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The phenomenon of the acoustic black hole (ABH) exhibits unique and appealing

features when bending waves propagate along a structure with a tailored power-law

thickness profile. The ABH-induced wave retarding and energy focusing are

conducive to effective wave manipulation and energy harvesting. Using a PZT-coated

ABH beam as a benchmark, this paper investigates the electromechanical coupling

between the PZT patches and the host beam and explores the resultant energy

conversion efficiency for potential energy harvesting (EH) applications. An improved

semi-analytical model, considering the full coupling among various electromechanical

components in the system, is proposed based on Timoshenko deformation assumption

and validated through comparisons with FEM and experimental results. Numerical
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analyses are then conducted to show typical ABH-specific features as well as the

influence of the PZT layout on the electromechanical coupling of the system and the

corresponding EH efficiency. Results show that ABH effects entail effective and

broadband EH upon a proper design of the system with a due consideration of the

PZT layout in relation to the wavelength and frequency range. Some design

guidelines on the installation of PZTs are provided in view of maximization of the

ABH benefits and the energy harvesting performance.

Keywords: Acoustic Black Hole; Electromechanical coupling; Vibration Energy

Harvesting; Broadband Energy Focusing.

1. Introduction

Due to its vital role in a wide range of engineering applications, manipulation of

structural wave propagation has been arousing persistent interests in the scientific

community. Among numerous efforts, the exploration of the so-called Acoustic Black

Hole (ABH) effect has attracted widespread attention and experienced a major growth

in the past few years as reviewed in recent papers [Chong et al., 2017; Pelat et al.,

2020]. The ABH effect rests on the propagation properties of structure-borne flexural

waves in thin-walled structures. By tailoring the thickness profile of the structure

according to a reducing power-law relationship, the local phase (and the group)

velocity of the propagating flexural waves gradually reduces while approaching the

thinnest part [Mironov, 1988; Krylov, 1998], as shown in Fig. 1. In the ideal scenario

when the thickness becomes zero, wave reflection is annulled, thus causing high

energy concentration which can be effectively dissipated using a small amount of

damping materials [Krylov, 2004; O’Boy and Krylov, 2011]. The phenomenon is

shown to persist above the so-called cut-on frequency [Conlon et al., 2015] when the

wavelength becomes comparable with the size of the ABH. As a result, ABH effect

exhibits broadband features, which are conducive to conceiving lightweight and
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highly damped structures/structural components. The unique ABH properties offer

new possibilities and may trigger innovative engineering applications. Apart from a

series of fundamental work on ABH-specific phenomena and their quantifications

[Denis et al., 2014; Ouisse et al., 2019; Aklouche et al., 2016; Leng et al., 2020; Hook

et al., 2019], ABH effect has also been explored for major applications such as

vibration control, structural sound radiation and energy harvesting [Pelat et al., 2020].

Fig. 1. Schematic diagram showing flexural wave propagation in 1D ABH structure

ABHs for vibration control mainly rely on the high energy dissipation inside the

ABH area of a structure as a result of the broadband energy trapping and focusing.

Existing researches allow for a good understanding of the physical process, as well as

various means to enhance the ABH effects for effective vibration mitigation [Krylov,

2004; O’Boy and Krylov, 2011; Tang and Cheng, 2017a; Zhao and Prasad, 2018a].

ABH features can either be embedded into a structure [Conlon and Feurtado, 2018;

Kralovic and Krylov, 2007] or added to an existing structure as an add-on device

[Zhou and Cheng, 2018], designed in more or less sophisticated forms [Zhou et al.,

2017; Lee and Jeon, 2017]. They can also be used in a periodic lattice, which warrants

exceptional band gaps within which wave propagations are prohibited. Illustrations

have been made using 1D [Tang and Cheng, 2017b; Tang and Cheng, 2017c] and 2D

[Tang and Cheng, 2019] structures, in which an effective merging of the

ABH-induced local resonances and Bragg scattering entails effective energy

insulation using a small number of ABH cells.
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The second application capitalizes on the ABH-specific wave retarding

phenomena to control sound radiation in either a free [Feurtado and Conlon, 2017; Ma

and Cheng, 2019a; Bowyer and Krylov, 2015; Li and Ding, 2019] or closed space [Ji

et al., 2019]. The ABH-induced reduction in the wave speed in solid allows for the

conversion of the structural supersonic waves into sub-sonic ones (compared with the

sound speed in air) so that their sound radiation efficiencies are greatly impaired, thus

entailing a significant reduction in its sound radiation in free field [Feurtado and

Conlon, 2017; Ma and Cheng, 2019a]. When used as a cavity wall, an ABH panel

reduces the spatial coupling with the acoustic cavity, thus also resulting in reduced

sound radiation into the cavity [Ji et al., 2019b].

The strong energy concentration inside the ABH area also offers an ideal

scenario for high efficiency Energy Harvesting (EH). Surprisingly, as compared with

the aforementioned two applications, ABH-based EH has not received sufficient

attention up to now. Compared with other existing EH methods based on various

physical mechanisms [Safaei et al., 2019; Solovyev and Duong, 2016], particularly

the vibration-based energy harvesting using uniform beams, ABH shows its

promising potentials, which were first investigated by Zhao et al. [2014; 2015a;

2015b]. Using five ABH cells on a beam, covered with uniform piezoelectric patches,

the coupled electro-mechanical system was investigated through finite element

method (FEM) simulations. Results show that an ABH beam outperforms a uniform

beam in terms of harvested electrical power. Maugan et al. [2019] proposed an

equivalent ABH structure formed by piezoelectric sensors to create a gradual

variation of the equivalent Young’s modulus along the beam. The concentrated

mechanical energy at the beam center was harvested by piezoelectric device in both

weak and strong coupling cases. More recently, Zhao and Prasad [2018b] investigated

vibration energy harvesting using a cantilever beam with a modified ABH cavity. Ji et

al. [2019a] analyzed and experimentally tested a double-layer compound ABH beam,

over which multiple piezoelectric patches were used for EH. The use of an array
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comprising PZTs cut into small slices was to avoid possible neutralization of the

opposite electrical charges which would have been produced by a single PZT layer.

The system was however intuitively designed, though the basic principles were

validated through FEM analyses. Generally speaking, despite case-by-case

demonstrations on some individual EH designs, there seems to be a lack of general

investigation on the fundamental aspects of the ABH-based EH as well as the

provision of clear criteria to guide the system design to maximize the EH efficiency.

Indeed, the design of an effective EH system relies on the effective

electromechanical coupling between the host mechanical structure and the energy

harvesting devices such as PZTs. In the context of ABH-based EH, this coupling

becomes more delicate due to the weakened structural stiffness of the ABH structure,

especially within the ABH area, which requires a meticulous handling. Meanwhile,

numerous parameters involved in the physical process, relating to both the host

structure and the energy harvesting devices, make the design of an effective

ABH-based EH system extremely challenging. This obviously requires an efficient

and flexible simulation tool, which is capable of coping with the aforementioned

challenges.

The unique wave propagation pattern inside an ABH structure results in a highly

non-uniform wavelength distribution inside the structure, thus posing challenges to

the system modelling. On the top of that is the need of reaching high frequency range,

which is also a difficult task by itself even for a uniform structure [Zhang and Cheng,

2017]. Typical simulation methods used in ABH research mainly include geometric

acoustic approximation method [Krylov, 1989], impedance matrix method [Li and

Ding, 2019], Rayleigh-Ritz method [Tang et al., 2016] and predominantly, the finite

element (FE) method [Conlon et al., 2015; Hook et al., 2019; Tang and Cheng, 2019].

The latter has been overwhelmingly used in almost all ABH-based EH-related

research. Despite its universality in coping with structural complexity, FE is seen to

be computationally intensive and to lack flexibilities in terms of system optimization.
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On the contrary, though only applicable to simple structures, energy-based

semi-analytical models [Tang et al., 2016] show advantages in capturing basic

physical phenomena and performing system optimizations [Ma and Cheng, 2019b].

Efforts were made to improve the modeling efficiency by using different admissible

functions [Deng et al., 2019; Wang et al., 2019]. However, up to now, all these

existing semi-analytical models are based on Rayleigh-Ritz procedure and adopt

Euler-Bernoulli assumptions for beams and Love-Kirchhoff assumptions for plates,

which both neglect the shear and rotational effects. These assumptions, though

acceptable for investigating the overall dynamics of ABH structures, may lead to

significant inaccuracies within the thinnest region of an ABH, for example the tip

region of an ABH beam. As to be demonstrated later, this area happens to be the most

critical area for EH, where the structural deformation is large and broadband

frequency responses need to be considered. In addition, piezoelectric patches inside

the ABH area interact with the host structure, mainly in two ways: generating

electromechanical coupling with the host structure which is indispensable for EH; and

compromising the ABH effects due to the increased structural stiffness which may

adversely affects the energy trapping. These compelling factors need to be

meticulously considered and balanced during the system design. Obviously, this

requires a flexible simulation tool to cope with the specific needs of ABH-based EH

to guide the system design. Meanwhile, a good understanding and quantification of

the electromechanical coupling and energy conversion in the system is also of

paramount importance to achieve efficient EH.

Motivated by the above, this paper targets a twofold objective: a) to propose a

semi-analytical electromechanical model which considers the full electromechanical

coupling between a host beam and the coated PZT patches and the high-frequency

shear effects of the beam; and b) to apply the proposed model to a benchmark

PZT-coated ABH beam and carry out systematic analyses on a few important issues
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pertinent to EH and explore the underlying mechanisms governing the

electromechanical coupling and energy conversion.

The rest of the paper is organized as follows. Theoretical formulation is first

presented. The model is then validated through comparisons with experiments and the

Finite Element (FE) results, alongside a brief discussion on the convergence behavior

of the model in terms of the newly added rotational angle of the beam cross sections.

Numerical analyses are then conducted to show typical ABH-specific features as well

as the influence of the PZT layout on the electromechanical coupling strength of the

system and the corresponding EH efficiency. Results show that ABH effects allow for

effective EH upon a proper design of the system and a due consideration of the PZT

layout in relation to the wavelength and frequency range. To guide the design, some

guiding criteria on the deployment of the PZT are established which maximizes the

ABH benefits and the energy harvesting performance.

2. Theoretical model and formulation

Fig. 2. A Timoshenko beam with symmetrical ABH power-law profiles

As shown in Fig. 2, the system under investigation consists of a beam undergoing

flexural vibration under a point force excitation f(t) at xf. The beam, with a constant

width b, is composed of an uniform portion with a constant thickness 2hu and an ABH

portion with variable power-law profiled thickness (2hb) from xu to l, i.e. hb(x)=β(lref

-x)m, in which lref is a reference length, corresponding to the length of an ABH beam

he
x

PZT

l
lref

xu

hu

k1

k2

f (t)

xf

b
hb(x)=β(lref-x)m

h0

xe1 xe2y
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when its terminal thickness reduces to zero, i.e. a beam without truncation.

Piezoelectric patches with a constant thickness he and a length xe are symmetrically

placed over the two surfaces (top and bottom) of the beam from xe1 to xe2. The whole

system is therefore symmetrical with respect to the mid-line of the beam. The

non-uniform end of the beam is free, while the other end is elastically supported by a

rotational spring k1 and a translational spring k2, the stiffness of which can be adjusted

to mimic various boundary conditions. For example, by assigning large values to k1

and k2 which are sufficiently higher than the overall stiffness of the beam, a clamped

boundary can be simulated. Such a treatment also eliminates the geometrical

boundary conditions of the system, thus facilitating the choice of the admissible

functions to approximate vibration displacement of the system [Tang et al., 2016].

Timoshenko deformation assumption is adopted to accommodate the need of

achieving a more accurate characterization of the beam vibration, especially toward

its tip area. As such, the cross-sectional rotational inertia and shear deformation of the

beam are to be considered. Therefore, the displacement field of the beam can be

written as:
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where u(x, y, t) and w(x, y, t) are, respectively, the displacements of an arbitrary point

in the beam along the x- and y- axes, and u(x, t) and w(x, t) are the corresponding

displacement components in the mid-plane. t is the time. θ(x, t) is the rotational angle

of the beam cross-section. Details are shown in Fig. 3.
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Fig. 3. Illustration on the two system unknowns

The linear strain-displacement relations yield the following normal strain and

shear strain expressions:
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The out-of-plane displacement, w(x, t), and the rotation angle, θ(x, t), are

expressed as:
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where φi(x) and ϕi(x) are the assumed admissible shape functions for w(x, t) and θ(x, t),

respectively. Encapsulated into vectors, they are contained in φ(x) and Φ(x),

respectively. Expressed this way, ai(t) and bi(t) are the corresponding temporal

coordinates to be determined, also packed into two unknown vectors a(t) and b(t),

respectively. There are many possible choices for φi(x) and ϕi(x) as long as they are

linearly independent, since the use of the artificial springs has removed all the

geometrical boundary conditions. For convenience, the same admissible functions are

used for φi(x) and ϕi(x) in the subsequent analyses. More specifically, we adopt a set

of modified trigonometric functions with supplementary boundary smoothing terms as

follows [Wang et al., 2019]:
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where λil=iπ/l, with i = 0, 1, 2, …. and N and M denoting the truncated number of

terms to be kept in the calculation. Reasons for choosing such functions are briefly

recalled as follows. Standard trigonometric series show excellent fitting capability and

smoothness, except at the beam boundary. In the present case, they cannot satisfy the

elastic boundary conditions of ABH beam due to the differential discontinuities of the

higher-order spatial derivatives at the boundaries. As demonstrated earlier for a

Euler-Bernoulli beam [Wang et al., 2019], to satisfy the differential continuity

requirements by the force equilibrium and geometric coordination at the general

elastic end supports, the standard trigonometric series should be supplemented by

auxiliary boundary smoothening functions ζ(x). Detailed expressions of these

functions are given in Appendix A, with more details provided in our previous work

[Wang et al., 2019]. When M is zero and last four terms are ignored, i.e. without

considering the rotation angle, the model degenerates to a Euler-Bernoulli model.

Classical constitutive equations of piezoelectricity write:
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where T is the stress; S the strain; D the electric displacement and Ee the electric field.

cE is the elastic stiffness constant of PZT measured at constant electric field and εS the

dielectric constant measured at constant strain. The term e is the piezoelectric stress

constant. In the present model where thin PZT patches are used, the electric potential

across the PZT element writes:
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where ψ(y) is the electrical field function in the thickness direction, which is assumed

to be constant as he; v(t) is the electrical voltage across the PZT thickness.

The modeling procedure follows the general variational principle framework [Mi

et al., 2018]. Upon constructing the Hamiltonian functional, its externalization leads

to the Lagrangian equation:

0
)()(
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where, qi(t) represents ai(t), bi(t) and v(t) and the Lagrangian L is expressed as:

WEEL pk  (11)

in which Ek represents the kinetic energy of the entire system (beam and PZT patches);

Ep the corresponding potential energy and W the work done by the external force and

electrical loading. These physical quantities are respectively expressed as:

dx
tx

w
t

Idx
t
wOEk  



































22

2
1

2
1  (12)

 





 





















p
0

2
2

0

2

1

2
2

2

2

2
1

2
1

2
1

2
1 DdVEwk

x
wkdxGOdx

xx
wEIE

xx

p
T (13)

)()(),()( tqtvtxwtfW  (14)

Note the integrations cover both the host beam and PZT patches. Therefore, the

parameters involved apply to either the beam or PZT patches depending on the

integration domain. More specifically in the above expressions, ρ represents the

density of structural components (beam or PZT layers depending on the integration

interval); E is their elasticity modulus, in which a structural damping is included as

E=E(1+iη) with η being the damping loss factor; G is their shear modulus. Besides, O

denotes the cross-sectional area; I the cross-sectional moment of inertia and κ the
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cross-section shear coefficient, usually taken as 5/6 [Cowper, 1966]. v(t) is the voltage

and q(t) the electric charge.

After truncating the decomposition series in Eqs. (4-5), applying Eq. (10) leads

to the following fully coupled electromechanical equations, written in a matrix form:

)()()()(           
)()()()()(

121

321121

ttvt
ttt

bb

aaabaa

fΘbKK
aKKKbMaMM


  (15)

0)()()()()()()( 25432121  tvtttt bbbbbbb ΘbKKKaKKbMaM  (16)

)()()()( 21 tqtvCtt eq  bΘaΘ TT (17)

where M and K with subscripts stand for different components which form the global

mass matrix and stiffness matrix. Similarly, Θ is the electromechanical coupling

matrix and Ceq the capacitance of the PZT equivalent circuit. T denotes the transpose

of a matrix. Details of these matrix components are provided in Appendix B.

The structure can be connected to an external circuit module as part of the whole

coupling system, either for energy harvesting or control purposes. The

electromechanical coupling in the system is ensured via the electrical voltage v(t). For

example, a simple LRC oscillating circuit, shown in Fig. 3, can be used, governed by:

)()(1)()( tvtq
C

tqRtqL
e

e   (18)

where Ce is the capacitance; Le the inductance and R the resistance of the LRC circuit,

Ceq the equivalence capacitance of the PZT. This equation should be jointly used with

Eq. (17).
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Fig. 4. RLC circuit diagram

The model inherits the following salient features. 1). The displacement field

assumption (Eqs. (2-3)) as well as the kinetic energy Ek and the potential energy Ep

apply to the entire system, including the host ABH beam and PZT patches. Therefore,

PZT layers are modeled as an integrated part of the system with their intrinsic

material properties and full coupling with the host beam included into the model.

Similarly, should other additional elements be considered, like damping layers, their

effects can also be easily added into the system through incorporating their energy

terms into the Lagrangian. 2). More relevant to the electromechanical coupling, any

external electrical module can also be easily added as part of the system, thus forming

a complete set of fully coupled electromechanical model, conducive to studies such as

the design of efficient electrical circuits to maximize the EH efficiency or to tactically

alter ABH effects of the host structure through electromechanical feedback. 3). In

terms of utilization, the above set of coupled equations can be solved in either time or

frequency domain. In the latter case, upon a suitable truncation of the decomposition

series, both eigen-problem or forced vibration problems can be readily solved to

obtain the natural frequencies of the system (either open- or short-circuited) or the

system response (either mechanical or electrical), respectively.

3. Model validations with finite element simulations and experiments.

The accuracy of the proposed model is assessed though comparisons with FEM

results and experiments. A free-free ABH beam (by assigning k1 = k2 = 0) is used. The
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beam configuration is the same as the one used in [Tang et al., 2016], with its

physical and geometrical parameters tabulated in Table 1. The ABH beam is subject

to a harmonic point force excitation of 1N in amplitude at the point xf =0.06m on the

uniform portion. All calculations are conducted using N=146 and M=10, which ensure

converged results within the entire frequency range of interest investigated in this

paper (this will be discussed in detail later, and the same set of these parameters will

be used in all subsequent analyses). Parameters of a typical piezoelectric ceramic

patch PZT-5H [Cheng, 2017] are used in the simulation.

Table 1. Physical and geometrical parameters of the free-free ABH beam

Material parameters Geometrical parameters
Beam
Density: ρb=7794kg/m3

Damping loss factor: ηb=0.005
Elasticity modulus: Eb=200GPa
Shear modulus: Gb=97GPa

PZT
Density: ρe=7600kg/m3

Damping loss factor: ηe=0
Elasticity modulus: Ee=132GPa
Shear modulus: Ge=64GPa
Piezoelectric stress constant: e=-4.1C/m3

Dielectric constant: εs=5.84×10-9F/m

Beam
β=0.125
m=2
b=0.05m
xu=0.16m
l=0.28m
lref=0.32m
hu=3.2mm
h0=0.4mm

PZT
xe1=0.16m
xe2=0.28m
he=0.4mm

3.1 Validation with FEM results

The accuracy of the established model is first verified through comparisons with the

results of the FEM using COMSOL Multiphysics. The beam and the PZT patches are

modeled using 2D Solid Mechanics module and Electrical Circuit module,

respectively. For the external electrical circuit, a purely resistive circuit is considered.

Non-uniform meshing is used to ensure the accuracy of the FE modeling. The tip

region, where the beam thickness reduces to the minimum truncation thickness, is
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densely meshed by ensuring a minimum of 10 elements per wavelength at the highest

frequency of interest. This results in a total of 3316 non-uniform triangular elements.

In addition, PZT patches are discretized with 864 triangular elements. The meshing of

the structure is shown in Fig. 5, with two insets showing more details on two selected

segments of the beam (one at the junction between the uniform portion and the ABH

region, and the other near the ABH tip).

Fig. 5. Details of FE meshing with two sub-insets showing meshing details near two selected

segments of the beam (blue color denotes PZT areas)

Firstly, the ABH beam without PZT patches are examined. Table 2 shows a

comparison in terms of the first eight resonant frequencies, obtained from different

models: FE simulation, Euler-Bernoulli beam and the present model. Relative errors

with respect to the FE results are tabulated in the Table. It can be seen that, both

Euler-Bernoulli model or the present model give reasonably accurate results for the

lower order modes up to the fourth or fifth one (with an error less than 1 percent as

compared with FE results). For higher order modes, however, Euler-Bernoulli results

start to show obvious error, reaching over 2% for the eighth mode of the beam. Using

the present model together with the use of admissible displacement functions, an

improved calculation accuracy is achieved (with an error typically capped at roughly

0.4% for all eight modes considered). This verifies the improved accuracy of the

established model.

Table 2. Comparisons of resonant frequencies and relative error with respect to FE results

FE COMSOL Euler-Bernoulli Present model



16

Natural Frequency Natural Frequency Error (%) Natural Frequency Error (%)
448.42 448.73 0.0691 449.22 0.1784
821.07 822.53 0.1778 821.86 0.0962
1452.4 1457.0 0.3167 1454.5 0.1446
2264.7 2278.4 0.6049 2267.1 0.1060
3238.9 3266.4 0.8491 3244.5 0.1729
4461.4 4517.4 1.2552 4469.7 0.1860
5805.8 5904.2 1.6949 5822.5 0.2876
7390.1 7554.6 2.2260 7420.8 0.4154

The point velocity response curves from different models are shown in Fig. 6.

The point velocity is expressed in terms of Decibel (dB, 20log10(velocity) referenced

to 1). It follows that the result from the present model agrees very well with the FE

simulation, in terms of both amplitude and peak locations (the measurement point is

xm=0.27m). The model successfully alleviates the obvious errors produced by the

Euler-Bernoulli model in terms of discrepancy of the resonance peak locations,

especially at the high frequency end of the curves. It is therefore apparent that the

neglected shear and rotational effects in the Euler-Bernoulli model are important in

such an ABH beam, and they are indeed well-apprehended by the current model

through introducing an additional degree of freedom via rotational angle θ(x, t).

Fig. 6. Comparisons among different models of the point velocity response of a free ABH

beam without PZT layers
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Capitalizing on this configuration, we further investigate the convergence

behavior of the present model. While the series truncation rule for the out-of-plane

displacement of the beam (N in Eq. (6)) has been well-tested and respected in the

current calculation to ensure a converged result, the same analysis is performed here

for the newly introduced rotational angle (M in Eq. (7)). Using N=146, which ensures

the converged solution for the corresponding Euler-Bernoulli beam, Fig. 6 shows the

calculated velocity results for different M values. Note M=0 corresponds to

Euler-Bernoulli model. It can be seen that, as expected, the calculated resonance

peaks are shifted toward low frequency with the increase of M (from 0 to 10) as a

result of the rotation- and shear-induced reduction in the structural stiffness. When M

continues to increase to 50, however, the curve almost coincides with the one using M

=10, thus suggesting the results have converged. It can also be seen that, although the

consideration of the shear effect and the rotational angle is important, only a small

number of decomposition terms, as compared to the truncation order for the

out-of-plane motion, would be enough to ensure the accuracy of the calculation.

Fig. 7. Convergence with respect to the truncation term M used in rotational angle

approximation

With piezoelectric patches added to the beam, using parameters tabulated in

Table 1, comparisons with FEM results have also been carried out in terms of both

point velocity responses (Fig. 8a) and electrical power output from the PZT (Fig. 8b).

It follows that the present model also agrees very well with the FE results, in terms of
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both amplitude level and resonance frequencies, as shown in both comparison figures.

For the latter, we use a purely resistive circuit conceded to the PZT. As a

representative example, PZT patches cover the entire ABH portion of the beam. With

an electrical resistance R=1000Ω, the harvested electrical power from each PZT patch

is calculated as P=V 2/R, thus giving the total harvested electrical power of Pout=2P.

From Fig. 8b, it can be seen that the predicted result by the present model is highly

consistent with the FE simulations, in terms of both amplitude and peak locations.

a. b.

Fig. 8. Comparisons between different models with PZT on the beam. a. point velocity; b.

output electrical power

3.2 Experimental validations

The same ABH beam used in Fig. 6 was experimentally tested. The beam was

suspended by two thin strings, which were attached to a rigid frame to produce the

free boundary conditions of the beam, as shown in Fig. 9. The beam was excited at a

point 0.22m away from the ABH tip) using an electromagnetic shaker with the force

measured through a force transducer (B&K 8200) and amplified by a charge amplifier

(B&K 2635). A Polytec scanning laser vibrometer (PSV) was used to generate a

periodic chirp signal with frequency from 0Hz to 12kHz to feed the shaker via a

power amplifier (B&K 2706) and to scan the whole beam for response measurement.
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Fig. 9. Experimental set-up

Velocities predicted by the present model at a point which is 0.01m away from

the tip of the beam are compared with the experimentally measured results in Fig. 10.

It can be seen that, despite some noticeable differences, the general variation tendency

of the vibration response with respect to frequencies is reasonably well predicted by

the proposed model. Discrepancies, though visible in some resonance peaks as well as

in the dip region (around 6400 Hz), are deemed acceptable from engineering

viewpoint. This further validates the model.

Fig. 10. Comparisons of point velocity response with experiment

Therefore, the proposed model, as well as the improvement it brings about to the

existing semi-analytical model, have been fully validated from both passive and

coupled electro-mechanical perspectives. As a side note on the efficacy of the
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proposed model, its computational efficiency is also roughly estimated against FE

simulation. Using the same step size, the present model is roughly five times faster

than the FE simulation using COMSOL. Owing to the modular and energy-based

nature, the proposed semi-analytical model offers the flexibility and the efficiency as

a useful platform for guiding the design and eventually the optimization of an

ABH-based EH beam system.

4. Numerical analyses on ABH-specific EH and Electromechanical coupling

Using the established model, issues pertinent to EH are investigated, including the

quantification of the EH performance and its relationship with ABH features,

influences of the PZT layout and characterization of electromechanical coupling and

that of the energy conversion efficiency. The analyses lead to some simple design

principles based on the electromechanical coupling coefficient of the structure. The

system under investigation is a cantilever ABH beam (clamped at the end of the

uniform portion and free at the ABH tip), with physical and geometrical parameters

tabulated in Table 3. Parameters marked as case-specific in the Table are variables to

be defined in each case. The beam is subject to a harmonic point force excitation of

1N in amplitude at xf =10cm on the uniform portion. The clamped boundary is

simulated using k1 = k2 = 1012, by following the established procedure [Cheng and

Nicolas, 1992]. In the present case, no meaningful changes are observed when further

increasing these values, which means a converged solution has been obtained. The

same values of N and M values   as in the free boundary case are used in the

simulation. The convergence of the calculation was carefully checked in a way similar

to the free-beam case.

Table 3. Physical and geometrical parameters of the cantilever ABH beam

Material parameters Geometrical parameters
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Beam
Density: ρb=7800kg/m3

Damping loss factor: ηb=0.005
Elasticity modulus: Eb=210GPa
Shear modulus: Gb=102GPa

PZT
Density: ρe=7600kg/m3

Damping loss factor: ηe=0
Elasticity modulus: Ee=132GPa
Shear modulus: Ge=64GPa
Piezoelectric stress constant: e=-4.1C/m3

Dielectric constant: εs=5.84×10-9F/m

Beam
β=0.1
m=2
b=0.05m
xu=0.25m
l=0.45m (case-specific)
lref=0.5m
hu=6.25mm
h0=0.5mm (case-specific)

PZT
xe1=0.25m (case-specific)
xe2=0.45m (case-specific)
he=0.5mm

4.1 ABH-specific phenomena near the tip region

Having demonstrated the differences between different beam models in previous

sections, the necessity of the proposed model in characterizing ABH-specific physical

phenomena is investigated from EH perspective. Meanwhile, a good understanding on

system dynamics will also be beneficial for the subsequent EH analyses.

With flexural waves propagating inside the ABH beam, the phase velocity of the

waves, c, within the ABH portion is governed by [Tang and Cheng, 2017a]:
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where h denotes the half-thickness of the beam, applicable to either the uniform

portion (hu) or the ABH portion (hb). Obviously, c decreases when the thickness h

decreases. The corresponding wavelength λ= c/f writes
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An important metric to characterize the ABH phenomena is the cut-on frequency

or the characteristic frequency of an ABH structure, denoted by fc and defined as
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where lABH denotes the length of the ABH portion. Approaching this frequency, the

wavelength of the incoming wave becomes comparable and shorter than the

characteristic dimension of the ABH region. The cut-on frequency is commonly used

to roughly signal the ABH cut-on, above which systematic ABH effects can be

expected, though below which some ABH features may also appear depending on

system dynamics [Tang and Cheng, 2017b], albeit not systematically. In this sense,

this frequency should not be used as an absolute limiting value to demarcate the ABH

regions, but rather as an indicator. Obviously, the cut-on frequency depends on the

length of the ABH portion, which itself is linked to the truncated tip thickness of the

beam. A thinner truncated thickness would in principle warrant better ABH effects,

but also put harsher requirement on the accuracy of the model to truthfully depict the

wave behaviors toward the ABH tip. To illustrate the issue, Fig. 11 shows the

calculated velocity of the ABH beam (without PZTs) with two different truncated

residual thicknesses at the tip end: one is the nominal beam configuration with a total

beam length of 45cm (with a truncated residual thickness of h0 = 0.5mm), whilst the

other one, 5cm longer, has no truncation (h0=0mm). The calculated response point

remains the same in both cases at xm=45cm, with is the tip point of the shorter beam.

The figure also shows the comparison between Euler Bernoulli model and the present

model in the case of shorter beam.
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Fig. 11. Point velocities of two ABH beams with/without thickness truncation at xm=45cm

Comparisons in Fig. 11 show several typical ABH phenomena which are worth

noting. First, the extension of the beam by 5cm, alongside the elimination of the

residual truncated thickness, brings about two eminent phenomena. a). the number of

resonance peaks is significantly increased. Therefore, the structure exhibits increased

dynamics; and b). the vibration level at the calculation position is also significantly

reduced. Both observations can be attributed to the ABH effects. In fact, by increasing

the length of the ABH portion, the cut-on frequency of the beam is reduced, from

1470 Hz down to 940 Hz in the present case. As a result, in addition to the expected

low-frequency shift in the natural frequencies of the overall beam due to the length

elongation, additional local resonances also increase the number of peaks as the result

of an earlier onset of the ABH effects. Most importantly, the slight elongation of the

ABH tip also creates a drastic change in the vibration level at the calculation point on

the structure. With the extension of the ABH tip region, the focal location for energy

focusing is shifted from x=45cm (the tip of the shorter beam) to x=50cm (the tip of

the longer beam). This explains why the energy level of the longer beam at xm=45cm

experiences a drastic reduction as compared to the shorter beam at the same

calculation point. The above observation provides the additional evidence that the

structural dynamics of the ABH structure around the tip region is very complex and

sensitive to structural details, therefore posing harsh requirement on the accuracy of

the model. Even for the shorter beam, comparisons between the two beam models,

depicted in Fig. 11, clear show the deficiency of the Euler-Bernoulli, with a much

larger discrepancy than what was observed in Fig. 6 in terms of both peak location

and level, the reason being the present beam is longer and the observation point is

closer to the tip region.

4.2 Energy harvesting performance and efficiency



24

For the ABH beam under investigation, the energy harvesting performance depends

on many system parameters including structural details, external EH harvesting circuit

as well as parameters related to PZT and its deployment layout over the beam. With

no intention to achieve an optimal configuration, we shall focus on a few important

issues to illustrate some important and generic aspects relevant to the general

ABH-based EH.

As an important EH evaluation metric, apart from the harvested electrical power,

we introduce an energy conversion rate, δ, which is defined as the ratio between the

harvested electrical power and the input mechanical power:

}Re{2
1 *vF
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Note that, based on energy conservation, Pin would include both the harvested

electrical power and the dissipated power in the mechanical system.

4.2.1. Effects of the external EH circuit

Using the PZT configuration tabulated in Table 3, we first examine the effect of an

external electrical circuit on EH performance in order to set the ground for subsequent

analyses. The external circuit in this case is a purely resistant, with a resistance value

taken as 100Ω, 1000Ω and 10000Ω, respectively. The results of output power and the

energy conversion rate are shown in Figs. 12a and 12b, respectively.

a. b.
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Fig. 12. Comparison of the energy harvesting efficiency with different resistance values

Both figures show that the resistance significantly affects both the output power

and energy conversion rate. For the harvested electrical power, different resistances

do not seem to affect the position of the peaks which correspond to the system

resonances. This partially reflects the weak feedback loading of the external electrical

resistance on the vibrating structure. However, they seriously affect the level of the

harvested power. Apparently, the influence is also frequency dependent and an

optimal resistance value only applies to a given frequency range, which can be

determined through an optimization problem. The influence of the resistance can be

better seen by examining the variation of the energy conversion rate, shown in Fig.

12b. In the present case, R=1000Ω seems to provide an acceptable compromise to

cover the frequency of interest. As mentioned before, the optimal design of the energy

harvesting circuit to target particular system configuration is definitely not the focus

of this work. Therefore, R=1000Ω will be used in all subsequent analyses.

4.2.2. PZT layout and advantages of the ABH-based EH

The way that PZT is deployed over the vibrating beam will definitely affect the

energy harvesting power. In order to illustrate this, we will first discuss the effect of

PZT position over an ABH beam on the EH efficiency. To demonstrate the benefit

that one can draw from the wave focusing effect in ABH region for EH, the harvested

electrical power by the PZTs placed on the free end of the ABH portion is compared

with the one when they are placed at the clamped end, which is known as the best

position for EH in a cantilever, where the strain energy is the maximum. Another

position around the junction between the uniform and ABH portions is also included

for comparisons. In all cases, the length of PZT patches is 5cm, and the external

circuit is a pure resistor with 1000Ω. The output power and the energy conversion rate
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of the piezoelectric patches corresponding to the three positions are shown in Figs.

13a, and 13b, respectively.

a. b.

Fig. 13. Comparison of energy harvesting efficiency between different positions

By comparing the output power of the three positions (Fig. 13a), we can

immediately conclude that Position No.2 shows no advantages over No.1, while both

being placed over the uniform part of the beam. This indeed confirms the common

believe that placing PZTs toward the clamped end of a cantilever is indeed desirable

in terms of getting a higher energy. Comparing Position No.1 with Position No.3

shows that the harvesting at the clamped end seems to deliver higher output power at

the very low frequency end, then become comparable with that provided by Position

No.3 before entering into a wide frequency range in which EH at the end of the ABH

tip region (No.3) outperforms the clamped end. This transition roughly starts when

approaching the cut-on frequency of the ABH beam, and definitely in a consistent

manner after (1470Hz). This is definitely owing to the energy trapping effects of the

ABH, thus drawing energy away from the rest of the structure to create a high energy

concentration around the tip region and pick up by the PZTs. The observed tendency

is confirmed from the perspective of the energy conversion rate δ (Fig. 13b). Again,

the advantage of harvesting energy around the ABH tip region is obvious, consistent

with the conclusion drawn from the output power.

On the other hand, EH at the clamped end of ABH beam offers generally lower,

but more evenly distributed δ across the entire frequency range. On the contrary, EH
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at the ABH tip region exhibits very high energy conversion rate over an appreciable

broad frequency range after the ABH effect is cut-on, which shows the great potential

of the ABH-based broadband EH, including high-frequency energy conversion. It is

relevant to note and comment on the observed decreasing trend of δ at the high

frequency region, shown in Fig. 13b. As will be demonstrated later, the PZT length

used in the present example is definitely not optimal for this high frequency band,

since the PZT length in this case starts to exceed the half-wavelength of the bending

wave. Therefore, the electrical charges produced over different parts of the PZT start

to partially neutralize the total energy output. Therefore, a proper sizing of the PZT is

expected to offer the ability of tactically targeting particular frequency range in order

to achieve the ultimate EH performance.

4.2.3. Effect of the PZT size

The size of the PZT patches is an important parameter which should be properly

designed for effective EH. The issue is investigated here using the above ABH beam

with PZTs of different lengths at the tip region. Note that, in the present case, the

shortest wavelength of the bending waves inside the beam occurs at the truncated tip.

For the highest frequency considered here, i.e. 4000Hz, this value is roughly 5cm.

Four lengths of piezoelectric patches are chosen as 20cm, 5cm, 2.5cm and 1cm,

respectively. Using the same resistive circuit with R=1000Ω, the harvested electrical

power and the energy conversion rate corresponding to the four PZT lengths are

shown in Figs. 14a, and 14b, respectively.
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a. b.

Fig. 14. Comparison of energy harvesting efficiency between different PZT length

Figure 14a shows that, at the low frequencies, exemplified by the first and the

second peaks, the harvested energy by the longest PZT is obviously the highest. This

is understandable, since this low frequency region is dominated by the global modes

of the beam, exhibiting long wavelength and overall structural deformation. Therefore,

ABH effect is absent in this frequency region and a longer PZT would definitely be

beneficial to EH. With the increase of the frequency, shorter PZTs (5 and 2.5 cm) start

to show better performance when approaching the cut-on frequency of the ABH and

the effect is persistent when frequency further increases. This is due to the

ABH-induced energy focusing in the ABH portion. A closer examination and

comparison between the two curves (corresponding to 5 and 2.5 cm) show a transition

in terms of the harvested power with the increase of the frequency. More specifically,

as compared with the 2.5cm PZTs, the 5cm one performs better at first, but

deteriorates when frequency increases. This can also be physically explained. In fact,

structural wavelength decreases with the frequency, more drastically within the ABH

region (Eq. (20)). Therefore, when frequency increases, a longer PZT is more likely to

cover more wave undulations, thus producing opposite charges over different parts of

the PZT, which ultimately would neutralize the energy output. This of course depends

on the targeted frequency range. For example, in the present case below 4000Hz, the

shortest PZTs (1cm) can hardly deliver satisfactory EH performance. The relationship



29

between the optimal PZT length and the structural wavelength will be scrutinized

later.

The effective EH frequency range for each PZT length can be better seen in

terms of the energy conversion rate (Fig.14b). The observation is basically consistent

with the conclusions drawn from previous power analysis. Definitely, the longest

PZTs show high but very narrow effective frequency range, before the ABH cut-on.

With a proper sizing of the PZTs, relatively broadband EH can be achieved after the

ABH cut-on, exemplified by the two intermediate lengths cases investigated here.

Though broadband, the frequency zone allowing the highest EH performance,

however, depends on the PZT length. Up to a certain limit, a shorter PZT would favor

higher frequency EH. Nevertheless, over-shortened PZTs, placed at the tip region of

the beam, seem to provide reasonable EH performance, unless the truncation tip

becomes very thin and the targeted frequency is extremely high.

Therefore, we can make a preliminary conjecture that the length of the

piezoelectric patches should be positively related to the wavelength at the laying

position. Different lengths of piezoelectric patches would suit different frequency

ranges. With a proper sizing and positioning of the PZT layout, ABH structures can

enable efficient, broadband and high frequency EH.

In order to provide a design guideline on the optimal PZT length, the relationship

between the PZT length and the structural wavelength in the ABH beam is

investigated. To this end, we introduce a dimensionless parameter, referred to as

normalized PZT length, xe/λc, where xe is the length of PZT patch and λc the

wavelength of the structure at the center point of the PZT patch. Using this

normalized parameter, the energy conversion rate δ, with the same set of PZT lengths,

is plotted in Fig. 15. Note due to the truncation thickness of the ABH beam, the range

of xe/λc that each PZT length can cover is different. It can be seen from Fig. 15 that,

despite the differences in their physical length, the regions corresponding to a high

energy conversion rate are all close to, but slightly higher than xe/λc = 0.5，i.e. when
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the PZT length is about half of the wavelength at the central point of the PZT. Though

experimentally observed in a previous work on a specific configuration [Liang et al.,

2019], results from Fig. 15 confirm this rather general relationship between the

structural wavelength and the laying size of the piezoelectric patches quantitatively,

which offers a rule of thumb and useful guidance for determining the optimal size of

the PZT with respect to the operating frequency of the structure as well as the position

of the PZT coverage. The observed phenomenon can be explained from the viewpoint

of spatial matching between the PZT length and the corresponding structural

wavelength. In fact, if the beam were uniform, the optimal normalized PZT length

would have been exactly 0.5. For the ABH-beam, structural wavelength under the

PZT gradually reduces, more significantly toward the tip. Therefore, this

ABH-induced wave compression causes the derivation of the optimal normalized PZT

length from 0.5. A straightforward extension of this observation would guide the

design of multiple PZT patches, in which case multiple PZT patches with different

lengths can be deployed to accommodate different parts of the beam to collectively

achieve enhanced EH performance.

Fig. 15. Energy conversion rates with respect to the normalized PZT length.

4.3 Electromechanical coupling and energy conversion
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Through the above analyses, we understand that numerous parameters would affect

the energy harvesting efficiency of the ABH-based EH. Therefore, the design of an

effective system is a complex problem which should take all these factors into

consideration to draw the maximum of benefit out of them. The key is to achieve a

good understanding and quantification of the electromechanical coupling and the role

it plays in the energy conversion process. To guide the design, we examine possible

criteria governing the deployment of the PZT to maximize the ABH benefits and the

energy harvesting performance. To this end, we use the electromechanical coupling

factor k to establish its possible relationship with the energy conversion rate. More

specifically, k is defined as [Raze et al., 2019]:

sc

scock 2

22
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 (23)

where ωoc and ωsc are the angular natural frequencies of each mode of the structure

when the piezoelectric transducer is open-circuited and short-circuited, respectively.

Both can be calculated using the established model by solving the corresponding

eigenvalue problems.

a.
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b.

c.

Fig. 16. Comparison of energy conversion rate and electromechanical coupling factor

Using the same set of configurations as Fig. 15, the electromechanical coupling

coefficients k and energy conversion rates δ corresponding to three PZT lengths are

computed and shown in Fig. 16. k and δ are shown on the left- and right-and-side axes,

respectively. It can be seen that, the variations in both k and δ with respect to

frequency exhibit very consistent trend in all three cases, thus suggesting that the

electromechanical coupling coefficient k could be regarded as a simple and intrinsic

indicator of the EH efficiency. It can then be used in the design of effective

ABH-based EH structure by tuning or optimizing the numerous physical and

geometrical parameters of its components through maximizing k. Note this

electromechanical coupling coefficient can either be calculated using the present

model or even experimentally measured.
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5. Conclusions

In this paper, a fully-coupled electromechanical model of PZT-coated Acoustic Black

Hole beams is established. The proposed model considers the full coupling among

various electromechanical constituents present in the system. Comparisons with

experimental and finite element results demonstrate the validity of the model and its

improved accuracy in comparison with the existing semi-analytical model. Meanwhile,

the necessity of considering the shear and rotational effects of the beam is

demonstrated to cope with the ABH beam which features obvious wave compression

phenomenon and exhibits complex dynamics within the ABH area, critical to energy

harvesting (EH) applications.

Numerical results show that ABH effects entail effective EH upon a proper

design with a due consideration of the PZT layout in relation to the wavelength and

the targeted frequency range. The unique wave retarding and energy focusing features

of the ABH beam favor the PZT installation in the vicinity of its tip area, which

warrants better EH performance than the common practice of harvesting at the

clamped end, within a broad frequency range except the very low end before the ABH

cut-on. Approaching and above the ABH cut-on, upon a proper sizing of the PZT,

ABH offers efficient and broadband EH, as reflected by the enhanced harvested

power and energy conversion rate.

While the tip region proves to be an ideal area for PZT installation, its dimension

however needs to be meticulously designed to cope with the targeted frequency range.

Numerical results show that, in general, a shorter PZT would favor higher frequency

EH. As a rule of thumb, a PZT should be sized in such a way that, for a given

frequency/frequency range, the normalized PZT length (with respect to the structural

wavelength at the center of the PZT covered region) is close, but slightly larger than

0.5 to ensure a high energy conversion rate. Should one need a more rigorous design
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criterion, the electromechanical coupling is shown to exhibit consistent variations

with the energy conversion rate of the system, thus providing a good indicator to be

used for either evaluating the EH performance or tuning/optimizing system

parameters for enhanced EH performance.

As a final remark, it is relevant to note that this work puts its emphasis on some

fundamental issues pertinent to ABH based EH from the perspective of simulation

model and the underlying physics. Though definitely possible, no effort has been

made to strive for optimal EH performance which is configuration specific and

requires system optimization. This, if necessary, can be readily done using the

proposed simulation model, which goes beyond the main scope of this paper.

Meanwhile, the extension of the proposed model to plate structures should not pose

particular technical difficulties. Cases like ABH plates embedded with circular ABH

indentations without PZTs have previously been investigated both numerically under

Love-Kirchhoff deformation assumptions [Ma and Cheng, 2019a] and experimentally

[Ma and Cheng, 2020]. Since the proposed modelling framework is energy-based, the

addition of PZTs and external electrical circuits should also be straightforward by

following the same procedure established in the present paper.
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SAR (PolyU 152023/20E) and National Science Foundation of China (No. 11532006)

for their support.

Appendix A. Formulas of auxiliary boundary smoothening functions ζ(x).
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Appendix B. Formulas of different terms in matrices used in Eq. (17)

Formulas for various terms involved in the mass matrix M are detailed as

follows.
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Formulas for various terms involved in the mass matrix K are:
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Formulas for the electromechanical coupling matrix Θ are:
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