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Abstract 

Sensing is a fundamental yet crucial part of a functional structural health monitoring (SHM) 

system. Substantial research has been invested in developing new sensing techniques to 

enhance sensing efficiency and accuracy. Practical applications of SHM approaches to real 

engineering structures require strict criteria for the sensing system (e.g., weight, position, 

intrusion and endurance), which challenge existing sensing techniques. The boom in 

nanotechnology has offered promising solutions for the development of new sensing 

approaches. However, a bottleneck still exists when considering the density of sensors and 

surface-mounted modality of installation. In this study, graphene nanoparticles are dispersed 

into a glass fibre/epoxy composite to form a dispersive network sensing system. The 

piezoresistivity of the graphene-formed network (GN) changes locally as a result of the 

change of inter-nanoparticle distances which triggers the “tunnelling effect” and drives the 

sensor to respond to propagating elastic waves. Due to the dense graphene network formed 

within the composite, only a small area is required, functioning as a single sensing element 

to capture ultrasonic waves. To validate such capability, passive acoustic emission (AE) tests 

and active guided ultrasonic wave (GUW) tests are performed individually. The graphene-

networked sensing system can precisely capture wave signals which contain effective 

features to identify impact spot or damage location. Integrating passive GN and active lead 

zirconate titanate wafers (PZTs) can form a dense network, capable of fulfilling general SHM 

tasks. 

Keywords: nano-engineered composites; structural health monitoring; acoustic emission; 

guided ultrasonic waves; graphene-networked sensing system
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1. Introduction 1 

The concept of structural health monitoring (SHM) has been developed to address 2 

continuous (or real-time without downtime) in-situ (without disassembly required), 3 

condition-based and automated surveillance of the overall integrity of structures during their 4 

whole life cycle, thereby enhancing structural and system safety, driving down maintenance 5 

costs such as time and labour, and potentially extending the residual life of aging structures. 6 

A complete SHM system is established via combining a sensing system that is integrated as 7 

part of the structure itself, a pre-established theoretical model, advanced signal-processing, 8 

damage diagnosis algorithm, and data management system. The sensing system is 9 

fundamental and also crucial for achieving an effective SHM scheme.  10 

 11 

Sensors and sensor networks, akin to the neural networks in biological systems, play the 12 

most pivotal role in acquiring environmental information and perceiving structural responses, 13 

on which basis the health status of a structure under inspection can be evaluated. Thus, the 14 

importance of selecting appropriate of sensor type and optimizing a configured sensor 15 

network cannot be overemphasized,1-4 which require certain features to fulfil the various 16 

detection tasks in the SHM process: (a) verified acquisition of changes in the host structure, 17 

but invulnerability to noise from environmental change; (b) reliable transportation of 18 

captured signals; (c) minimal intrusion to host structures; (d) endurance for working 19 

conditions, considering harsh environments and loading; and (e) easy installation and 20 

operation. Furthermore, when applied to a real aerospace structure, to which the weight and 21 

volume penalty due to the introduction of a sensor network to the structure is a concern, 22 

sensors shall be of small size, light mass, reduced use of wires/cables, low cost, and minimal 23 

deterioration with aging.4, 5 Diverse human-made sensing elements such as metal strain 24 

gauges, optical fibres6, 7, electromagnetic acoustic transducers (EMAT)8, 9, piezoceramic 25 



4 

transducers10, lead zirconate titanate (PZT) wafers11 and nanomaterial sensors12, 13 have been 26 

developed and deployed on engineering structures to form sensor networks. As external 27 

additions to the host structures, these sensors must be either surface-mounted or internally 28 

embedded in the inspected structures. Combinations of a certain number of such sensors can 29 

form a sensing network. 30 

31 

A dense sensor network is always preferred in the hope of acquiring rich information, but 32 

the integration of multiple of sensors unavoidably adds a burden to the host structure.14 With 33 

the surface-mounted modality of installation, sensors together with unwieldy cables and 34 

wires in a dense network for linking individual sensors would impose extra load and 35 

weight/volume penalty on host structures. Some researchers have proposed the use of 36 

wireless technology in sensor networks to reduce connection problems significantly.15, 16 37 

However, a surface-mounted sensor network exposed to a cruel service environment is 38 

vulnerable to corrosion/deterioration, and runs a high risk of detaching from the host 39 

structure, owing to degradation of the adhesive layers between host structure and sensors. 40 

Embedding sensors and wires in composite structures and isolating sensors from external 41 

environments can effectively minimize measurement noise and mitigate ageing due to 42 

environmental effects.17, 18 However, such manoeuvres can impair local material strength, 43 

introducing defects, stress concentration and debonding.5 To minimize such risks in 44 

engineering practice, a limited number of sensors are placed at strategic sites to form a 45 

“sparse” sensor network, assisted by specific signal-processing algorithms to manipulate the 46 

“limited” information acquired. Compared to a dense network, a sparse sensor network is 47 

understandably incapable of providing high-precision monitoring, due to the reasons such as 48 

quick wave attenuation as a result of long wave propagation distance, restricted coverage for 49 
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a structure with complex geometry and influence of structural boundaries, as well as limited 50 

information carried by each sensing path.1, 2 51 

 52 

In today’s high-frequency guided ultrasonic wave (GUW) -based SHM methods, PZT wafers 53 

and optical fibres are two major preferred sensor elements. Besides the inevitable intrusion 54 

to the host structure mentioned above, these sensors per se have other problems. Ultrasonic 55 

signals captured via mounted PZT wafers or optical fibres are prone to the viscoelastic 56 

behaviour and bonding quality of the adhesive layer.19, 20 Embedded PZT wafers in 57 

composites can become short-circuited with conductive carbon fibres when the composites 58 

undergo high temperatures up to 180℃ and pressures up to circa 700kPa in autoclaving 59 

process. Use of anti-temperature/pressure insulating films can circumvent this problem, but 60 

it may be at the cost of introducing incompatibility between the films and the epoxy matrix 61 

and accordingly affecting the interface strength.21 Optical sensors such as fibre Bragg 62 

gratings (FBG sensors) may face problems such as infeasibility of repair or replacement, 63 

strong directivity, and relatively high cost.22, 23  64 

 65 

With advances in electronics and manufacturing, miniaturization of these sensors could solve 66 

some of the described problems, but still encounters difficulty in striking a balance between 67 

“sensing cost” (i.e., high price, weight penalty, intrusion) and “sensing effectiveness” (i.e., 68 

sufficient information to detect damage).24 Thanks to recent advances and breakthroughs in 69 

material chemistry, electronics and manufacture, researchers have tried to develop new ways 70 

to design and implement sensors and sensing systems. Nano-engineered composites with 71 

fully dispersive sensing networks provide a possible solution for composite structures to 72 

circumvent such problems. Loh et al.,25 Naghashpour et al.,26 and Tallman et al.,27 each 73 

developed tomography algorithms based on electrical impedance or resistance change in 74 
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nano-engineered composites. García et al.28 investigated the frequency response and mode 75 

shapes of a nano-engineered composite beam under vibration via monitoring the overall 76 

resistance variation. However, such self-sensing approaches that rely on global and 77 

static/low-frequency methods usually feature low sensitivity and vulnerability to noise, and 78 

provide qualitative damage assessment only. Dense electrodes and messy associated circuits 79 

would be another obstacle to implementing them. 80 

 81 

In this study, Lamb wave diagnosis technology is integrated with the self-sensing capability 82 

of a graphene-formed network (GN) dispersed in a composite material, presenting an 83 

innovative acousto-ultrasonics-based SHM strategy in nano-engineered composite 84 

structures. Due to their “dispersive” nature, such sensing systems are relatively impervious 85 

to environmental influences and have good endurance. Furthermore, thanks to the 86 

infinitesimal scale and high strength of nanoparticles, they would not cause notable intrusion 87 

to the host structure. Both passive and active SHM strategies are tested for evaluating 88 

feasibility. Certain algorithms are applied to extract source location information and to image 89 

evaluation results. Thus a non-intrusive, well-qualified sensing system is proposed for future 90 

SHM development. 91 

 92 

2. Fabrication of Nano-engineered Composite Laminate 93 

The graphene-enriched glass fibre/epoxy laminate was manufactured by hand lay-up 94 

followed by vacuum bagging, and reinforced by plain-woven glass fibre fabrics. Epoxy 95 

Araldite GY 251 and hardener Aradur HY 956 were used as the matrix material. 1.0 wt% 96 

graphene was dispersed into epoxy resin as the optimal quantity before application on 97 

fabrics.29 The mixture was initially mechanically stirred while being heated to 80 °C and 98 

then treated in an ultrasonic bath to obtain a homogeneous mixture (Figure 1). Each glass 99 
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fibre layer was impregnated with graphene-enriched epoxy using a hand roller (Figure 2a). 100 

Eight layers of (0, 90) plain woven fabrics were used to lay up a ~1.2 mm thick laminate 101 

plate with a quasi-isotropic configuration of [(0, 90)/(+45, -45)/(+45, -45)/(0, 90)]s. The 102 

laminates were cured with the help of standard vacuum bagging procedure as illustrated in 103 

Figure 2b. Cured laminates were then trimmed around the edges to the final dimensions of 104 

400 mm × 400 mm. 105 

 106 

The dispersed graphene nanoparticles form a nanostructured network within the insulating 107 

polymer matrix. Quantum tunnelling effect allows transfer of electrons among indirectly 108 

contacted nanoparticles. Thus, the resistance of local network is comprised of the particle 109 

intrinsic resistance and tunnelling resistance, subjected to inter-particle distance.30 Under an 110 

elastic wave-induced strain disturbance, local resistivity changes accordingly. Such 111 

behaviour is also referred to as piezoresistivity.  112 

 113 

Figure 1. Schematic of the dispersion process of graphene-enriched epoxy resin. 114 

 115 
(a)                                                                                     (b) 116 

Figure 2. Schematic of (a) hand lay-up and (b) vacuum bagging procedure used to manufacture the 117 
nano-engineered laminate. 118 
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 119 

3. Passive Impact Localization Using Acoustic Emission (AE)  120 

3.1 Methodology 121 

According to our previous study, a pair of electrodes on the surface of the composite plate 122 

thus made can extract the local response of Lamb waves propagating in the plate structure 123 

via the dispersive GN.29 Instant impact will create an acoustic source which emits elastic 124 

waves along the structure. These AE signals carrying source information are captured by GN 125 

and recorded at different sensing locations. The most common algorithm to locate the AE 126 

source is the “time differences of arrival” (TDoA).31 As illustrated in Figure 3, with the 127 

impact occurring at (x, y), AE signals reach two sensing points at time ta and tb,  128 
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where t0 is the moment when the impact occurs. Δta and Δtb are the subsequent travelling 130 

times of AE signals from the source to sensing points a and b. The TDoA obtained from 131 

arrived signals at a and b can be expressed as 132 
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With prior knowledge of wave speed vwave (derived from either dispersion curves or 134 

experiments) and coordinates of points a and b, the impact spot can be located as a 135 

hyperbolic curve (green dotted line in Figure 3). Usually, a multitude of sensing points used 136 

leads to fine resolution in the final results. 137 
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 138 

Figure 3. Illustration of TDoA algorithm. 139 

The AE source localization procedure in this study includes several steps (Figure 4): 140 

(i) When AE signals generated by an impact cross a pre-set threshold in one of the sensing 141 

points, the trigger information is sent to all remaining devices. At that moment, the 142 

captured signal from the first sensor is treated as the reference for the timeline of all 143 

obtained signals and further tomography. 144 

(ii) In most cases, AE signals from the impact spot are broadband dispersive waves, which 145 

make it very difficult to extract useful features such as TDoA. Thus a narrowband filter 146 

(e.g., wavelet transform (WT)) is required to identify individual wave components 147 

which can help determine the TDoA. 148 

(iii) The TDoA can be acquired by comparing the leading edge against a pre-set threshold, 149 

energy peak, or cross-correlation of the signals captured at different spots.32 Each pair 150 

of sensing points should image a hyperbolic curve as an estimation of the source location. 151 

(iv) Tomography methods (e.g., delay-and-sum) are then used to superpose multiple images 152 

from all other sensing points pairing with the reference one. 153 

(v) The final source location is represented by the pixel value of the image, which is the 154 

two-dimensional mesh of the inspected structure. Each image pixel represents the 155 
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probability of occurrence of an impact event and is determined using a probability-based 156 

tomography algorithm.31 157 

 158 

Figure 4. Typical steps for AE source localization procedure. 159 

 160 

3.2 Experimental Set-up 161 

Eight sensing points (Pi, i=1,2…8) evenly distributed on the surface, with the angular 162 

spacing of 45°, were used to form a passive sensing system for impact localization. Packaged 163 

electrodes and circuits were attached to each point using silver conductive adhesive (Figure 164 

5). It is noteworthy that the adhesive was used only for creating electric connection and 165 

transmitting signals captured by dispersive GN in the structure. Thus the bonding quality 166 

and viscoelastic behaviour of the adhesive layer, from which a conventional surface-167 

mounted PZT sensor usually suffers, shall cause ignorable disturbance to captured signals, 168 

provided good electric connection remains. AE signals from all points were received 169 

simultaneously by a self-assembled acousto-ultrasonics-based SHM nano-sensing system 170 

(Figure 6a). This system was specifically designed for a nanoparticle-formed network, 171 

consisting of a multi-channel data acquisition (DAQ) module (a self-designed signal 172 

amplifier and a digitizer), a GUW active module (a power amplifier and an arbitrary 173 

waveform generator (AWG)) and a central control module. The digitizer (NI® 5105, 60 MHz, 174 

8-Channel, 12-Bit PXI Oscilloscope) and AWG (NI® PXI-5412) were integrated on a PXI 175 

bus platform (NI® PXIe-1071). This system was capable of wave sensing and actuating 176 

functions; this AE experiment, only the sensing function was activated. The AE source was 177 

created via dropping a steel ball (diameter 10 mm, weight 10 g) from a 300 mm height. The 178 

impact energy (~0.03 J) generated elastic waves which propagated omnidirectionally over 179 

the plate. Once the wave signals crossed the pre-set threshold, the whole system was 180 
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triggered and recorded signals captured at each point. The central control module (Figure 181 

6b) was developed on a NI LabVIEW platform for command control, digital signal-182 

processing (e.g., time-frequency analysis, Hilbert transform, bandpass filter) and further 183 

construction of diagnostic images. 184 

 185 

Figure 5. Passive sensing system set-up with packaged electrodes and circuits. 186 

 187 
(a) 188 

 189 
(b) 190 

Figure 6. (a) Self-assembled acousto-ultrasonics-based SHM nano-sensing system; (b) self-191 
developed multi-channel DAQ program interface. 192 
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3.3 Results 193 

Without loss of generality, for analysis and validation purposes, representative signals 194 

captured at point 1 and point 6 are compared with nearby surface-mounted PZT sensors, 195 

under a same drop impact precisely located via a tube. The raw AE signals captured by GN 196 

and nearby PZT sensor are presented in Figure 7a, where the different initial moments are 197 

due to the different amplitudes of captured signals and the pre-set trigger thresholds. Figure 198 

7b shows the corresponding spectra of two signals, obtained via Fast Fourier transform, 199 

revealing that the domain energy of the captured AE signals is confined in a frequency range 200 

below 10 kHz. Therefore, a lowpass filter with a cut-off frequency of 10 kHz is employed to 201 

eliminate noise. However, the signals obtained are still quite broadband, making it difficult 202 

to extract precise time features. Thus the signals require further processing to select wave 203 

components at a certain frequency. A WT is commonly used to analyse dispersive wave 204 

signals, the most popular families being Haar, Daubechies, Symlet, Coiflets, Biorthogonal, 205 

Meyer, and Morlet transforms. In this study, the Daubechies wave family (dbN) is employed 206 

to decompose the captured AE signals, which presents sufficient time-frequency localization 207 

for resolving abrupt changes.4 Figure 8 shows the obtained frequency-time spectra of AE 208 

signals captured at two sensing locations. It is easy to observe the movement of the first 209 

arriving wave packets in time domain relatively to different sensing locations, which 210 

represents the TDoA of first-triggered and later-response wave signals. It is worth noticing 211 

that the AE signals obtained by GN and PZT are not identical in either the time or the 212 

frequency domain. The differences can be attributed to the distinct sensing mechanisms 213 

between two kinds of sensors in responding guided waves. A surface-mounted PZT sensor 214 

captures guided waves via the piezoelectric response to surface dynamic strain transferred 215 

through the bonding layer,33 while the dispersive GN perceives wave-induced strain within 216 

the structure via the piezoresistivity based on the tunnelling effect.34 Nevertheless, the WT 217 
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results demonstrate that the time features of different frequencies share similar delay patterns 218 

between the first-triggered and later-response signals, which validates the feasibility of 219 

achieving AE source localization using GN. 220 

 221 
(a)                                                                 (b) 222 

Figure 7. (a) Raw AE signals and (b) corresponding frequency spectra of GN and nearby PZT 223 
sensor, respectively. 224 

 225 

Figure 8. De-noised signals (a & b), frequency-time spectra via WT of first-triggered point 1 signal 226 
(c & d) and later-response point 6 signal (e & f) of GN and PZT sensor, respectively. 227 
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To better understand the components of arrived waves, the dispersion curves of such a 228 

composite plate are calculated via the software DISPERSE in Figure 9.35 The frequency 229 

band of acquired AE signals (as highlighted with a dotted rectangle) is significantly lower 230 

than the cut-off frequencies of those high-order wave modes (such as the first- and second-231 

order, symmetrical and antisymmetric modes, denoted as S1, S2, A1 and A2, respectively, in 232 

Figure 9). Thus only the two fundamental Lamb waves, the zeroth-order symmetrical mode 233 

(also known as the extensional mode, denoted as S0 hereinafter) and the zeroth-order 234 

antisymmetric mode (also known as the flexural mode, denoted as A0 hereinafter), propagate 235 

through the plate. Such a frequency band is also within the non-dispersive region of S0 mode; 236 

in contrast, A0 wave mode presents phenomenal dispersive behaviour in this frequency range. 237 

For out-of-plane excitation, generally the energy in the A0 mode is considerably greater than 238 

that rendered by the S0 mode. This outcome can be validated by comparing the energy tips 239 

of the first arriving wave packets at different frequency components from the spectra in 240 

Figure 8 (red dashed arrows), which follows well the dispersion pattern of the A0 mode, i.e., 241 

the wave velocities increase with an increase in frequency in the low-frequency range. On 242 

the other hand, no significant sign of S0 waves can be observed, which should arrive earlier 243 

than A0 waves. 244 

 245 

Figure 9. Dispersion curves of the manufactured composite plate. 246 
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The wave component of 6 kHz is then chosen for further processing, due to relatively stable 247 

wave velocity and narrow wave dispersion. Its associated group velocity can be derived via 248 

the signals from PZT sensors. The Hilbert transform is used to obtain the energy envelope 249 

curves of the first arriving wave packets, whereas other wave packets are flatted as 250 

undesirable information. A probability-based diagnostic imaging (PDI) tomography is used 251 

to visualize the source location with the delay-and-sum algorithm. Using PDI, the inspection 252 

region of the composite structure is meshed virtually, and projected to an image with each 253 

image pixel corresponding exclusively to a spatial point in the inspected region. The pixel 254 

value for a pair of AE signals captured in two sensing locations can be defined as 255 

 ( ) ( ), max(E E ( , ))ab a b abI x y x y= +  , (3) 256 

where E is the energy packet of signals after processing. The time delay Δab(x, y) is the TDOA 257 

of the sensing points a and b for each spot within the inspected area, which can be obtained 258 

from Equation (2). The signals at points a and b are delayed and summed accordingly and 259 

the maximum value of the summation results can be linked to the probability of occurrence 260 

of an impact spot.36 In accordance with Equation (2) and (3), locations featuring the same 261 

TDoA in the image will have the same pixel value as a hyperbola curve with point a and 262 

point b being the two foci. In this example, the pair of sensing points 1 and 6 yields a 263 

tomography image as in Figure 10. The true drop impact spot is also identified, which is 264 

exactly located within the “red zone” (the area with the highest probability of source spot). 265 

With point 1 as the reference for all other points, a total of seven pairs of AE signals can be 266 

obtained via similar signal-processing steps. The final tomography is obtained by 267 

superposing all PDI results, with examples in Figure 11a. Figure 11b shows the combined 268 

results of four different impact tests, all of which have proven good precision of the approach 269 

in identifying the acoustic source (i.e., damage) using AE signals. Thus, the sensing system 270 

formed by GN is capable of capturing AE signals in which source-related information help 271 
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locate the impact spot. 272 

 273 

Figure 10. First arriving wave packets at 6 kHz of GN and PZT and their corresponding delay-and-274 
sum image. 275 

 276 
(a)                                                                   (b) 277 

Figure 11. (a) Representative tomography of impact AE source localization (b) combined results of 278 
four impact tests. 279 

 280 
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4. Active Damage Identification Using Guided Ultrasonic Waves (GUWs)  281 

4.1 Methodology 282 

In active damage detection technology, GUWs are excited via certain actuators. When these 283 

GUWs propagate along an inspected structure, damage such as voids, delamination, and 284 

mass change leave their “fingerprints” in the received waves captured at sensing points, 285 

either in a linear domain (e.g. damage-scattered waves, energy dissipation, phase 286 

conversion), and/or a nonlinear domain (e.g. high-order harmonics, modulation 287 

spectroscopy).37 Our GN is ready to capture these features for damage assessment. Then, a 288 

location algorithm is applied to deal with damage-related features and then identify the 289 

damage. The time-of-arrival (ToA) algorithm is a common method used for the damage-290 

scattered waves features. As illustrated in Figure 12, the location of damage can be 291 

triangulated by 292 
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where tA-D-S and tA-S are the ToA of the waves propagating from the actuator to the damage 296 

and then to the sensing point and ToA of the incident waves propagating directly from the 297 

actuator to the sensing point, respectively. v1 denotes the group velocity of the incident wave 298 

from the actuator and v2 is the group velocity of the damage-scattered waves. LA-D, LD-S and 299 

LA-S represent the distance between the actuator (xA, yA) and the damage (xD, yD), the distance 300 

between the damage centre (xD, yD) and the sensing point (xS, yS) and the distance between 301 

the actuator (xA, yA) and the sensing point (xS, yS), respectively. The positions of the actuator 302 
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(xA, yA) and the sensing point (xS, yS) are already known via either theoretical analysis or 303 

experiments, and Δt is to be determined from captured GUW signals. With known v1 and v2, 304 

the solution to Equation (4) is an elliptical or an ellipse-like locus with the actuator and the 305 

sensing point being the foci, as shown by the green dotted line in Figure 12. Since the GN 306 

is dispersed all over the fabricated composite structure, GUW acquisition can be achieved at 307 

any site of the composite. With a sufficient number of sensing paths, the location of the 308 

damage in the composite structure can be precisely solved by mathematically seeking the 309 

intersection of all loci. 310 

 311 

 312 

Figure 12. Illustration of ToA algorithm. 313 

 314 

4.2 Experimental Set-up 315 

Four packaged PZT wafers (Wi, i=1,2,3,4) were bonded on the surface of the inspected plate 316 

as shown in Figure 13(a). Each wafer acted as the actuator in sensing paths with its opposite 317 

sensing points of GN (Pi, i=1,2,3…8). Such a mixed PZT-GN sensing system, consisting of 318 

active PZTs and passive GN, can form a sufficiently dense network (24 sensing paths), as 319 

illustrated in Figure 13(b). The actuating function of our SHM nano-sensing system (as 320 
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shown in Figure 6a) was used to stimulate GUWs via PZT wafers. As GUWs propagate 321 

along the structure, they were captured by certain sensing points of the passive GN. Then 322 

the sensing function was utilised and transferred data into the control module. In such intact 323 

condition, each of the actuators (Wi, i=1,2,3,4) was excited in turn by 5-cycle Hanning-324 

function-modulated sinusoidal tonebursts via the high-voltage amplifier (Ciprian® US-TXP-325 

3)). All signals captured by sensing points were collected as the baseline signals. After that, 326 

a steel cylinder (diameter 20 mm, mass 200 g, as shown in Figure 17) was employed in this 327 

experiment as artificial damage, attached to the surface of the structure with glycerol as the 328 

couplant. Excitation was performed once again to obtain the current signals. 180 kHz and S0 329 

wave mode were selected for diagnostic wave signals, based on the previous frequency 330 

sweep test.29 Figure 14a shows the amplitudes of captured wave signals at multiple 331 

frequencies, in which the peak value appears at around 180 kHz for the S0 mode, similar to 332 

the trend of the signals captured by a PZT sensor. Such a phenomenon – the frequency-333 

dependent signal amplitude, is mainly caused by wave mode tunning of PZT actuators.38 334 

This is because the tunnelling effect - sensing mechanism of GN, occurs in nanoscale, which 335 

provides a broadband frequency response39 and thus the compensation for the frequency 336 

response from a PZT actuator is not of necessity. The wave speed of S0 mode at 180 kHz 337 

was also calculated and verified by PZT sensors (~3311m/s, as shown in Figure 14b). 338 

   339 
(a)                                                                                       (b) 340 

Figure 13. (a) Mixed PZT-GN active sensing system and (b) formed sensing paths. 341 
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    342 
(a)                                                                                       (b) 343 

Figure 14. (a) Comparison of amplitudes of response signals and (b) calculated group velocities by 344 
GN and PZT with different excitation frequencies. 345 

 346 

4.3 Results  347 

Without loss of generality, the signals of sensing path W1-P8 are exhibited for further signal-348 

processing as an example (Figure 15). The crosstalk at the initial time (excitation moment) 349 

is attributed to spatial electromagnetic interference (EMI)40 from the high-voltage amplifier. 350 

As it is known that this EMI crosstalk occurs only at the onset of excitation, it does not 351 

influence the identification of the subsequent GUWs. The first arriving wave packet appears 352 

to be the S0 wave, based on the wave velocity. The damage-related features are hidden in the 353 

differential between the baseline and current GUW signals. To extract those features, the 354 

energy envelopes of both signals are compared and intersected to obtain the difference. As 355 

shown in Figure 16, the Hilbert transform is used to draw the profile of energy amplitude of 356 

baseline, current and differential signals. This permits easy identification of the coincidence 357 

of crosstalk and the first arriving incident S0 waves. Furthermore, the damage-related feature 358 

is also easily observed as the peak in the signal differential. 359 
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 360 

Figure 15. Baseline and current signals of sensing path W1-P8. 361 

 362 

 363 

Figure 16. Energy envelopes of baseline, current signals, and their differential. 364 
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To facilitate visualization of the damage location, a PDI algorithm41-43 is introduced which 365 

presents the diagnostic results in terms of probability in a two-dimensional greyscale image. 366 

The probability of the presence of damage at each spatial point is then calibrated in terms of 367 

the value of its corresponding pixel in the image, via 368 

 

2 2 2 2

1

( ) ( ) ( ) ( )
(x, )

r r r rn
A A S S

r r

r

x x y y x x y y
I y W D

v=

 − + − + − + −
 =
 
 

 , (5) 369 

where I(x, y) denotes the field value at location (x, y) for the rth sensing path in the sensing 370 

network, which is linked to the probability of damage occurrence therein. Dr(t) signifies the 371 

profile of energy amplitude of the relative difference between the baseline and current signals 372 

of the rth path, which can be obtained via the Hilbert transform: 373 

 0(t) ( (t)) ( (t ))D H f H f= − , (6) 374 

where f(t) and f0(t) are the current and baseline signals, respectively. Wr represents a weight 375 

coefficient to normalize the field value of the rth path as44 376 

 1/ maxr rW D= . (7) 377 

 378 

Figure 17. PDI result of W1-P8 sensing path with artificial damage. 379 
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 380 
(a)                                                               (b) 381 

Figure 18. (a) Representative PDI result of superimposing all sensing paths with artificial damage 382 
and (b) combined results of four artificial damage tests. 383 

The PDI result of sensing path W1-P8 is illustrated in Figure 17, in which the highest pixel 384 

value loci in ellipse form cover the location of artificial damage. The final result is the 385 

superimposition of PDI results from all sensing paths, as shown in Figure 18a. A proper 386 

image threshold was used here to avoid the influence of structural boundary reflection and 387 

noise in the captured signals. This threshold was generally determined empirically and in 388 

this case, it was set to 30% of the maximum value. Figure 18b presents the combined results 389 

of four tests with different artificial damage locations, and good evaluation of the damage is 390 

achieved via the mixed PZT-GN sensing system. 391 

 392 

5. Concluding Remarks 393 

This study evaluates the possibility of using a GN sensing system in SHM technology, 394 

especially employing wave-based algorithms. The GN, as the passive sensing system, was 395 

used successfully to locate the impact spot via AE signals. When combined with a few PZTs, 396 

the mixed active sensing system provided a sufficiently dense sensing network to precisely 397 

identify the damage using GUWs-based technology. 398 

 399 
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During the experiments, the GN have exhibited certain features that qualify as a sensing 400 

system: (a) acquisition of wave signals is verified by comparison with conventional 401 

piezoelectric sensors; (b) as isolated from the environment, the graphene-networked sensing 402 

system in the structure will not be affected by the environmental corrosion or ageing 403 

deterioration. Technically speaking, the sensing capability continues to exist until failure of 404 

the host structure; (c) detachment issues and the viscoelastic behaviour of the adhesive layer 405 

in conventional surface-mounted sensor elements are eliminated, although the associated 406 

circuits still exhibit such issues; (d) GN causes only minimal burden or intrusion to the host 407 

structure. Graphene nanoparticles have been proved capable of functioning as reinforcement 408 

rather than defects in the epoxy-based materials, to enhance fracture toughness and elongate 409 

fatigue life.45, 46 The host material can benefit from the high modulus and strength of 410 

nanoparticles. For as-produced laminates in this study, the elastic tensile modulus and 411 

ultimate tensile strength have been improved by 35% and 8%, respectively.29  412 

 413 

In conclusion, these appealing features have blazed a new trail in developing dispersive 414 

sensing systems for SHM. The sensors can flexibly adapt to a curved surface, introduce 415 

ignorable weight/volume penalty to host materials, and be networked in a dense modality to 416 

provide rich information of the structural health status. It has proven accuracy and precision 417 

in responding broadband acousto-ultrasonic signals, with good compatibility with various 418 

passive and active SHM methods. Attempts of more different sensing network arrangements 419 

and damage detection methods will be explored in the future work. 420 
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