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Abstract 

An explicit immersed boundary-lattice Boltzmann method is applied to numerically investigate 

the dynamics of primary cilium in pulsatile blood flows with two-way fluid-structure 

interaction considered. To well characterize the effect of cilium basal body on cilium dynamics, 

the cilium base is modeled as a nonlinear rotational spring attached to the cilium’s basal end as 

proposed by Resnick (2015). After several careful validations, the fluid-cilium interaction 

system is investigated in detail at various pulsatile flow conditions which are characterized by 

peak Reynolds numbers (Repeak ) and Womersley numbers (Wo ). The periodic flapping of

primary cilium observed in our simulations is very similar to the in vivo ciliary oscillation 

captured by O’Connor et al. (2013). The cilium’s dynamics is found to be closely related to the 

Repeak and Wo. Increase the Repeak or decrease the Wo brings to an increase in the cilium’s

flapping amplitude, tip angular speed, basal rotation and maximum tensile stress. It is also 

demonstrated that by reducing the Repeak or enhancing the Wo to a certain level, one can shift

the flapping pattern of cilium from its original two-side one to a one-side one, making the 

stretch only happen on one particular side. During the flapping process, the location of the 
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maximum tensile stress is not always found at the basal region, instead, it is able to propagate 

from time to time within a certain distance to the base. Due to the obstruction of the primary 

cilium, the distribution of wall shear stress no longer remains uniform as in the absence of cilia. 

It oscillates in space with the minimum magnitude always found near where the cilium is 

located. The presence of cilium also reduces the overall level of wall shear stress, especially at 

the region near the cilium’s anchor point. 

Keywords: Immersed boundary, lattice Boltzmann method, primary cilium, fluid-structure 

interaction, pulsatile flow 

 

1 Introduction 

Primary cilia are filament-like, immotile organelles solitarily protruding into extracellular space 

from the apical surface of nearly every mammalian cell, like antennas (Hagiwara et al. 2008; 

Nguyen and Jacobs 2013). Though primary cilia were originally discovered over a century ago, 

their exact functions remain to be incompletely understood. Compared with the better-

understood motile cilium, the primary cilium possesses a similar but relatively simpler structure. 

As shown in Fig. 1, though both of these two cilium kinds have a membrane-enclosed axoneme 

which contains nine circumferentially arranged doublet microtubules, there is no additional 

central pair appearing at the axoneme of primary cilium, resulting in a “9+0” arrangement. The 

primary cilium also lacks other axonemal components that appear in motile cilium, including 

radial spokes, dynein arms, and nexin links, thus cannot spontaneously generate internal forces 

(Resnick 2015).  
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Fig. 1 Sketch of structures of primary cilium and motile cilium 

 

Though being long considered as vestigial structures, the primary cilia are recently 

demonstrated to play a crucial role in vertebrate development and inherited human diseases 

(Goetz and Anderson 2010). On the other hand, proper function and homeostasis of a wide 

range of cells and tissues require mechanical stimuli from the extracellular environment. 

Variation of these stimuli, such as the oscillation of the fluid flow, changes of osmolality due to 

transmembrane salt and water transport, and hydrostatic pressure increase in renal tubule flow, 

needs to be sensed and transduced among different cell components. Recent studies have 

revealed that the primary cilium acts as a sensor for those mechanical stimuli, as it has been 

observed by experiments that the passively bending behavior of primary cilia is correlated with 

the initiation of a variety of signaling cascades (Nauli et al. 2003; Praetorius et al. 2003; 

Praetorius and Spring 2001; Praetorius and Spring 2003). For instance, in ciliated kidney cells, 
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the deflection of an epithelial primary cilium by a fluid flow or micropipette elicits an increased 

level of intracellular calcium, an important second messenger communicating the extracellular 

activities with the cell nucleus. In contrast to ciliated cells, kidney cells without cillia are unable 

to translate the mechanical stimulation into the cell nucleus by increasing intracellular calcium 

levels. This deflection-triggered calcium increase, to be more specific, relies on the opening of 

the PC2 cation channel which is responsible for calcium ion influx. This PC2 cation channel is 

localized to the primary cilia and is assumed to be stretch-activated (Praetorius and Spring 2001; 

Praetorius and Spring 2003). The resulting change in the intracellular calcium concentration 

then regulates numerous molecular activities inside the cell that contribute to tissue and organ 

development (Nauli et al. 2003). A similar mechanism has also been found in blood-pressure 

maintenance in the vasculature, where the vessel diameter is regulated by endothelial primary 

cilia through adjusting nitric oxide production (Boo and Jo 2003; Nauli et al. 2008). So far, 

little is known about the mechanical mechanism behind this deflection-triggered opening of 

signaling pathways. For example, what are the possible flow-induced bending behaviors of 

primary cilia and how to interpret them? What is the threshold value of stretch/defection for 

activating a corresponding signaling pathway? These all remain to be answered. Elucidating 

this mechanism needs a combination of experimental and numerical approaches, as the force 

and stress distribution on cilium along with other mechanical properties are still beyond the 

capability of experimental approaches due to the scales of the quantities involved. By using 

numerical approaches, much more detailed dynamic information can be obtained.  

In addition, defects of primary cilium in ciliary protein or its physical structure are linked 

with numerous diseases known as ciliopathies, for instance, polycystic kidney disease (Yoder 
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2007; Yoder et al. 2002), cystic and fibrotic liver disease (Masyuk et al. 2008), osteoarthritis 

(McGlashan et al. 2008), obesity (Sen Gupta et al. 2009) and even cancer (Hassounah et al. 

2012; Menzl et al. 2014). So one potential approach for treating those ciliopathies is to rescue 

or regulate the affected cilium form and its mechanosensing function. It has already been 

suggested that through adjusting the parameters of primary cilia, e.g., the length and bending 

module, one can alter the deflection response of cilium to mechanical stimuli, and further 

manage to manipulate the mechanosensitivity of primary cilia (Khayyeri et al. 2015). Recently, 

an experiment aimed to alter the bending modulus of primary cilia via pharmacological 

treatment was successfully performed (Resnick 2016). Other approaches such as using a 

magnetic force to manipulate the dynamics of artificial cilia to generate a directional local flow 

were also reported (Hanasoge et al. 2018). Therefore, conducting numerical studies on the fluid-

cilium interaction system will enrich our understanding of ciliopathies and help explore its 

potential treatments. 

Several models have been developed to study cilium deflection. The simplest one is the 

homogeneous cantilevered Euler-Bernoulli beam model, which has been used extensively to 

determine the mechanical properties of primary cilia under static load. Schwart et al. (1997) 

firstly used this model to evaluate the flexural rigidity of primary cilium based on an imaged-

informed approach. By assuming a constant flow velocity distribution along the cilium length, 

the Euler-Bernoulli equation was solved using both quadruple integration model and heavy 

elastic model, and the final bending profile of the cilium was obtained. The flexural rigidity 

was then iteratively updated during each calculation until the predicted bending shape matched 

the experimentally observed deflection. Following their steps, this model was further developed 
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to account for the initial cilium shape and basal rotation (Downs et al. 2014), in combination 

with a more realistic flow velocity profile (Liu et al. 2005). However, experimental observations 

have been reported to deviate from this cantilevered Euler-Bernoulli beam model (Downs et al. 

2014; Nguyen et al. 2015; Resnick 2015). Moreover, Young et al. (2012) studied the cilium 

dynamics in shear flow using slender body theory, in which the effect of the basal body is 

incorporated as a damped rotational spring and a good agreement between experimental 

measurements and numerical calculations was obtained. Modeling the cilium base as a 

rotational spring has further been proved to match experimentally measured resonant oscillation 

of primary cilia and was believed to be more physically meaningful in Resnick’s work, in which 

the linear and nonlinear spring constants for modeling cilium basal body are determined based 

on an optical trap technique (Resnick 2015). Khayyeri et al. (2015) developed a 3-dimensional 

finite element model for the whole cell-cilium system, in which the cell components are 

separately modeled. However, in most studies that used computational analysis, the flow 

conditions are simplified to either static Stokes flow or shear flow in order to easily evaluate 

the hydrodynamic load, which fails to reveal the transient and oscillatory nature of many 

biological flows, for instance, the blood flow and the renal tubule flow. Apart from that, the 

effect of cilia on the fluid flow is usually ignored in those models, which is assuredly another 

contributing factor for determining cilium dynamics.  

In this paper, we introduce an explicit immersed boundary-lattice Boltzmann method (IB-

LBM) for studying the dynamics of primary cilia in pulsatile flows with two-way fluid-structure 

interaction considered. The method is easy to implement and robust in handling moving elastic 

boundaries. After some careful validations, this fluid-cilium interaction system is investigated 
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in detail with the effect of cilium basal body incorporated as a nonlinear rotational spring. 

 

2 Mathematical formulation and numerical method 

2.1 Flow solver 

The governing equations of two-dimensional incompressible viscous flow with external 

force can be expressed as 

ρ (
𝜕𝒖

∂t
+ 𝒖 ∙ ∇𝒖) = −∇p + μ∆𝒖 + 𝒇 (1) 

∇ ∙ 𝒖 = 0 (2) 

where 𝒖 = (𝑢, 𝑣) is the fluid velocity, ρ and μ the density and dynamic viscosity of the fluid, 

respectively. p is the pressure and 𝒇 the external force from the immersed structural boundary. 

  Equations (1) and (2) can be solved by lattice Boltzmann method (LBM). In present 

simulations, a single-relaxation-time based LBM with a D2Q9 lattice model is adopted. The 

dimensionless form of LBM under an external force is given by Guo et al. (2002) as follows, 

𝑓𝑗(𝒙 + 𝒆𝒋∆𝑡, 𝑡 + ∆𝑡) − 𝑓𝑗(𝒙, 𝑡) = −
1

𝜏
(𝑓𝑗(𝒙, 𝑡) − 𝑓𝑗

𝑒𝑞
(𝒙, 𝑡)) + 𝑭𝒋∆𝑡 (3) 

With the force term 𝑭𝒋 being 

𝑭𝒋 = (1 −
1

2𝜏
)𝜔𝑗 (

𝒆𝒋 − 𝒖

𝑐𝑠
2 +

𝒆𝒋 ∙ 𝒖

𝑐𝑠
4 𝒆𝒋)𝒇(𝒙, 𝑡) (4) 

where 𝑗 = 0, 1, … , 8 denotes the lattice space, 𝑓𝑗(𝒙, 𝑡) is the density distribution function of 

particles whose position vector is 𝒙 at time 𝑡. 𝜏 is the dimensionless relaxation time which is 

related to the dimensionless kinematic viscosity ν and sound speed 𝑐𝑠 by ν = 𝑐𝑠
2(𝜏 − 0.5)Δ𝑡. 

Here  Δ𝑡  is the time interval and  𝑐𝑠 = 1 √3⁄  . 𝑓𝑗
𝑒𝑞
(𝒙, 𝑡)  is the Maxwellian equilibrium 

distribution function which takes the following form under the BGK approximation.  

𝑓𝑗
𝑒𝑞
(𝒙, 𝑡) = 𝜔𝑗𝜌 [1 +

 𝒆𝒋 ∙  𝒖

𝑐𝑠
2 +

 (𝒆)𝒋 ∙  𝒖
2

2𝑐𝑠
4 −

 𝒖2

2𝑐𝑠
2] (5) 

where 𝜔𝑗 is the weights coefficient corresponding to the chosen velocity model, whose value 
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takes: 𝜔0 = 4/9,  𝜔1,2,3,4 = 1/9  and 𝜔5,6,7,8 = 1/36.  𝒆𝒋  is the lattice velocity set which is 

given as 

𝒆𝒋 =

{
 
 

 
 
(0,  0), 𝑗 = 0

𝒄 (cos
𝜋(𝑗 − 1)

2
, sin

𝜋(𝑗 − 1)

2
) , 𝑗 = 1, 2, 3, 4

√2𝒄 (cos
𝜋(2𝑗 − 1)

4
, sin

𝜋(2𝑗 − 1)

4
) , 𝑗 = 5, 6, 7, 8

 (6) 

where 𝒄 is the lattice speed, whose value is 𝑐 = Δ𝑥/Δ𝑡 = 1, with Δ𝑥 being the lattice space.  

Finally, the macroscopic fluid density 𝜌 and velocity 𝒖 can be recovered by: 

 𝜌 =∑𝑓𝑗
𝑗

, 𝜌𝒖 =∑𝑓𝑗𝒆𝒋
𝑗

+
1

2
𝒇Δ𝑡 (7) 

 

2.2 Structure solver 

The motion equation for a filament-like structure under hydrodynamic load is given by 

(Connell and Yue 2007; Zhu and Peskin 2003) 

𝜌𝑐
𝜕2𝑿

∂𝑡2
=
𝜕

𝜕𝑠
[𝑇(𝑠)

∂𝑿

∂s
] − 𝐾𝑏

𝜕4𝑿

𝜕𝑠4
+𝑭𝒇𝒍𝒖𝒊𝒅 (8) 

where  
𝜕

𝜕𝑠
[𝑇(𝑠)

∂𝑿

∂s
] and −𝐾𝑏

𝜕4𝑿

𝜕𝑠4
 are the internal stretching and bending forces of the structure, 

respectively. 𝑭𝒇𝒍𝒖𝒊𝒅 is the hydrodynamic force exerting on the structure from its ambient fluid, 

and 𝑇(𝑠) the tensile force which can be expressed as 

𝑇(𝑠) = 𝐾𝑠 ((
∂𝑿

∂s
∙
∂𝑿

∂s
)

1
2
− 1) (9) 

Here 𝑿  is the position vector of the structure point, 𝑠  the Lagrangian coordinate along the 

length. The linear density 𝜌𝑐, stretching coefficient 𝐾𝑠 and bending rigidity 𝐾𝑏 are 3 constants 

decided by the intrinsic properties of the structure. 

In our simulations, the primary cilium is equally divided into segments by a set of isometric 

Lagrangian point 𝑿(s𝑖, t), 𝑖 = 0, 1,⋯ ,𝑁𝑏 . The stretching and bending forces are calculated 

explicitly using a finite difference method.  
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𝜕

𝜕𝑠
[𝑇(𝑠)

∂𝑿

∂s
] =

𝑇
𝑖+
1
2
[
∂𝑿
∂s ]

𝑖+
1
2

− 𝑇
𝑖−
1
2
[
∂𝑿
∂s ]

𝑖−
1
2

∆𝑠
 

(10) 

−𝐾𝑏
𝜕4𝑿

𝜕𝑠4
= −𝐾𝑏

𝑿𝑖+2 − 4𝑿𝑖+1 + 6𝑿𝑖 − 4𝑿𝑖−1 + 𝑿𝑖−2
∆𝑠4  

(11) 

with ∂𝑿/ ∂s  being the tangent vector and ∆𝑠  the Lagrangian grid spacing. The tension 

force 𝑇
𝑖+

1

2

 is calculated using Hooke’s law. 

𝑇
𝑖+
1
2
= 𝐾𝑠 (|

𝑿𝑖+1 − 𝑿𝑖
∆𝑠

| − 1) , and 𝑇
𝑖−
1
2
= 𝐾𝑠 (|

𝑿𝑖 − 𝑿𝑖−1
∆𝑠

| − 1)     (12) 

The boundary position 𝑿𝑖 and velocity 𝑼𝑖 are updated using the Velocity Verlet method. 

𝑿𝑖
𝑛+1 = 𝑿𝑖

𝑛 + ∆𝑡𝑼𝑖
𝑛 +

𝟏

𝟐
𝒂𝒊
𝑛(∆𝑡)𝟐     (13) 

𝑼𝑖
𝑛+1 = 𝑼𝑖

𝑛 +
∆𝑡

𝟐
(𝒂𝒊

𝑛 + 𝒂𝒊
𝑛+1)     (14) 

where 𝒂 is the acceleration, i.e. 𝜕2𝑿/𝜕𝑡2 which is calculated by Equation (8). The superscript 

n is the time step index and subscript 𝑖 represents the 𝑖𝑡ℎ boundary point. 

 

2.3 Fluid-structure interaction 

The fluid-structure interaction (FSI) between the flow and primary cilium is solved by a 

momentum exchange scheme-based immerse boundary method (IBM) (Niu et al. 2006), which 

is slightly different from the original one proposed by Peskin (2003). In this method, the 

distribution functions of the boundary points need to be interpolated. One efficient way to do 

this is using the smoothed Dirac delta function 𝜎ℎ( ) (Yuan et al. 2014), 

𝑓𝑗(𝑿, 𝑡) =∑𝑓𝑗(𝒙, 𝑡)𝜎ℎ(𝒙 − 𝑿)

𝒙

∆𝑥2 (15) 

where ∆𝑥 is the Eurerian grid spacing and ∑  𝒙 denotes the summations over all Eulerian grids. 

To satisfy the no-slip boundary condition on the fluid-structure interface, a new set of 

boundary distribution functions is computed using the bounce-back rules (Ladd 1994a; Ladd 
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1994b).  

𝑓−𝑗(𝑿, 𝑡 + ∆𝑡) = 𝑓𝑗(𝑿, 𝑡) − 2𝜔𝑗𝜌
𝒆𝒋𝑼(𝑿, 𝑡)

𝑐𝑠
2  (16) 

where −𝑗 denotes the opposite direction of  𝑗, i.e. 𝒆−𝑗 = 𝒆𝑗  and 𝑼(𝑿, 𝑡) is the velocity of the 

boundary points. Consequently, the hydrodynamic force density on the structural boundary 

𝑭𝒇𝒍𝒖𝒊𝒅(𝑿, 𝑡) can be computed via momentum exchange method as bellow, 

𝑭𝒇𝒍𝒖𝒊𝒅(𝑿, 𝑡) = −𝒇𝒆(𝑿, 𝑡) = −∑𝒆𝑗 
𝑗

[ 𝑓𝑗(𝑿, 𝑡 + ∆𝑡) − 𝑓−𝑗(𝑿, 𝑡)] (17) 

The reaction force of 𝑭𝒇𝒍𝒖𝒊𝒅(𝑿, 𝑡) is further transformed into a body force distributing to its 

surrounding fluid, 

𝒇𝒆(𝒙, 𝑡) = −∑𝑭𝒇𝒍𝒖𝒊𝒅(𝑿, 𝑡)𝜎ℎ(𝒙 − 𝑿)∆𝑠

𝑿

 (18) 

where ∑  𝑿 denotes the summations over all the Lagrangian grid points. 

 

2.4 Model the cilium basal body 

Previous cantilevered beam model is proved to be incorrect for modeling cilium deflection, as 

the cilium basal body could experience some degrees of rotation rather than remain clamped 

when subject to a fluid flow (Downs et al. 2014; Nguyen et al. 2015; Resnick 2015). Here we 

follow the approach of Resnick (2015) by modeling the cilium basal body as a nonlinear 

rotational spring (see Fig. 2). Every basal rotation induced by the fluid drag will generate a 

reverse bending moment at the basal end due to the spring. Similar treatment has also been used 

by Young et al. (2012) and the results are proved to match experimental observations.  
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Fig. 2 The nonlinear rotational spring model for modeling the basal body of a primary cilium 

 

3 Numerical validation 

3.1 Planar Poiseuille flow 

The validity of the present flow solver is verified by simulating a 2-dimensional planar 

Poiseuille flow, a simple and well-documented test case with the analytical solution given as, 

𝑢(𝑦) =
∆𝑃

2𝐿𝜌𝜐
(𝐷𝑦 − 𝑦2) (19) 

where 𝐷 and 𝐿 is the width and length of the channel, respectively. 𝜌 is the density and 𝜐 the 

kinetic viscosity of the fluid. ∆𝑃/𝐿 is the pressure gradient along the 𝑥-direction.  

In our simulation, a body force density 𝑓𝑑 is applied to the fluid nodes as a substitution of 

the pressure gradient to produce a driven flow. This trick has been widely adopted in the LBM 

community to simulate Poiseuille flows, as in references (Kruger et al. 2014; O'Connor et al. 

2016). The applied body force density is equivalent to a pressure gradient under the relation of 

∆𝑃

𝐿
= 𝑓𝑑 (20) 

The present simulation domain is a square with a uniform mesh size of 80 × 240  at 
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Reynolds number Re = 50. The periodic boundary condition is used in the flow direction and 

a no-slip boundary condition imposed on walls. As shown in Fig. 3, our simulation result 

coincides well with the analytical solution. 

 

Fig. 3 Comparison of the simulation result and the analytical solution  

 

3.2 Rope pendulum swinging under gravity 

The swinging motion of a flexible rope pendulum under the influence of gravity 𝐠 is simulated 

to validate our present structure solver on solving the dynamics of a flexible object. The 

schematic is illustrated in Fig. 4a, where a flexible pendulum (Length 𝐿 = 1, Nb = 81, 𝜌𝑐 = 1) 

is pinned up at one end and is initially placed with a small angle θ = 0.01rad to the direction 

of gravity whose magnitude is |𝐠| = 10. The bending rigidity of the pendulum 𝐾𝑏 is set to 0 in 

order to compare with the analytical solution. The movement of the flexible pendulum is 

governed by Equation (8) with the hydrodynamic force being substituted by the gravity 𝐠. The 

analytical solution for a hanging pendulum with a small-amplitude motion can be derived using 

the perturbation method (Huang et al. 2007). When subject to a hinged and a free-end boundary 
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condition, the free-end position can be expressed in series as following 

𝑥(𝑠, 𝑡) =∑
4𝜃𝐿

𝑧𝑖
2

𝐽2(𝑧𝑖)

𝐽1
2(𝑧𝑖)

∞

𝑖=1

𝐽0(𝑧𝑖√
𝐿 − 𝑠

𝐿
) cos(

𝑧𝑖
2
√
|𝐠|

𝐿
) (21) 

where 𝐽0,  𝐽1 and  𝐽2  are the Bessel function of the first kind of order zero, one and two, 

respectively. 𝑧𝑖 is the 𝑖𝑡ℎ positive root of 𝐽0(𝑧). 

By using both numerical and analytical methods, the calculated free-end positions at 

successive time are demonstrated and compared in Fig. 4b, where a good agreement between 

our numerical result and the analytical result is achieved. 

 

Fig. 4 Schematic view of the swinging rope pendulum (a) Comparison of the free-end 

positions (𝑥-component) between numerical and analytical solutions (b) 

 

3.3 Flow past a stationary circular cylinder 

To further verify the accuracy of our coupled algorithm in solving FSI problem, a flow past a 

stationary circular cylinder is simulated at Re = 20, 40 and 100, respectively (Re = 𝑢∞𝐷𝑐/𝜐, 

where 𝑢∞ is the velocity of the incoming flow stream, 𝜐 the viscosity of the fluid, and 𝐷𝑐  the 

diameter of the cylinder which is covered with 30 Eurerian grids). The computational domain 

g

θ

xy

s

(a) (b)
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is a square with a size of 40𝐷𝑐 × 40𝐷𝑐 and the center of the cylinder is placed at (16𝐷𝑐, 20𝐷𝑐) 

with its surface represented with 120 uniformly distributed Lagrangian points. The drag 

coefficient 𝐶𝑑   and lift coefficient 𝐶𝑙   are calculated using the following formulas to facilitate 

comparison.  

𝐶𝑑 =
𝐹𝑑

0.5ρ𝑢∞
2 𝐷𝑐

, 𝐶𝑙 =
𝐹𝑙

0.5ρ𝑢∞
2 𝐷𝑐

 (22) 

where 𝐹𝑑 and 𝐹𝑙  are the drag force and lift force on the surface of the cylinder, respectively. 

Our calculated result is tabulated in Table 1, which agrees well with those from literature. 

Table 1 Comparison of 𝐶𝑑, 𝐶𝑙 with those from literature 

References 
Re = 20 Re = 40 Re = 100 

𝐶𝑑 𝐶𝑑 𝐶𝑑 𝐶𝑙 

Russell et al. (2003) 2.22 1.63 1.43 0.339 

Xu et al. (2006) 2.23 1.66 1.42 0.34 

Tian et al. (2011) 2.16 1.62 1.43 / 

Yuan et al. (2014) 2.069 1.559 1.397 0.337 

Present 2.138 1.607 1.434 0.347 

 

4 Model formation and simulation setup 

The model for the primary cilium dynamics is two-dimensional in the current study. Due to the 

large aspect ratio of the cilium (The length of endothelial primary cilia usually ranges from 1.8 

to11.1μm, while the diameter is about 0.2μm (Lim et al. 2015)), it is modeled as an elastic 

homogeneous filament with its basal end located at the centerpoint of an endothelial cell or an 

epithelial cell. Endothelial cells form the inner wall of blood vessels and epithelial cells form 

the wall of the collecting duct, which is one part of the tubule in the kidney. The dynamic motion 

of a cilium is governed by Equation (8). In addition, the primary cilia initially orient 
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perpendicularly to the wall surface and are present in a manner of periodic array in 

the  axial (𝑥) − direction with a spacing interval of  𝐿𝑑 . A schematic diagram of the model 

geometry is shown in Fig. 5, where the rectangular area depicted by the solid line is chosen as 

the computational domain. 

Fig. 5 Schematic view of the primary cilia periodically located at the center of endothelial 

cells lining the blood vessel wall 

The flow is assumed to be incompressible, laminar, Newtonian and pulsatile. A body force 

density 𝒇𝒅 is applied to each Eulerian point as a substitution of the pressure gradient to drive 

the flow. The pressure gradient waveform is plotted in Fig. 6, which is reproduced using the 

data of in reference (McDonald 1955). The tube wall is assumed to be rigid and impermeable. 

Basic parameters of the fluid-cilium coupling system in physical units are listed in Table 2. 

Note that typically reported values of bending rigidity for a cilium vary from  1 to 2 ×

10−23Nm2 (Downs et al. 2014; Han et al. 2005; Schwartz et al. 1997; Young et al. 2012), so 

we chose an intermediate value of 1.5 × 10−23Nm2  in our simulations. As a result, the 

governing parameters of this system include cilium’s structure property, the peak Reynolds 

number  Repeak , and the Womersley number  Wo . The last two dimensionless numbers 

… …
d

L

L

0
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characterize the flow field and are defined as 

Repeak =
𝑢0𝐷

𝜐
, Wo = 𝐷√

2𝜋𝑓

𝜐
 

 
(23) 

where  𝑢0  is the maximum flow velocity when 𝑓 = 0,  i.e. there is no oscillation. 𝜐  is the 

kinematic viscosity of the fluid, and 𝑓 the pulsatile flow frequency. 

 

Fig. 6 The pressure gradient waveform (reproduced using the data of McDonald (1955)) 

Table 2 Basic parameters of the fluid-cilium coupling system in physical units 

Parameter Symbol Physical value 

Cilium length 𝐿𝑐 6μm 

Cilium diameter 𝑑𝑐 0.2μm (Lim et al. 2015) 

Vessel diameter 𝐷 30μm 

Cilium spacing interval 𝐿𝑑 12μm 

Fluid density 𝜌𝑓 1000kg/m3 

Cilium density 𝜌𝑐 1110kg/m3 (Resnick 2015) 

Cilium linear density 𝜌𝑙 4.44 × 10−11kg/m 

Fluid kinematic viscosity 𝜐 1.2 × 10−6m2/s 

Bending rigidity of cilium 𝐾𝑏 1. 5 × 10−23Nm2 

Linear spring constant 𝑘 4.6× 10−12N/rad (Resnick 2015) 

Nonlinear spring constant 𝛼 −1 × 10−10N/rad2 (Resnick 2015) 

Peak Reynolds number Repeak 0.05-0.4 
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Womersley number Wo 0.3-1.2 

Boundary conditions used in our simulations are illustrated as follows: 

(1) At the inlet and outlet of the domain, a periodic boundary condition is imposed.  

(2) At the bottom wall, a bounce-back rule is imposed to satisfy no-slip boundary condition. 

For the upper border of the domain, a symmetry boundary condition is imposed to reduce 

computational cost. 

(3) For the cilium tip, a free-end boundary condition is applied, i.e. both the bending moment 

and transverse stress vanish at the cilium tip.  

𝜕2𝑿

𝜕𝑠2
= 0,  

𝜕3𝑿

𝜕𝑠3
= 0 (24) 

For the basal end of the cilium, as it is attached to a nonlinear rotational spring (see Fig. 2), the 

boundary condition becomes 

𝑿 = 𝑿0,  
𝑑2𝑿

𝑑𝑠2
−
𝐿

𝐾𝑏
(𝑘
𝑑𝑿

𝑑𝑠
+ 𝛼 (

𝑑𝑿

𝑑𝑠
)

2

) = 0,  for s=0 (25) 

where  𝐿  is the length of the cilium, 𝑘  and  𝛼  the linear and nonlinear spring constants, 

respectively. 

 

5 Grid convergence study 

A grid convergence study is performed to ensure that the grid space we currently used is 

convergent and fine enough for this fluid-cilium-interaction problem. The deflection of a 

primary cilium under a steady flow at Re = 0.05 is simulated at 4 levels of grids (∆x =∆s in 

all simulations). The time evolutions of the cilium tip position are plotted and make comparison 

among different grid levels in Fig. 7. It can be seen that the position is convergent as the grid 

get refined, and a grid size of ∆x ≤ 1 100⁄  would be fine enough for this problem. 
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Fig. 7 Time evolutions of the tip coordinates at different grid levels 

 

6 Results and Discussion 

6.1 Effect of primary cilia on the flow field 

Due to the pulsatile pressure gradient in the vessel, the flow is transient and periodic with a 

period T characterizing the cardiac cycle. Simulations of the flow field with and without cilia, 

subject to an identical flow condition (Repeak=0.2, Wo=0.6), were performed. The flow fields 

obtained were plotted and compared in Fig. 8 with streamlines overlaid to capture the flow 

features. One can see that lower velocity magnitudes are generated in the near wall region and 

at some moments vortical flow structures are formed with a typical recirculation region found 

at the cilium tip due to the obstruction and deflection of the primary cilium. 
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Fig. 8 Comparison of the x-velocity contour and streamlines between (a) with and (b) without 

cilia presented cases at six snapshots (the unit for velocity is mm/s) 

The flow-induced wall shear stress (WSS) has a significant meaning in the human 

cardiovascular system as it is a stimulus that endothelial cells forming the vessel wall are 

particularly sensitive to. Both low and oscillatory WSS have been implicated as the potential 

causes for cardiovascular diseases such as atherosclerosis (Davies 2009). To examine the 

influence of the cilia on the WSS, the WSS distribution and its variation during a cardiac cycle 

are analyzed and compared with that of the without-cilium cases. Fig. 9 shows a comparison of 

WSS distributions at 9 typical moments in the presence and absence of the cilia. Both positive 

and negative WSS values can be observed due to the change of flow direction in each cycle as 

shown in Fig. 8, where reverse flows can be observed. For the case in the absence of cilia, the 

WSS distribution is uniform along the wall (see Fig. 9b), while for the case in the presence of 

cilia, the WSS distribution no longer remains uniform but varies along the wall (see Fig. 9a). 

(a)

(b)

1/6T 7/30T 2/5T 1/2T 3/5T 23/30T
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To be specific, when the cilia are present, the magnitude of the WSS fluctuates like this: at the 

left half region of the endothelial cell it keeps decreasing with a minimum value always found 

near the midpoint of the cell where a cilium is located, but at the right half region, the magnitude 

rises and finally stabilizes at the region near the right boundary. The WSS at 3 different sites 

(marked as A, B, and C in Fig. 9a) of the endothelial cell versus time is plotted in Fig. 10. One 

can see that the presence of cilia dramatically reduces the level of WSS at these sites, especially 

at the region near Site B, where the cilium is located. 

 

Fig. 9 Comparison of the WSS distributions at 9 moments in the presence (a) and absence (b) 

of the cilium  

Primary Cilium

BA
C

(a)

(b)

Commented [CJY1]: 校稿时改过来！！！！channel 
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Fig. 10 Temporal fluctuation of the WSS at sites A, B, C (Fig. 11a) of the endothelial cell in 

the presence and absence of the cilium 

 

6.2 Dynamics of primary cilium at various Peak Reynolds numbers  

In this section, the dynamics of the cilium at various Repeak, Wo=0.6 is studied. Our numerical 

results show that, after several cycles, the cilium steps into and maintains a periodic flapping 

pattern with its profiles and tip trajectories at different  Repeak  shown in Fig. 11. Though a 

typical pressure gradient waveform in the blood vessel (Fig. 6) is adopted in our simulations to 

create a pulsatile flow condition, the flapping dynamics of primary cilium we observed is quite 

similar with the ciliary oscillation captured in renal tubular flow by O’Connor et al. (2013) 

using a new in vivo visualization tool, the CiliaGFP mouse. Our simulation results support their 

first speculation that the oscillation behaviors of renal cilia may be due to the pulsatile flow. It 

is obvious and intuitive that the cilium deflection amplitude at a higher Repeak is greater, as the 

corresponding flow drag is increased. Furthermore, for the chosen Wo of 0.6, we find that when 

the Repeak is reduced to below a critical value, the cilium manages to flap only in the right half 

of the domain. This one-side flapping results in the stretch of a cilium on one side while the 
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other side is compressed during the entire deflection process.  

 

Fig. 11 The trajectories of a cilium in a cardiac cycle at various Repeak with the dashed green 

lines indicating clockwise deflections, solid blue lines anticlockwise deflections, and and 

solid red line tip trajectories 

The angular speed of the cilium tip at various Repeak is recorded and plotted in Fig. 12, where 

the positive and negative values denote clockwise and anticlockwise deflection, respectively. 

The normalized pressure gradient waveform is appended at the top of the figure to facilitate 

analysis. A phase lag between the angular speed and the applied pressure gradient is observed, 

as reported by O’Connor et al. (2016). During each cycle, the cilium is observed to first deflect 

clockwise at an increasing speed, then decelerate to zero before switching to an anticlockwise 

Repeak = 0.05 Repeak = 0.2 

Repeak = 0.1 Repeak = 0.4 
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deflection. It is at this zero-angular-speed moment that the cilium reaches its right deflection 

limit. In the subsequent anticlockwise deflection, the cilium also experiences an accelerating-

decelerating “bounce-back” process before reaching its left deflection limit at the second zero-

angular-speed moment. In the rest period of the cycle, the cilium repeats the aforementioned 

deflection behavior but at a much lower amplitude. The deflection behavior of the cilium 

basically follows the applied pressure gradient waveform, except that the largest angular speed 

value is obtained during the first anticlockwise deflection process, instead of during the first 

clockwise deflection, where the largest pressure gradient is applied at a positive value. This 

may be due to the release of the bending energy that the cilium harvested during its first 

clockwise deflection process, where cilium’s largest deflection and bending energy in a cycle 

is obtained. With the joint effect of the released bending energy and the absorbed backward 

flow power (due to the negative pressure gradient applied), the cilium is likely to obtain a larger 

kinetic energy (tip angular speed) during its anticlockwise deflection process, e.g. at 

time=0.0441s. As it can be further suggested from the cilium profile presented in Fig. 12, at 

that moment when the cilium reaches its maximum tip angular speed, the cilium has a nearly 

straight profile, indicating the bending energy is now at a very low level after such a release.  
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Fig. 12 Temporal fluctuation of the cilium tip angular speed at various Repeak with the 

normalized pressure gradient waveform appended at the top for reference 

Besides, the basal rotation of the cilium can be observed in all simulation cases, as shown in 

Fig. 13a. The variation of the maximum curvature during the deflection process is plotted in 

Fig. 13b. Here the maximum curvature is recorded and analyzed because experimental studies 

have revealed that the opening of the ion channels is correlated with the tensile stress in the 

cilium membrane, and the tensile stress is approximately proportional to its curvature in the 

primary cilium case as its large aspect ratio makes the equations derived in pure bending 

assumption still valid. Therefore, a larger curvature indicates a higher possibility in the 

activation of the stretch-sensitive ion channels during the bending process of a primary cilium 

and those channels localized near the point with the maximum tensile stress would get activated 

first. In our simulation results, due to the pulsatile flow applied, the maximum tensile stress is 
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not always observed at the cilium base region as reported by Rydholm et al. (2010) and Young 

et al (2012). According to our numerical results, the location that has the maximum tensile 

stress (MTS) could propagate from time to time during a cardiac cycle, though in most of time 

(more than 85% of a cycle in our simulated Repeak cases) it stays at the base. A typical case 

demonstrating this phenomenon is shown in Fig. 14, where we can see that the location of the 

MTS periodically varies between 0 to 45% of cilium length. For all the cases we simulated, the 

location of MTS is observed to travel for only a certain distance from the base, and the travelled 

distance is more remarkable in the case with a higher Repeak. From Fig. 12 and Fig. 13, one 

can also clearly see that when a primary cilium is subjected to a fluid flow with higher Repeak, 

its tip angular speed, basal rotation and maximum curvature all increase. 

 

Fig. 13 Temporal fluctuation of the cilium’s cilium basal rotation (a) maximum curvature (b) 

at various Repeak 

Repeak  Repeak  =0.05 Repeak  Repeak  =0.1 =0.2 =0.4
(a)

(b)
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Fig. 14 Time evolution of the cilium point with the maximum tensile stress at Repeak =

0.4,Wo = 0.6 

 

6.3 Effect of Womersley number on the dynamics of the primary cilium 

The Wo is another important dimensionless number in the cardiovascular system for 

characterizing the unsteady part of the flow power. In different types of human blood vessels, 

this number varies significantly. Based on the vessel size we chose, simulations of the 

deflections of the primary cilium at a certain range of Wo were also performed at Repeak = 0.1. 

Varying of Wo is achieved by altering the pulsatile flow frequency 𝑓 in Equation (31). 

The profiles and tip trajectories of the cilium in a cardiac cycle at various Wo are presented 

in Fig. 15, in which we can see that as Wo increases the cilium deflection amplitude decreases. 

At Wo = 1.2, the cilium only has very few negative deflections ( hereafter, the deflections 

occur at the left half domain (X < 6μm ) are prescribed as negative deflections, otherwise 

positive deflections), and as Wo further increases, the cilium is unable to cross the centerline of 

the region, resulting in completely positive deflections, i.e. the cilium only flaps in the right 
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half of the domain. The reason may be that when the cilium is subject to a fluid flow with a 

higher Wo, the cilium could harvest less bending energy as the deflection amplitude is reduced. 

The release of this energy in the following “bounce-back” process is not enough to return to its 

initial position. The temporal fluctuations of the tip angular speed at three different Wo  are 

displayed in Fig.16. One can see that as the Wo increases, the amplitude of the tip angular speed 

also increases although the deflection amplitude of the cilium decreases (see Fig. 15). However, 

when  Wo = 1.2 , the largest angular speed value is obtained during the first clockwise 

deflection process, which is quite different from the results of other cases, indicating that the 

release of the bending energy at this Wo is the lowest. The temporal fluctuations of the basal 

rotation and maximum curvature are recorded and presented in Fig. 17a and Fig. 17b, 

respectively. An increase in Wo results in a decrease in both quantities. This may be due to the 

imbalance of the portion of the applied positive and negative pressure gradient in a cardiac 

cycle (positive portion > negative portion, see Fig. 6). The positive portion becomes even more 

dominant when Wo  decreases, which brings a larger average drag force to the cilium and 

enables it to deflect more powerfully. 
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Fig. 15 The profiles of the cilium in a cardiac cycle at various Wo with the dashed green lines 

indicating clockwise deflections, solid blue lines anticlockwise deflections, and solid red line 

tip trajectories 

Wo = 0.3 Wo = 0.6 

Wo = 0.4 Wo = 1.2 
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Fig. 16 Temporal fluctuation of the cilium tip angular speed at various Wo 

 

Fig. 17 Temporal fluctuation of cilium’s basal rotation (a) maximum curvature (b) at 

various Wo 

 

7 Conclusions 

(a)

(b)
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In this study, an explicit immersed boundary-lattice Boltzmann method is developed to study 

the dynamics of the primary cilium in pulsatile flows with two-way fluid-structure interaction 

taken into consideration. After validating our algorithm against several benchmark problems, 

the fluid-cilium interaction system is investigated in detail using our method with the cilium 

basal body modeled as a nonlinear rotational spring. Our simulation reproduced similar cilium 

flapping dynamics as those captured in the in vivo experiment by O’Connor et al. (2013). Based 

on our simulation results, some conclusions are drawn as follows: 

(1). Due to the obstruction of the primary cilium, the WSS distribution no longer remains 

uniform as for the case without cilium but oscillates in space. The magnitude of the WSS is 

found to decrease at the first (left) half region of the endothelial cell with its minimum always 

found near the cell midpoint where the cilium is located, and the magnitude rises in the second 

(right) half part of the endothelial cell. The presence of the cilium also reduces the overall level 

of the WSS, especially at the region near the cilium anchor point. 

(2). The primary cilium is observed to do a periodic flapping during each cardiac cycle. The 

flapping pattern depends on both the Repeak and Wo. By reducing the Repeak (e.g. decrease the 

flow rate) or enhancing the Wo (e.g. increase the pulsatile flow frequency) to a certain level, 

the primary cilium will switch to a one-side flapping pattern from its original two-side one, 

resulting in the stretch only on one side of the cilium. When a primary cilium is subject to fluid 

flows with higher  Repeak , its flapping amplitude, tip angular speed, basal rotation and 

maximum tensile stress all increase. In contrast, increasing the Wo reduces these four quantities.  

(3). Under pulsatile flow conditions, the maximum tensile stress of the primary cilium is not 

always (though mostly) found at the cilium base region. In contrast, it could propagate 
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periodically within a certain distance to the base. 
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