizable… I think it is better to say nothing…).    From an eigendecomposition,    

S can be rewritten as 𝐒 = 𝐊−1𝚲𝐊 where the columns of K are the eigenvectors of S 



 

 

and 𝚲  is a diagonal matrix containing the corresponding eigenvalues of S. For a 

acoustic sub-system weakly coupled with another one (i.e. e
C

P P ), all the eigenvalues 

are then close to one. In contrary, for strongly coupled acoustic subsystems (i.e. 

e
C

P P ), the eigenvalues are different than one.  𝜆𝑁 is positively correlated with the 

response level 𝑝𝑁 of the Nth condensation function and the response level is smaller 

when an attached sub-system is added. Thus, we define the coupling strength parameter 

Ω = |1 −
∑ 𝜆𝑁𝑁

𝑁
|                                                       (10) 

where N is the dimension of S (i.e. 𝑁 = 𝑁𝑥𝑁𝑦) and 𝜆𝑁 is the Nth eigenvalue of S. The 

summation of the eigenvalues can be replaced by the trace of S  that avoid the explicit 

calculation of the eigenvalues.  should increase as the coupling strength becomes 

stronger. For instance,  equals to zero when there is no coupling and equals to one 

when the attached sub-system is equivalent to a pressure release boundary. Additionally, 

 is independent of the type and number of the selected condensation functions, so long 

as the convergence rules are satisfied. 

2.2.2 Numerical validations and discussions on the coupling strength factor 

In this section, the relationship between the proposed  and the acoustic response 

differences over the coupling interface before and after coupling will be validated using 

an acoustic cavity shown in Fig. 2. The system contains two sub-cavities connected 

through an opening, which is commonly used in vibro-acoustic analyses [22, 23]. The 

main sub-cavity has a fixed dimension (x×y×z) 2.5×2×1.5 (m).  



 

 

 

Figure 2 Configurations of the coupled acoustic system, excited by an internal sound 

source in the main sub-cavity. 

The uncoupled acoustic pressure 𝑝 within the cavity satisfies the wave equation and 

the associated boundary condition: 

∇2𝑝(𝑟, 𝑡) −
1

𝑐0
2

𝜕2𝑝

𝜕𝑡2 (𝑟, 𝑡) = −𝜌0𝑄̇(𝑡)𝛿(𝑟 − 𝑟0),                           (11) 

𝜕𝑝

𝜕𝑛
= 0                on the boundary,                                 (12) 

where 𝑟0 is the location of the sound source, Q is the volume velocity strength of the 

sound source, 𝜌0 and 𝑐0 are the equilibrium air density and the acoustic velocity within 

the cavity, respectively. Because the two cavities can be modelled following the same 

procedure, the superscript 𝛼  representing the sub-system number is omitted for 

convenience. In the harmonic regime, one can solve 𝑝(𝑟) from Eqs. 11 and 12 using a 

modal expansion: 

𝑝(𝑟) =
𝑖𝜔𝜌0𝑐0

2𝑄

𝑉
∑

𝜙𝑚(𝑟)𝜙𝑚(𝑟0)

Λ𝑚(𝜔𝑚
2 −𝜔2+2𝑖𝜉𝜔𝑚𝜔)𝑚 ,                               (13) 

where 𝜙𝑚 is the mth acoustic mode of the rigid-walled cavity; 𝜔𝑚 is the mth natural 

frequency; 𝜉 is the damping ratio and assumed to be equal for all cavity modes; V is the 



 

 

volume of the cavity, and Λ𝑛 = ∫ 𝜙𝑛
2𝑑𝑉 𝑉⁄ . An analytical expression of the acoustic 

modes of the rectangular cavities will be considered in the following. One can underline 

that for the practical cases with cavities of complex geometry, FEM can be used to 

obtained the modal information as well. Substituting Eq. 13 into Eq. 2, one obtains the 

free condensed pressure 𝑝𝑟𝑠 as: 

𝑝𝑟𝑠 =
𝑖𝜔𝜌0𝑐0

2𝑄

𝑉
∑

𝜙𝑚(𝑟0)𝐶𝑟𝑠,𝑚

Λ𝑚(𝜔𝑚
2 −𝜔2+2𝑖𝜉𝜔𝑚𝜔)𝑚 ,                                  (14) 

where 𝐶𝑟𝑠,𝑚 = ∫ 𝜑𝑟𝑠𝜙𝑚𝑑𝑆 is the modal matching coefficient between the rsth CF and 

the mth acoustic mode. By the same way, using Eq. 1, the condensed impedance 𝑧𝑘𝑙,𝑟𝑠, 

is given by: 

𝑧𝑘𝑙,𝑟𝑠 =
𝑖𝜔𝜌0𝑐0

2

𝑉
∑

𝐶𝑘𝑙,𝑚𝐶𝑟𝑠,𝑚
∗

Λ𝑚(𝜔𝑚
2 −𝜔2+2𝑖𝜉𝜔𝑚𝜔)𝑚 .                                  (15) 

By substituting Eqs. 14 and 15 give us respectively, the free blocked condensed 

pressure vector 𝐏𝐞 and the condensed impedance matrix 𝐙C
1 and 𝐙C

2. These quantities 

can be  introduced in into Eq. 6. The velocity over the interface between the two sub-

cavities can then be solved either in a full or piecewise manner.  

In order to highlight the parameters influencing the coupling strength matrix S, one can 

rewrite it as  

𝐒 = [𝐈 + 𝐙C
1(𝐙C

2)−1]−1.                                                (16) 

in which 𝐙C
1(𝐙C

2)−1 can be further expanded as: 

𝐙C
1(𝐙C

2)−1 =
𝑉2

𝑉1
[

⋯
⋮ ⋱ ⋮

⋯ ∑
𝐶𝑘𝑙,𝑚𝐶𝑟𝑠,𝑚

∗

Λ𝑚(𝜔𝑚
2 −𝜔2+2𝑖𝜉𝜔𝑚𝜔)

𝑚

] [

⋯
⋮ ⋱ ⋮

⋯ ∑
𝐶𝑘𝑙,𝑛𝐶𝑟𝑠,𝑛

∗

Λ𝑛(𝜔𝑛
2 −𝜔2+2𝑖𝜉𝜔𝑛𝜔)

𝑛

]

−1

, (17) 



 

 

where m is the modal order of the main sub-cavity and n is the modal order of the 

attached sub-cavity. It can be seen from Eq. 17 that there are three factors that influence 

the coupling strength: volume ratio of the two sub-cavities, frequency dependent terms, 

and the spatial modal matching terms. For the volume ratio, the weak coupling occurs 

when 𝑉2 𝑉1⁄ ≪ 1. For a given main sub-cavity volume 𝑉1 , the coupling strength 

increases with 𝑉2. One should notice that the volume ratio is only valid for the current 

double-sub-cavity configuration. The second factor is the modal matching term 

𝐶𝑘𝑙,𝑚𝐶𝑟𝑠,𝑚
∗ , which is non-dimensional and determined by the spatial matching level 

between the CFs and the mode shapes of the two sub-systems. As for the frequency-

dependent part, one would intuitively guess the strong coupling happens at resonances. 

Particularly when the two cavities share the same resonance frequency in low frequency 

range, the coupling process can be referred to the working mechanism of an acoustic 

resonator within an enclosure. However, in the mid-to-high frequency range, it is less 

relevant to focus on a single frequency but more reasonable to average it within a 

frequency band as 
1

Δ𝑓
∫ Ω𝑑𝑓

𝑓
.  

For the present cavity configuration, the coupling strength is quantified based on the 

pressure differences over the interface with and without the attached sub-cavity, defined 

as: 

𝐷 =
1

𝑆
∫

|𝑃𝑒−𝑃𝐶|

|𝑃𝑒|
𝑑𝑆

𝑆

.                                                   (18) 

D can be averaged in a frequency band as 
1

Δ𝑓
∫ 𝐷𝑑𝑓

𝑓
 as well. To eliminate the influence 

of the sound source location, 𝑃𝑒 is not obtained by setting a particular sound source but 

assumed to be unit on all basis functions as  



 

 

𝑃𝑒 = [

𝜑11

…
 𝜑𝑟𝑠

].                                                        (19) 

With such definition,  should reflect the variation trend of D when the 

dimension/volume of the attached sub-cavity changes, as shown in Fig. 3, as a function 

of volume ratio by setting ΔLy=0 and varying Lz2. Both D and  are averaged in two 

selected frequency bands with a 200Hz bandwidth, centered at 1100 Hz and 1500 Hz, 

respectively.  obtained from the truncated series using piecewise scheme criterion is 

also shown for reference. It can be seen that  is only slightly affected by the truncated 

series so long as the solution converges. Therefore,  will be calculated using the 

truncated  series in the piecewise scheme in the following analyses.  It can be observed 

in Fig. 3 that D and  undergo the same variation trend as a function of 𝑉2/𝑉1 and both, 

albeit not monotonously, exhibit an overall increasing trend with 𝑉2/𝑉1. Fluctuations 

can be attributed to the resonances of the coupled system. Both D and  reach a local 

maximum value of 0.5 when 𝑉2/𝑉1=1. It can be surmised that D and  will not be larger 

than 0.5 until 𝑉2 ≫ 𝑉1, where 𝑉2 can be approximately considered as infinitely larger 

than 𝑉1. Since we only aim at modelling the coupling process between two sub-systems 

with comparable sizes, the case of 𝑉2 ≤ 𝑉1 will be the main focus of analyses in this 

paper. To better show the consistent variation trend between D and , D is plotted as a 

function of  in Figs. 4a and 4b, averaged in the same two frequency bands. It can be 

seen that  is approximately proportional to D, i.e. the proposed coupling strength 

factor could effectively reflect the response differences over the interface as well as the 

coupling strength, in agreement with our intuitive understanding.  



 

 

It should be noticed that all the above analyses can be repeated in a vibro-acoustic 

system as well. Similar theoretical model and numerical validation for a plate-cavity 

system are presented in Appendix.  

 

(a) 

 

(b) 



 

 

Figure 3 Interface pressure response differences D and the coupling strength factor  

as functions of the volume ratio, averaged in frequency bands of 200Hz wide centered 

at: (a) 1100 Hz; (b) 1500 Hz. 
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Figure 4 Relationship between the interface pressure response differences D and the 

coupling strength factor , averaged in frequency bands of 200Hz wide centered at: (a) 

1100 Hz; (b) 1500 Hz. 

3. Numerical Analyses 

All numerical analyses are implemented based on the configuration shown in Fig. 2. 

Before going into error analyses, some validations are presented by comparing the 

piecewise calculation results and the analytical solutions obtained by setting ΔLy=0 

and Lz2=Lz1. Notice that this configuration has the strongest coupling strength (=0.5) 

among the considered cases. Then, the computational error of the piecewise scheme 

will be examined under different coupling strength levels.   

3.1 Validation of the piecewise scheme in the strong coupling case 

By setting ΔLy=0, the main sub-cavity and the attached sub-cavity form a rigid 

rectangular cavity so that the analytical solution can be obtained as the reference result. 

The CTF-based piecewise calculation scheme treats the cavity as two sub-systems. 𝛽 

is selected to be 1.5 in this paper, because the tendency of error convergence is found 

to be similar to that in the previous work [3]. Comparisons in terms of the sound 

pressure level (SPL) are made at two arbitrarily receiving points, located in the sub-

cavities 1 and 2 respectively. The results are shown in Fig. 5, in which only the results 

in mid-to-high frequency bands are presented. The dotted line, obtained from the 

piecewise scheme, includes 4 individual piecewise calculations, each with a 200 Hz 

bandwidth. Note a broader band will reduce the computational efficiency and dilute the 

advantage of the method. Nevertheless, a broader computational band could increase 

the accuracy of the method due to the inclusion of more CF terms, because the 

equivalent 𝛽 for entire frequency band becomes larger. The results obtained from the 



 

 

full CTF calculation are also shown as reference. It can be observed that the piecewise 

calculation can well capture the SPL especially for those resonance peaks. Although 

errors exist at some anti-resonance frequencies, they are not the major concern of the 

mid-to-high frequency problem. Figure 6a shows the sound pressure distribution, 

obtained from the piecewise scheme, over the coupling interface at 1100 Hz. The result 

is consistent with that obtained from the analytical solution in Fig. 6b. Similar accuracy 

was also found to exist at other receiving points and cut surfaces (not shown here). 

Figure 7 shows the volume-averaged SPL within each 200 Hz bandwidth. It can be 

observed that the errors are capped at around 2 dB. Notice these errors can be reduced 

by enlarging the computational bands. The errors are found to be less than 1 dB when 

the same calculations are conducted within the one third octave bands centered at 1250 

Hz and 1600 Hz.  

 

(a) 



 

 

 

(b) 

Figure 5 SPL at: (a) (1.7, 1.3, 1.2) m in the main cavity; (b) (2.1, 0.6, 0.9) m in the 

attached cavity. 

 

                             (a)                                                                (b)     

Figure 6 SPL distribution over the coupling interface: (a) Piecewise scheme; (b) 

Analytical solution. 



 

 

 

Figure 7 Volume-averaged SPL within frequency bands of 200 Hz wide: analytical 

solution and piecewise scheme. 

The above results numerically validate the piecewise scheme in a strongly coupled 

system. The method well balances the efficiency and accuracy within mid-to-high 

frequency ranges. In addition, it can provide a detailed prediction of the acoustic field 

in both sub- systems, which is the most appealing advantage over the SEA. 

3.2 Error analyses of the piecewise scheme with variable coupling strength 

In this section, the influence of the coupling strength on the accuracy of the 

piecewise calculation scheme will be investigated. As discussed in Section 2.2.2, the 

coupling strength is mainly determined by the volume ratio and the modal matching 

matrix in the mid-to-high frequency range. Therefore, firstly these two factors are 

separately investigated and then a general conclusion is drawn at the end of this section 

to conclude the relationship between the coupling strength and the performance of the 

piecewise scheme. For analyses purposes, the error of the piecewise calculation scheme 

is defined within a given frequency band ∆𝑓 as: 



 

 

𝐸𝑐 =
1

𝑆∆𝑓
∫ ∫ |𝑃𝑝𝑤 − 𝑃𝑐|

𝑆
𝑑𝑆𝑑𝑓

∆𝑓
,                                     (20) 

where 𝑃𝑝𝑤  is the piecewise solution and 𝑃𝑐  the full CTF calculation or analytical 

solution whenever available. 

3.2.1 Effect of the volume ratio  

This subsection discusses the effect of the volume ratio on the performance of the 

piecewise calculation scheme, by using the same configurations as those used in Fig. 3. 

The volume ratio is adjusted by enlarging 𝐿𝑧2 from 0.15m to 1.5m. As a reference, the 

coupling strength factors of the analyzed configurations are shown in Fig. 8a. As stated, 

only 𝑉2 < 𝑉1 is considered here. Figures 8b shows the errors of the piecewise scheme 

for two frequency bands of 200 Hz wide, centered at 1100 Hz and 1500 Hz, respectively. 

It can be observed in Fig. 8b that 𝐸𝑐 becomes larger as the volume ratio 𝑉2/𝑉1 increases. 

Comparisons between Figs. 8a and 8b show that 𝐸𝑐 increases as the coupling strength 

gets stronger. The maximum value of 𝐸𝑐 is between 1.6 to 1.8 dB when 𝑉2 = 𝑉1, which 

is still within the general tolerance level for the mid-to-high frequency modeling. For 

the detailed performance analysis at the maximum error, one can refer to Section 3.1.  

It is worth noticing that the relatively large 𝐸𝑐 only arises when the volume ratio 

𝑉2/𝑉1 is close to one, when the two cavities are identical.  In this case, neither cavity is 

more deterministic nor statistical than the other. This shows the capability of the 

piecewise calculation scheme in solving strongly coupled systems where deterministic-

statistical methods are no longer applicable to provide detailed system responses of the 

whole system.  
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Figure 8 Surface velocity error of the piecewise scheme with respect to different volume 

ratios in frequency bands of 200 Hz wide centered at: (a) 1100 Hz; (b) 1500 Hz. 



 

 

3.2.2 Effect of the interface modal matching 

The effect of the interface modal matching on the performance of the piecewise 

scheme is investigated in this subsection. Different from the volume ratio, appearing as 

an amplification coefficient in Eq. 17, the modal matching matrix is directly determined 

by the piecewise scheme. The variation of the interface modal matching is achieved by 

increasing ΔLy from 0 to 0.5m, as shown in Fig. 2. When ΔLy=0.5m, the interface area 

becomes half of its largest value. To keep the volume ratio constant at one, the depth 

of the attached cavity Lz2 is automatically adjusted. All analyzed quantities are 

frequency averaged within the two frequency bands which are the same as in Fig. 8.  

Firstly, the coupling strength factors are plotted for different ΔLy in Fig. 9a. It can 

be observed that the coupling strength generally decreases as ΔLy gets larger, 

corresponding to a smaller interface area, in line with one’s intuition. However, this is 

not simply due to the smaller interface area because 𝐶𝑘𝑙,𝑚𝐶𝑟𝑠,𝑚
∗  is not only determined 

by the area but also depends on the wave matching level over the interface, which is 

very complex in the mid-to-high frequency range. For the present case, the variation 

trend of  indicates that the modal matching level becomes smaller as ΔLy decreases, 

since the influcnes of the volume ratio and frequency are excluded in the simulations. 

The computational errors for different ΔLy are shown in Fig. 9. Again, one observes 

the similar variation trends as the coupling strengths have. As ΔLy increases, the 

computational errors quickly drop at the beginning and converge to a small value 

around 0.2 dB. The same conclusion as in Section 3.2.1 can be drawn in that the 

computational error is larger when the two cavities are similar. This verifies the 

capability of the piecewise scheme in strong coupled cases where the modal matching 

levels are different.  
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Figure 9 Surface velocity error of the piecewise scheme with respect to different modal 

matching in frequency bands of 200 Hz wide centered at: (a) 1100 Hz; (b) 1500 Hz. 



 

 

3.2.3 Effect of the coupling strength as quantified by  

To summarize the above analyses results, the computational data used in Figs. 3, 8 

and 9 are rearranged and regrouped to plot the computational error 𝐸𝑐 as a function of 

the coupling strength , obtained from different volume ratios and modal matching 

matrix and averaged in [1000, 1200] Hz and [1400, 1600] Hz, respectively. These 

results in a total of four sets are shown in Fig. 10 with different types of marker. It can 

be observed that, irrespective of the way in which the coupling strength is obtained, the 

errors at any given  are rather consistent in trend and close in values. For relatively 

weak coupling strength, when  is smaller than 0.2, the error of the piecewise scheme 

is rather stable and dwells around 0.2 dB. When  becomes larger than 0.2, the error 

undergoes fast increases before gradually stabilizing when  is larger than 0.4. It should 

be noted that, between 0.2 and 0.4, the increasing speed of the error is not exactly the 

same because the piecewise scheme has different sensitivities to volume ratio, modal 

matching level and frequency bands. It is also relevant to note that a higher frequency 

band exhibits a larger error. One of the plausible reasons is the wave motion over the 

interface is more complex in a higher frequency band so that a wider calculation 

bandwidth ∆𝑓 compared to its center frequency would be needed to warrant an more 

accurate prediction. However, this can be avoided by considering the one-third octave 

or octave bands as people usually do in mid-to-high frequency modelling problems. 



 

 

 

Figure 10 Computational error E as a function of the coupling strength varied with 

volume ratio or modal matching matrix, averaged within [1000, 1200] Hz and [1400, 

1600] Hz. 

4. Experimental validations 

Experimental validations were carried out using the configuration shown in Figs. 

11a and 11b. The cavity walls were made of acrylic of 30mm thickness which can be 

considered as acoustically rigid. A loudspeaker was used to generate an acoustic 

excitation through a hole drilled at (0.075, 0.05, 0) m over the side wall. Microphones 

1 and 2 were installed at (0.075, 0.05, 0.01) mm and (0.25, 0.15, 0.83) m, respectively, 

to measure the transfer function between them and eliminate the sound source error at 

the same time [24]. Limited by the experimental conditions, the cavity dimensions are 

smaller than those used in the previous simulations. However, a higher frequency band 

up to 3200 Hz was selected instead. For reference, the volume ratio 𝑉2 𝑉1⁄  is 0.94. 



 

 

The experiment was conducted within a wide frequency band of [40, 3200] Hz, with 

results shown in Figs. 12a and 12b, respectively. It was shown in the previous work [3] 

that the piecewise scheme starts to be applicable when the modal overlap factor is larger 

than one. In the present test structure, the unit modal overlap factor is approximately at 

1200 Hz. Therefore, the full CTF calculation is used within [40, 1200] Hz and the 

piecewise scheme is used within [1200, 3200]. To obtain more accurate peak values at 

resonance frequencies, the damping ratio of the first four peaks are obtained from the 

experimental result while the others are all set to 0.001. It can be observed in Fig. 12a 

that the full CTF calculation result agrees well with the experimental one, in terms of 

both resonance and anti-resonance frequencies as well as the overall trend. The 

piecewise calculation (Fig. 12b) was conducted within ten frequency bands of 200Hz 

bandwidth and added up to [1200, 3200] Hz. It can be seen that the piecewise scheme 

can accurately capture the variation trend and most of the resonance peaks. The few 

missing peaks in the experimental curve can be attributed to the machining tolerance of 

the cavity and some unavoidable uncertainties. All in all, the validity of the piecewise 

calculation scheme is considered to be verified in such a highly dynamic and strongly 

coupled system. 
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(b) 

Figure 11 The cavity where the experiments conducted: (a) Cavity configuration; (b) 

Photo of the cavity. 
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(b) 

Figure 12 Predicted transfer function between two points, compared to the experimental 

result: (a) Full CTF calculation; (b) Piecewise scheme. 

5. Conclusions 

This paper extends the application range of a previously proposed piecewise 

calculation scheme to strong coupling cases. The coupling strength is defined by 

examining the acoustic response differences over the coupling interface before and after 

the attached sub-system is added. A coupling strength factor  is established to quantify 

the coupling strength in the context of multi-degree-of-freedom system and mid-to-high 

frequency range. With the assistance of , the computational errors of the piecewise 

scheme are investigated through tactically adjusting the coupling strength level, 

including the strongly coupled systems. Generally, the proposed piecewise calculation 

scheme is shown to be applicable in strongly coupled cases, by showing a good 

agreement with the analytical solutions and the experiment results. Main conclusions 

are summarized as follows. 



 

 

1. The proposed coupling strength factor  can well reflect the variation trend of 

the coupling strength between two coupled sub-systems, as reflected by the acoustic 

response differences over the coupling interface. Three factors are found to affect the 

coupling strength between two acoustic sub-cavities: volume ratio, interface modal 

matching level and the frequency. Similar quantification can also be achieved for 

structural-acoustic coupled system as detailed in Appendix. By comparing the value of 

, the coupling strength in an acoustically coupled system is shown to be generally 

much stronger than that of the structure-cavity system. 

2. The piecewise calculation scheme is shown to be effective and accurate enough 

in the modelling of a strongly coupled acoustic cavity. Without losing the efficiency 

and compromising its accuracy, the proposed scheme allows a detailed sound field 

description of each sub-system. 

3. The computational error increases when the coupling strength becomes stronger, 

which, nevertheless, is still within the normal tolerance level in terms of the mid-to-

high frequency modelling. For a given system and a prescribed frequency band, the 

computational error of the piecewise calculation scheme can be approximately 

evaluated from .. 

Appendix 

A similar analysis is conducted for a structure-acoustic coupled system, exemplified 

by a plate-cavity system. Referring to Fig. 1, the main sub-system is set to be a plate 

while the attached sub-system is still an acoustic cavity and only structural excitation 

exists.  



 

 

For a structural sub-system, the mobility is preferred instead of the impedense to 

avoid the singularity problem. In such cases, the condensed mobility 𝑌𝑘𝑙,𝑟𝑠  can be 

similarly defined by imposing a prescribed pressure 𝑃(𝑥, 𝑦) = 𝜑𝑟(𝑥)𝜑𝑠(𝑦) on  as:  

 𝑌𝑘𝑙,𝑟𝑠 =
<𝑈̅𝑟𝑠,𝜑𝑘𝑙>

<𝑃,𝜑𝑟𝑠>
=< 𝑈̅𝑟𝑠, 𝜑𝑘𝑙 >,                                   (A1) 

where 𝑈̅𝑟𝑠  is the uncoupled free velocity on  when the subsystem is subjected to 

𝑃(𝑥, 𝑦). Then, the condensed mobility of the plate writes: 

𝑌𝑝𝑞,𝑘𝑙
𝑠 =

𝑖𝜔

𝜌𝑠ℎ
∑

𝐶𝑝𝑞,𝑚𝐶𝑘𝑙,𝑚
∗

Λ𝑚(𝜔𝑚
2 −𝜔2+2𝑖𝜉𝑠𝜔𝑚𝜔)𝑚 ,                                (A2) 

where 𝜌𝑠 is the density of the plate; h the plate thickness; 𝜉𝑠 the damping ratio of the 

plate assumed to be equal for all the modes; 𝜔𝑚 the natural frequency of the mth plate 

mode. Λ𝑚 = ∫ 𝜙𝑚
2 𝑑𝑉  and 𝐶𝑝𝑞,𝑚 = ∫ 𝜑𝑝𝑞𝜙𝑚𝑑𝑆  where 𝜙𝑚  is the mth mode shape. 

Similar to Eq. 6, the velocity over the interface can be expressed as 

𝐔𝐜 = −[(𝐘𝐂
1)−1 + 𝐙𝐂

2]−1𝐏𝐞,                                         (A3) 

where 𝐏𝐞 is the external excitation in CF coordinate rather than the blocked pressure as 

in Section 2. The weak coupling strength can be identified by rearranging Eq. A3 into 

𝐔𝐜 = −[(𝐘𝐂
1)−1 + 𝐙𝐂

2]−1(𝐘𝐂
1)−1𝐔𝑓 ≈ 𝐔𝑓                              (A4) 

where 𝐔𝑓 is the free velocity of the structure when structurally excited. The coupling 

strength can be quantified as in Eq. 9: 

𝐒 = −[𝐈 + (𝐘𝐂
1)(𝐙C

2)]−1,                                        (A5)   

Then  can be obtained from the matrix trace of S. The difference between Eq. A5 and 

Eq. 16, as mentioned in Section 2.2, is that the volume ratio becomes the ratio between 



 

 

the acoustic bulkling stiffness 𝐾𝑎 = 𝜌0𝑐0
2𝑆2 𝑉⁄  and the plate mass. The same 

conculsion was also shown in Ref. [11].  

Figure A1 shows  and D as functions of the depth of the cavity (in z-direction, also 

the out-of-plane direction of the plate). Notice D is obtained from the plate velocity as 

in Eq. 18. The plate is simply supported and made of aluminum, with a dimension of 

2.5 x 2 x 0.018 (m). It can be observed that the coupling strength undersoes fast decrease 

as the cavity depth increases, which is consistent with many previous researches [20, 

25, 26]. Neverthless, the coupling strength is much weaker than that of an acoustic-

acoustic system (typically one order of magnitude lower) even if the cavity is very 

shallow. 

 

Figure A1 Effect of the cavity depth on the coupling strength of a plate-cavity system. 
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