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Abstract

Stochastic simulation of  population balance equations (PBEs) is r obust  and  flexible;

however,  it  exhibits  intrinsic  stochastic errors which  decreases at a  very  slow  rate 

when increasing the computational resolution. Generally,  these  stochastic   methods

can be classified into two groups: (i) the classical Gillespie method and (ii) weighted

flow algorithm. An analytical relationship is derived for the first time to connect the

variances in these two groups. It also provides a detailed analysis of the resampling

process, which has not been given appropriate attention previously. It is found that

resampling has a profound effect on the numerical precision. Moreover, by comparing

the time evolutions between systematic errors (i.e., errors in the mean value) and

stochastic errors (i.e., variances), it is found that the former grows considerably faster

than the latter; thus, systematic errors eventually dominate. The present findings

facilitate the choice of the most suitable stochastic method for a specific PBE a priori

in order to balance numerical precision and efficiency.

Keywords: Population balance equations, Smoluchowski equation, Stochastic

methods, Weighted flow algorithm, Stochastic variance, Aerosol dynamics

1. Introduction

The Smoluchowski coagulation equation [1] describes the time evolution of the

number density of particles in coagulation. Its extension to a general population 

balance equation (PBE) [2] has been used in diverse fields, such as aerosol dynam-
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ics [3] (which is the main focus of this study) and chemical kinetics [4]. Because

of its mathematical complexity (a partial integral-differential equation), analytical

solutions to the PBE are only available under limited conditions [5–7]. Numerical

techniques are by far the most feasible for solving the PBEs. In general, numer-

ical techniques can be classified into three groups: direct discretization, method

of moments, and stochastic methods. Direct discretization may be applicable in the

particle size space [8–11] or the functional space [12, 13]. Earlier discretization meth-

ods typically encounter the problems of non-positiveness and non-conservation [14];

considerable efforts have been exerted to resolve such problems for better numerical

efficiency and flexibility [15, 16]. The method of moments solves a group of moment

equations derived from the PBE. It is considerably efficient in providing fundamen-

tal statistics pertaining to the particle size distribution (PSD) function (i.e., number

density, volume fraction, polydispersity, etc.) without directly solving the PSD.

However, closure schemes [17–22] are necessary to deal with the closure problem

because of the truncation involved in deriving the moment equations. Apart from

the compromise in the numerical precision, the realizability problem (which occurs

when the moments sequence fails to find its corresponding distribution function) is

also an obstacle [23, 24]. Moreover, the method of moments is not capable of solving

the PSD. There have been some research studies conducted to recover the PSD from

a group of known moments [25–27]. However, from a pure mathematical point of

view, it is a well-known ill-conditioned problem to recover a distribution from its

moments [23], and more research studies need to be done.

The stochastic or Monte Carlo (MC) simulation does not solve the PBE; however,

it mimics the evolution of the physical particulate system with a cluster of notational

particles. All the MC simulations are based on the Marcus-Lushnikov process for

modeling coagulation [28] and are extended to include general aerosol dynamic pro-

cesses through various techniques [29–31]. In an MC simulation, the typical processes

of birth (nucleation), growth (condensation and surface reaction), and binary coag-

ulation in the PBE are modeled simply by adding new particles, growing existing
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particles, and having two particles collide, respectively. Such type of simulation

is considerably robust; however, intrinsic stochasticity and slow convergence rate

(with respect to the number of numerical particles, N) are the main deficiencies

of stochastic simulation. Increasing numerical efficiency (accelerating the numerical

simulation) has been one of the central focuses in the study of stochastic methods.

Such efficiency is generally achieved through several directions. (i) Using the MC for

multidimensional population balance problems [32–42]. It would be fair to point out

that the MC for a multidimensional problem is more computationally expensive than

that for a one-dimensional problem; however, the increase in computational cost is

considerably smaller than those of the other methods. There are several conditions

where a single variate PSD is not sufficient, and a multicomponent or multiparam-

eter description [43] of the joint is necessary. For such multidimensional problems,

the MC simulation is superior in tackling “the curse of dimensionality” [44], i.e.,

the computation grows exponentially with the number of dimensions when the usual

deterministic methods are used. On the other hand, the convergence rate in the

MC simulation is not affected by the number of dimensions. (ii) Adopting different

weights for the different sizes of numerical particles. In an MC simulation, numerical

particles represent a large number of physical particles with similar properties. If

every numerical particle represents the same number of physical particles (i.e., equal

weights), then large particles, whose number density is typically considerably lower

than that of small particles, are generally poorly represented (or not represented at

all) in the numerical simulation. In order to simulate large particles more precisely,

various differentially weighted schemes [37, 40, 45–48] have been developed to in-

crease their resolution. (iii) Introducing proper approximations. Grouping similar

particles with similar properties (e.g., size and component) into “bins” [49, 50], firing

multiple coagulation events at a time (τ leaping) [51, 52], and approximating com-

plicated coagulation kernels with simple ones by introducing fictitious jumps [53, 54]

(it should be noted that the fictitious jump method does not cause approximations

in the final results.) are all efficient approaches in accelerating an MC simulation.



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(iv) Running numerical simulations in parallel. Parallelization can be implemented

on multiple central processing unit processors [31]; it is even more economically im-

plemented on a graphics processing unit [55]. A promising but has yet to be realized

approach in the MC simulation of PBE is the introduction of correlations across

replications in parallel simulations in order to reduce the simulation variance [56].

In the present study, both systematic and stochastic errors in the stochastic

simulations of the generalized Smoluchowski coagulation equation are investigated

analytically and numerically for the classical Monte Carlo (CMC) algorithm [28]

and the general differentially weighted algorithm (termed weighted flow algorithm,

WFA) [37]. Because any MC method is supposed to converge in the mean to the true

solution of PBE, the variance can be regarded as a de facto standard to quantify the

numerical efficiency of an MC method. The present study is intended to quantify

under what conditions the WFA is superior over the CMC in terms of the variance.

Another highly relevant but always ignored problem is how resampling affects the

PSD [57]. For a general aerosol dynamic system, the number density of particles

typically varies over a considerably wide range. Inevitably, the number of numerical

particles, N , has to be curved within a proper range in order to avoid extremely

high computational costs (large N) or extremely high simulation errors (small N).

Resampling refers to the addition or removal of particles from the original distribu-

tion in order to obtain a new one with a proper N , while ensuring that the original

and new particle size distributions remain statistically the same. Although several

ad hoc resampling schemes [30, 58] have been used in MC simulations, the impact

of resampling has never been investigated thoroughly. This impact is actually con-

siderably important under several conditions and may even be the decisive factor

under some extreme conditions. The present study also provides a proven formula

to evaluate the stochastic variance caused by the resampling.

This paper is organized as follows: Section 2 briefly introduces the CMC and

WFA methods. Section 3 first reviews the previous theory regarding the Poisson

distribution of a specific particle size. Thereafter, the derivation of variance in the
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two algorithms for simple coagulation on the premise of the Poisson distribution is

introduced. Next, the analysis of variance in the resampling, which is a necessary step

in the stochastic simulation, is presented. Section 4 explains the various numerical

simulations for verifying the theoretical analyses. An appendix also accompanies this

paper to show that although resampling does not introduce any bias to the PSD, it

generates variance in the PSD.

2. Smoluchowski Equation and Stochastic Simulations

2.1. Classical Monte Carlo (CMC) method for Smoluchowski equation

The continuous Smoluchowski coagulation equation is

∂n(v)

∂t
=

1

2

∫ v

0

β(u, v − u)n(u)n(v − u) du−
∫ ∞
0

β(v, u)n(v)n(u) du, (1)

where n(v) is the number density of particles with volume v, and β(u, v) is the

collision kernel function, which describes the coagulation rate of two particles with

volumes u and v. Throughout this paper, the time variable in expressions is omitted

for conciseness. The continuous coagulation equation is convenient to include more

aerosol dynamic processes (i.e., nucleation, condensation, etc.) in order to obtain

the general dynamic equation [3]. However, the discrete coagulation equation is a

more natural choice in MC simulations

∂nl
∂t

=
1

2

∑
I+J=l

β(I, J)nInJ −
∞∑
I=1

β(I, l)nInJ , (2)

where nl is the number density of particles with volume l; l, I, and J are integer indices

(l = 1 corresponds to the volume of the primary coagulation particle or the smallest

particle). In a typical MC method, a group of numerical particles (each group has a

specific volume) is used to simulate the evolution of the PSD. These numerical

particles are assumed to reside homogeneously in a virtual space with a volume V0; the

number density of particles with size l is then given by

nl =
Nl

V0
, (3)
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where Nl is the number of particles with volume l. The total number of numerical

particles is given below

N =
∞∑
l=1

Nl. (4)

In practice, N is always finite. Theoretically, as N → ∞, the discrete MC particles

are supposed to represent the true discrete distribution in Eq. (2), which is in turn

generally equivalent to the continuous distribution in Eq. (1) [5]. Within the virtual

volume, V0, it is possible for any two particles to coagulate at a rate determined by the

coagulation kernel function. After setting a specific N in the numerical simulation,

V0 is determined by the initial condition of the number density of particles; it remains

constant except when resampling occurs (Section 3.3). Although V0 has no direct

effect on the precision of the discrete distribution, it can be conveniently adjusted to

provide the necessary number density of particles in a numerical simulation.

In the following, the CMC method of Gillespie [28], which has been the corner

stone of later developments, is briefly introduced. The basic idea is to randomly

choose two numerical particles to coagulate at a random time, τ ; note that the random

coagulation time satisfies a Poisson distribution

P (τ) = C0 exp(−C0τ), (5)

where

C0 =
N−1∑
i=1

N∑
j=i+1

Cij,

Cij =
1

V0
β(vi, vj).

(6)

In the above, i and j are the indices of N numerical particles, and vi and vj are

the volume of the corresponding particles, respectively; Cij depicts the coagulation

propensity between particles i and j; C0 represents the entire coagulation propen-

sity, which determines how quick a coagulation event may happen between any two

particles. The coagulation pair is selected according to the following probability

P (i, j) =
Cij
C0

. (7)
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The detailed implementation of the CMC can be found in the original work of Gille-

spie [28].

2.2. Weighted Flow Algorithm (WFA)

In the above CMC method, every numerical particle has the same “weight” to

represent real particles. It is argued that differentially weighted particles may be

more efficient and advantageous under several conditions. For example, the particle

size distribution observed in nature and industrial applications usually has a wide

spectrum, and the number density of larger particles is usually several orders of mag-

nitude smaller than that of considerably finer particles. Despite their low number

density, larger particles are more “important” in determining certain physical quanti-

ties, such as the total mass or higher-order moments of the PSD. Hence, it is suggested

to introduce the weight function, w(v), into the Smoluchowski equation in order to

obtain the equation for the weighted particle number density, nw(v) = n(v)/w(v), as 

proposed in [37]

∂nw(v)

∂t
=

1

2

∫ v

0

R(u, v − u)Pbirth(u, v − u)nw(u)nw(v − u)du

−
∫ ∞
0

R(u, v)Pdeath(u, v)nw(v)nw(u)du,

(8)

where

R(v, u) =β(v, u)
w(v)w(u)

wmin(v, u)
,

Pdeath(v, u) =
wmin(v, u)

w(u)
,

Pbirth(v, u) =
wmin(v, u)

w(v + u)
,

wmin(v, u) = min[w(v), w(u), w(v + u)].

(9)

The weight function is suggested [37] to be of the form

w(v) = (
v

v0
)α, (10)

where v0 is a reference volume, and α is the scaling parameter. If α = 0 (i.e., the

weight function degenerates to the constant, 1), then the WFA coincides with the
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CMC method. If α = −1 (i.e., the number density n(v) is weighted by particle

volume), then the WFA coincides with the mass flow algorithm [45, 53]. Generally,

α is negative (α < 0) so as to promote the number of larger numerical particles.

Similar to the CMC method, the weighted particle number density is represented

by the number of numerical particles, Nl
w, as follows

nl
w =

Nw
l

V0
w
. (11)

The corresponding equation for nlw is directly obtained from Eq. (8).

The actual implementation of the WFA [37] is still based on the CMC method [28].

However, in the WFA method, the two coagulated particles, u and v, are removed

with the probabilities Pdeath(v, u) and Pdeath(u, v), respectively. A nascent particle,

u+ v, is produced with probability Pbirth(v, u).

3. Variance Analyses for Stochastic Methods

3.1. Poisson distribution for Nl

For the stochastic coalescence model [59], Gillespie [60] showed that function

P (k, l, t) (which is the probability of finding the number of k particles with size l

at time t) approximates the Poisson distribution with the mean value, Nl (ensemble

average of the number of particles with size l), as t → ∞. In the absence of cor-

relations, the result is derived. In fact, the stochastic coalescence model turns into

the Smoluchowski equation, Eq. (2), when correlations are absent [59]. In the CMC

method for simulating the Smoluchowski equation, self-coagulation is excluded; this

is exactly the assumption of no correlations in the derivation [60]. Hence, in the

repeated MC simulations to obtain ensemble average, Nl fluctuates randomly among

independent repetitions, and the corresponding probability function, P (k, l, t), would

satisfy the Poisson distribution

lim
t→∞

P (k, l, t) =
Nl

k
exp(−Nl)

k!
. (12)

A notable property of the Poisson distribution is as follows

(13)Nl = Var(Nl). 

8



In other words, in the CMC method for coagulation with N numerical particles,

the actual number of numerical particles with size l is approximately a stochastic

variable that satisfies the Poisson distribution (i.e., the variance equals its mean, Nl).

3.2. Variance in CMC and WFA

3.2.1. variance of distribution

After introducing the probability function P (k, l, t), Gillespie [60] derived the dy-

namic equation of P (k, l, t) under the local balance condition and thereafter applied

the moment transformation of P (k, l, t) to obtain a series of dynamic equations for

moments. Finally, Gillespie [60] showed that the obtained moments approximate

those of the Poisson distribution as in Eq. (12). The derivation is extremely techni-

cal; instead of following the same route to show that the corresponding probability

function, Pw(k, l, t), in the WFA also satisfies the Poisson distribution, a simple ar-

gument is provided. The WFA is in principle of a CMC method equipped with an

additional random birth/death process to “twist” the numerical PSD as desired, and

the particles in the PSD are assumed to be uncorrelated during the derivation [60].

Consequently, it is argued that Pw(k, l, t) will also approach the Poisson distribu-

tion with the mean Nw
l (the foregoing is verified through various numerical examples

below). Based on the Poisson distribution property that the mean is equal to its

variance, the following is obtained

Var(Nl
w) = Nw 

l

= nlwV0
w     =

nlV0
w

w(l)
=

NlV0
w

V0w(l)
=
V0

wVar(Nl)

V0w(l)
, (14)

i.e.,
Var(Nl)

Var(Nl
w)

=
V0
V0

w
w(l), (15)

then

Var(nl
w) 

=
Var(Nl/V0)

Var(Nl
w/V0

w)
=

Var(nl) Var(Nl) (V0
w)2 

Var(Nl
w) V0

2 =
V0

w

V0
w(l). (16)

Hence, the ratio of variances of the number density obtained using the CMC and

WFA methods is

Var(nl)

Var(nw
l w(l))

=
Var(nl)

w2(l)Var(nw
l )

=
V w
0

V0

1

w(l)
. (17)
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The variance relationship expressed in Eq. (17) is one of the major findings of the

present study; a detailed interpretation is appropriate. First, note that this result

is not trivial. Based on the defined relationship, nw
l = nl/w(l) (which is equivalent

to nw
l = nl/w(l) in stochastic simulations) in Eq. (8), it is not possible to infer the

variance relationship directly. The correctness of this relationship is demonstrated

through various numerical examples in Section 4.

Secondly, it is not necessary for the CMC and WFA simulations to use the same

number of numerical particles to make the variance comparison possible. Actually,

the only requirement is nw
l = nl/w(l), which is presumably satisfied because both

the CMC and WFA would predict the same correct results in terms of the mean

value. Evidently, the actual number of numerical particles affects the precision in

the numerical simulation, as discussed in Section 4.2. The effect of numerical particle

number, N , on the variance is reflected by the ratio of virtual volumes, V w
0 /V0, in

Eq. (17).

Finally, the simulated number density of particles for a specific size has a lower

variance if a smaller weight is used. For instance, in the weight function w(v) =

(v/v0)
α in Eq. (10), α < 0 is always adopted so as to render a smaller weight for

larger particles. If the reference volume, v0, is taken as the smallest in the PSD,

then for particles of all sizes, w(v) ≤ 1; this means that the variance in the WFA

is always no larger than that in the CMC (if we also let V0 = V w
0 ). The WFA is

superior to the CMC in reducing the variance among larger particles; this is exactly

the main objective for developing the WFA [37]. However, the numbers of numerical

particles in the CMC and WFA generally evolve at considerably different rates. Our

experience on numerical simulations show that the CMC only typically requires a

small number of particles (hence, a high numerical efficiency) to achieve comparable a

precision comparable to that of the WFA on lower-order statistics (e.g., total number

density and total volume fraction). A simple explanation of this phenomenon is

that the WFA substantially focuses much on higher-order statistics; accordingly, its

resolution for low-order statistics is compromised. The detailed comparisons of the

10



pros and cons between the CMC and WFA in the simulation results are presented 

in Section 4.

3.2.2. variance of moments

Moments provide concise but crucial information about the particle size distri-

bution. In this subsection, the analysis of the evolution of mean and variance of the 

moments in stochastic simulations is presented.

By multiplying both sides of the Smoluchowski equation (Eq. (1)) with vk, 

and integrating over the particle size space, the dynamic equation for the kth 

moment can be derived (A dynamic equation for a general transformation 

(other than the specific moment transformation) can be found in Drake [61])

dMk

dt
=

1

2

∫ ∞
0

∫ ∞
0

[(v + u)k − vk − uk]β(v, u)n(v)n(u) du dv. (18)

One interesting but to a certain extent overlooked conclusion [61] is that the right-

hand side of Eq. (18) is negative if k < 1 and positive if k > 1; this means that 

Mk increases with time when k > 1 and decreases when k < 1. In particular, M1 

is constant with time because the volume fraction is conserved during the pure 

coagulation process; on the other hand, M0, the total number density of particles, 

decays because of coagulation. If β is a polynomial function of v and u, then the 

double integral on the right-hand side of Eq. (18) can be directly performed as the 

polynomial of moments of various orders. In particular, if β is a constant, then only 

moments lower than the kth order appear on the right-hand side.

Because all stochastic methods proposed for simulating the Smoluchowski equa-

tion are supposed to converge to the Smoluchowski equation (Eq. (1)) as N → ∞, 

the mean discrete moments are expected to evolve approximately as Eq. (18). These 

moments are defined through

Mk =
1

V0

N∑
i=1

vki , (CMC) (19)

Mk =
1

V w
0

N∑
i=1

vki w(vi), (WFA) (20)
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where vi is the volume of the ith numerical particle.

The evolutions of the moment variance are found as follows (lengthy derivation

is not shown here):

d[Var(Mk)]

dt
=

1

V 2
0

N−1∑
i=1

N∑
j=i+1

Cij[(vi + vj)
k − vki − vkj ]2, (CMC) (21)

d[Var(Mk)]

dt
=

1

(V w
0 )2

N−1∑
i=1

N∑
j=i+1

Cij
{
w(vi + vj)[(vi + vj)

k − vki − vkj ]2

+[w(vi)− w(vi + vj)]v
2k
i + [w(vj)− w(vi + vj)]v

2k
j

} , (WFA) (22)

where Cij in Eqs. (21) and (22) denotes the mean value of Cij (which is defined

in Eq. (6)). If w(v) = 1 (for all v) , i.e., no differential weighting, then Eq. (22)

degenerates to Eq. (21). For the general case of w(v) 6= 1, the preliminary infor-

mation on the moment variance can be obtained by inspecting the right-hand side

of the two equation above. Particularly for k = 1 (corresponding to the volume

fraction), the right-hand side of Eq. (21) is zero; this means that the volume fraction

(or mass) is strictly conserved (no stochasticity) in the CMC method. However, the

right hand-side of Eq. (22) is generally non-zero for k = 1; this means that stochastic

fluctuation is introduced to the volume fraction after the particles are weighted differ-

entially. This might be a crucial problem under certain conditions, such as coupling

aerosol dynamics (soot) with sensitive gaseous chemical reactions (i.e., combustion

processes), when the strict conservation of total particle mass is necessary [62]. For

a general moment, the right-hand side is found to scale approximately with 1/N .

Because Cij is proportional to 1/V0 (Eq. (6)), and V0 is proportional to N for a given

number density of particles, the denominator is proportional to 1/N3. On the other

hand, the double summation in the numerator is proportional to N(N−1); therefore,

the whole term is approximately proportional to 1/N . With a further assumption

that N does not affect the PSD, which is true when N is sufficiently large, it can be

concluded that the moment variance at a given time is inversely proportional to N ,

as numerically verified in Section 4.3.2.

12



3.3. Stochasticity in resampling

Resampling refers to the addition (duplication) or removal of randomly selected

particles from existing ones in order to control the number of numerical particles

in a specified range. Resampling is explicitly or implicitly adopted in practically

all stochastic simulations of aerosol dynamics. However, to the best of the authors’

knowledge, it has never been systematically and thoroughly investigated.

For pure coagulation simulation with the WFA, the number of numerical parti-

cles remains practically constant when α = −1 (statistically corresponding to the

mass flow algorithm [45, 53]), where resampling is not necessary. When α < −1,

the number of particles may increase; hence, downsampling might be necessary to

prevent this number from growing extremely large (which would require consider-

able computational resources). When α > −1, the number of particles decreases. In

particular, when α = 0 (corresponding to the CMC method), there are generally two

methods (i.e., constant number [58] and constant volume [47]) that can be employed

to prevent this number from becoming extremely small. In the constant number

method, a particle randomly selected from existing particles is duplicated after each

coagulation event when a particle is depleted (two particles coagulate into one). In

the constant volume method, the number of particles is allowed to decease to a cer-

tain threshold (typically half of the original particle number), and thereafter increase

by duplicating all existing particles. All these operations are actually a certain type

of resampling. For general aerosol dynamics, including coagulation and nucleation,

resampling is generally inevitable [37].

Resampling is generally presumed to introduce no statistical bias, which is rel-

atively easy to prove mathematically (Appendix A). The variance introduced by

resampling has never been investigated. Suppose that a discrete distribution of N

particles is given. Through upsampling, m additional particles are added to the ex-

isting N while keeping the new distribution statistically equivalent to the old one. A

simple way to accomplish this is to select m (assume m ≤ N) particles from N par-

ticles and duplicate those selected; thereafter, put these duplicates into the particle

13



pool to obtain N +m particles. I f m > N , then whole N i s firstly duplicated as many

times as the modulus of m mod N (mod denotes the modulo operation); thereafter, the

process i s repeated f or the common remainder as i n the case of m ≤ N . After the

addition of m particles, the virtual volume has to be scaled up to V0(m + N)/N  in order

to render the particle number density distribution statistically unchanged. During

downsampling,   the   virtual   volume   has   to   be  scaled  down   to  V0(N −m)/N  in

 order to remove m particles from N. The variance during the upsampling or 

downsampling is found as below (Eq. (A.12) or Eq. (A.14))

Var(X+) =
m
N

(
1 − mN

)(
1 + mN

)2 1

N
Varp[Mk(N)], (23)

Var(X−) =
m( N

1 − mN
) 1

N
Varp[Mk(N)], (24)

where

X± =
1

N ± m

(
N∑
i=1

xi
k ±

∑m
i=1

xξ
k
i

)
, (25)

and Varp[Mk(N)] is the unbiased estimator of the variance of the kth moment as

defined in Eq. (A.13). Equations (23) and (24) indicate the magnitude of variance for

the kth-order moment of the particle size distribution introduced in upsampling and

downsampling, respectively. The sample variance depends on three parameters: the

resampling rate (m/N), the number of numerical particles (N), and the population

variance (Varp[Mk(N)]) of the particle size distribution to be resampled. In the

foregoing, with the underlying assumption that a statistically stable variance exists

(which reflects the outcome of a large number of repetition), the number of repetitions

is not explicitly considered. It is worth pointing out that the population variance

(defined in Eq. (A.13)) should be independent of N when N is sufficiently large; this

is because the obtained PSD in an MC simulation is expected to converge to the true

PSD as N increases. It is evident that the resampling variance is proportional to the

population variance; for instance, resampling from a single-peaked distribution (zero

variance) will not introduce any variance to the original particle size distribution.

However, given that other conditions (resampling rate and population variance) are

the same, it is remarkable to see the resampling variance being inversely proportional
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to N ; for example, under the same resampling rate (asume that half of particles are

removed), the sampling variance can still be considerably different when N is varied.

This relationship implies that the resampling variance can always be reduced by

using a larger N . The resampling rate has different effects on the sampling variance

between upsampling and downsampling. In downsampling, the removal of more

particles makes the resampling variance sharply increase until the limiting case (only

one particle remains; the removal of all particles is meaningless) is reached. With

the resampling variance practically equal to the population variance (as indicated

by the ratio (N − 1)/N), downsampling causes enormous stochasticity; this should

almost always be avoided. In upsampling, the addition of more particles makes the

variance increase first and thereafter drop to zero (m = N). At m/N = 1/3, the

first factor on the right-hand side of Eq. (23) reaches the maximum value of 1/8.

Doubling (m = N) is commonly adopted in numerical simulations; it is optimal in

order to reduce the resampling variance. The above results are derived for a non-

replacement selection of m particles. It is also possible to select one particle at a time

until m particles are selected (resampling with replacement); however, this results

in a variance larger than that in the resampling without replacement. The foregoing

can be verified by applying Eq. (23) or (24) for m = 1, recursively.

The examples in Section 4.4 provide numerical evidence for the correctness of the

above derivation.

4. Simulation Results

4.1. Various types of errors

A brief introduction on the various types of errors is presented here to facilitate

the later discussions on numerical simulation results. With regard to the MC sim-

ulation errors, there are two fundamental questions to answer. A finite number of

numerical particles (N) is used to simulate to a continuous Smoluchowski equation.

Accordingly, the natural question is, how large should N be to make the discretiza-

tion error sufficiently small as desired without considering the stochastic fluctuation
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(which can be made arbitrarily small through repetitions in theory)? Although it is

known [5] that as N → ∞, the discrete Smoluchowski equation (Eq. (2)) converges to

the continuous Smoluchowski equation (Eq. (1)), simple and sound analysis to

quantify the discretization error in the moments is scarce. The best-known error es-

timation states that the discretization error is inversely proportional to the number

(N) [63]; this is further discussed in Section 4.2.

On the other hand, a pertinent question related to MC simulations is the stochas-

tic error, which involves two aspects: the stochastic variance lying in a MC simulation

(which is closely related to the specific MC method and the number N adopted),

and the repetition of the MC simulation. An independent MC simulation is usually

repeated Nrep times to smooth out the randomness in practice. The stochastic error

is generally found as

Stochastic Error =

√
Variance

Nrep

. (26)

The error is well-known to decrease at a rate proportional to
√
Nrep. However, the

true variance of the stochastic process is generally unknown. So the unbiased sample

variance is used as an estimator for the true variance

Var =
1

Nrep − 1

Nrep∑
i=1

(Xi −X)2, (27)

where Xi denotes the ith repetition of a random variable, and X =
∑Nrep

i=1 denotes

its sample mean. One of the main objectives of the present study is to compare the

variances in the CMC and WFA methods.

4.2. Systematic errors

Kolodko and Sabelfeld [63] proved that the discretization error (or systematic

error) satisfies the following inequality

||E [N∞(t)]− n(t)|| ≤ 1

2

(
3

4N
+ sup

τ≤t
||cov(τ)||

)
[exp(4βmaxt)− 1] , (28)

where N∞(t) and n(t) denotes the simulated and true discrete distribution to the

Smoluchowski equation, respectively. The norm is defined as   ||n|| =
∑

I ≥1 |nI |, βmax
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is the maximum of the coagulation kernel; and the vector cov(t) is defined as

cov(t) =

(∑
J≥1

Cov[Ni(t), Nj(t)]

)
I≥1

, (29)

where Cov denotes the covariance, and NI and NJ are the number density of particles 

with volume I and J , respectively. It is found that ||cov(t)|| approaches zero as time 

increases [63]. Moreover, the correlation between any two particles becomes ever 

weaker as N increases. Using the inequality condition in Eq. (28) for the dis-crete 

distribution, it is straightforward to derive an inequality for the kth moment 

according to the definition of Eq. (19). The inequality is multiplied by Ik/V0 and 

thereafter summed over I from 1 to N , i.e.,

||Mk −mk|| =
1

V0

∣∣∣∣∣
N∑
I=1

IkE [NI(t)]−
∞∑
I=1

IknI(t)

∣∣∣∣∣
=

1

V0

∣∣∣∣∣
N∑
I=1

IkE [NI(t)]−
N∑
I=1

IknI(t)−
∞∑

I=N+1

IknI(t)

∣∣∣∣∣
≤ 1

V0

(
N∑
I=1

Ik|E[NI(t)]− nI(t)|+
∞∑

I=N+1

IknI(t)

)

≤ 1

V0

(
N∑
I=1

Ik||E [N∞(t)]− n(t)||+
∞∑

I=N+1

IknI(t)

)

≤ 1

2V0

N∑
I=1

Ik
(

3

4N
+ sup

τ≤t
||cov(τ)||

)
[exp(4βmaxt)− 1] +

1

V0

∞∑
I=N+1

IknI(t),

(30)

where mk denotes the kth moment of the true discrete distribution. If N is sufficiently 

large, all nI /V0 for I > N + 1 are practically zero; hence, the second term in the last 

inequality is negligible compared to the first term, and the systematic error for 

moments has a form that is similar to that of the PSD.

Although the derivation of Eq. (30) is based on the moment definition in Eq. (19) 

for the CMC method, the final inequality condition is also applicable to the WFA 

method. This is because the extra weight factor, w(v), in the moment definition 

in Eq. (20) for the WFA is canceled with the introduction of factor 1/w(v) in
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NI = Nw
I /w(v). Therefore, the systematic error, which is independent of the ac-

tual stochastic method, is supposed to be scaled with 1/N when N is sufficiently

large.

In order to investigate the systematic error numerically, a pure coagulation with

a constant kernel, β = 1, is simulated with the CMC method. Initially, all particles

are assumed to have the same size of 1. The analytical solution of the PSD to this

problem is well-known [1]

n(v, t) =

(
t
t+2

)v−1(
1 + t

2

)2 , v = 1, 2, 3, . . . . (31)

The moments of the PSD are directly available from summing up the weighted PSDs

from v = 1 to ∞ with the weight vk (k is the order of moment). The infinite

summation can be easily handled with a symbolic calculation to yield M0 = 2/(t+2),

M1 = 1, M2 = t + 1, M3 = 3
2
t2 + 3t + 1, etc.; the foregoing can also be obtained

alternatively by solving the moment evolution in Eq. (18). These analytical results

function as the reference in the calculation of relative errors.

Figure 1 shows the systematic relative error of moments from the numerical simu-

lation with the CMC method at t = 6 and 20 that are obtained for different numerical

particles, N . For each N , the simulation is repeated 1000 times. The stochastic error

defined in Eq. (26) is also shown in the error bar. Only the upper error bar is shown

here because the lower error bar is problematic in a logarithmic scale when the value

becomes zero or negative. The error for the first moment, M1 (i.e., volume fraction),

is not shown here because the volume fraction is conserved in the CMC method, and

the error is zero. In both instances, the systematic relative errors for all moments

scale linearly with 1/N ; this agrees with the scaling implied in the inequality in

Eq. (30) when the correlation term is neglected. Generally, higher-order moments

exhibit larger stochastic errors. At an earlier time (i.e., t = 6), the stochastic error

of higher-order moments is considerably large; this results in a notable deviation

from linearity. At a later time, t = 20, the stochastic error becomes substantially

smaller when compared with the systematic error, and a considerably good linearity

is obtained even for higher-order moments when N > 200. This emanates from the
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Figure 1: Relative errors of moments with respect to N for constant coagulation using the CMC

method; MAN denotes the well-known analytical result. (a) t = 6; (b) t = 20.
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fast exponential growth rate of the systematic error reflected in Eq. (30). In the

numerical simulation with N = 100 at t = 20, the relative error of higher-order

moments is exceptionally large; this is presumed to arise from the strong correlation

among the numerical particles when N is relatively small. Comparing the magnitude

of relative errors between these two instances above, it is evident that the relative

error substantially increases with time.

The inequality in Eq. (30) implies that the relative error increases exponentially

with t as exp(4t) (here, βmax = 1). In Fig. 2, the evolution of relative error is shown

for N = 400. After the start-up phase, when the correlation is strong, the relative

error growth at the rate exp(0.15t) is considerably more benign than the theoretical

prediction. The numerical simulation results suggest that it may be possible to derive

a sharper upper bound from the theory.

The same numerical simulations referred to Fig. 1 have also been repeated using

the WFA method, which shows the same linear decaying rate with respect to N ;

accordingly, the results are not shown here.

Although the stochastic simulation of coagulation with a constant kernel is rela-

tively trivial, the information derived here remains of interest. There are three pieces

of important information. First, the systematic error decreases linearly with 1/N ;

this is not new but is worth reconsidering. Second, the relative error exponentially

increases with time; this result has an important implication when simulating co-

agulation for a relatively long period. In order to obtain good precision at a later

time, it may be necessary to increase the number of numerical particles during the

numerical simulation; the foregoing involves not only compensating for particles de-

pleted because of coagulation, but also using even a higher number of particles in the

later stage than that at the beginning of the numerical simulation. Due to the

aforementioned reasons, such numerical simulations with an ever-increasing number

of particles over time have never been implemented. Lastly, the stochastic error is

significant at the initial period of the numerical simulation when the systematic error

is  small;  further efforts  should be expended to reduce the stochastic error during  the
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Figure 2: Relative errors of moments with respect to t for a constant coagulation with N = 400

using the CMC method.

initial period.

4.3. Variance scaling

4.3.1. Poisson distribution

The variance scaling relation in Eq. (17) between the CMC and WFA is derived

from the promise of Poisson distribution for Nl. Numerical simulations of a pure

coagulation using both CMC and WFA are carried out to examine the hypothesis of

Poisson distribution. In the WFA, the weight function in Eq. (10) is set as w(v) = 1/v.

The simulations are repeated 400 times to obtain 400 replicas of the discrete

distribution of N particles. The number of particles with size l, i.e. Nl, changes

randomly during each repetition. Table 1 shows the results from the chi-square

goodness-of-fit test (“chi2gof” function in Matlab) with the null hypothesis of a

Poisson distribution for each Nl (l = 1, 2, . . . , N) at the 5% significance level. A “0” in

Table 1 means that the tested data is highly likely to come from a Poisson

distribution, while a “1” means otherwise. Overall, the simulated number Nl for small
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Table 1: Poisson distribution test of Nl for a constant kernel coagulation. A “0” means that the tested

data is highly likely to come from a Poisson distribution (filled with gray), while a “1” means

otherwise. Overall, the ensemble distribution of small particles satisfies the Poisson distribution

except for the CMC at t = 2 (filled with dark gray), which deviates from the Poisson distribution even

for relatively small particles due to the particle doubling operation.

CMC WFA

Size

Time
1 1.5 2 2.5 3 1 1.5 2 2.5 3

2 0 0 0 0 0 0 0 0 0 0

4 0 1 1 0 0 0 0 0 0 0

6 0 0 1 0 0 0 0 0 0 0

8 1 0 1 1 0 0 0 0 0 0

10 1 1 1 1 0 1 0 1 0 0

12 1 1 1 1 0 1 0 0 0 0

14 1 1 1 1 1 1 1 0 0 0

16 1 1 1 1 1 1 1 1 0 0

particles satisfies the distribution very well from both the CMC and WFA. With the

increase of time, the number for ever larger particles also approaches the Poisson

distribution. The simulated number Nl from the WFA shows better proximity to the

Poisson distribution for large particles. The results from the CMC method at t = 2 are

clearly outliers, which comes from the particle doubling operation. More details on the

doubling operation are provided in Section 4.3.3.

The hypothesis of Poisson distribution for Nl is numerically proved reasonable.

Only the number of those under-resolved large particles deviates from the Poisson

distribution. In the WFA, the number of larger particles is higher which incurs less

deviation from the Poisson distribution.

4.3.2. variance of moments

Figure 3 shows the sample variance of moments in pure coagulation for different

values of N at the time instance t = 2 from a uniform initial distribution. Both the
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constant and the free molecular kernels are considered. The numerical simulations

employ the CMC and the WFA methods with the weight function w(v) = 1/v.

The sample variance is obtained with sufficient repetition for each N in order to

reduce the stochastic error in simulating the variance to a negligible level. Hence,

the sample variance is presumed to be the true variance in the numerical simulation

with a specific N . Despite the fact that higher-order moments have larger variances,

the variances in all moments decrease at the same rate, which is linearly proportional

to N . This linear scaling is independent of the numerical simulation algorithms for

either the CMC or WFA method; it is also independent of the coagulation kernel

for either the constant or the free molecular regime. In comparing the magnitude of

the variance between the CMC and WFA methods, it is evident that the variance in

lower-order moments are comparable, whereas the variance in higher-order moments

using the CMC method is considerably higher than that in the WFA method. The

WFA method is capable of capturing the larger particle distribution more precisely

compared with the CMC method, which renders a lower variance when large particles

dominate in the calculation of higher-order moments. One distinct feature is that

the variance of M1 is zero in the CMC method, whereas it is non-zero in the WFA

method. These findings considerably conform with the pertinent analysis of the

variance evolution in Eqs. (21) and (22).

4.3.3. ratio of variance between CMC and WFA

Equation (17) provides an analytical relationship between the variances obtained

by the CMC and WFA methods; such relationship is one of the key findings in the

present study. The analytical relationship applies to any type of weight function in

the WFA method. Figure 4 compares the variance ratios obtained from numerical

simulations and the theory (Eq. (17)) for coagulation with the constant kernel and

the free molecular regime kernel (depicted in Eq. (37)). In the WFA simulations,

the weight function is chosen as w(v) = v0/v (i.e., α = −1 in Eq. (10)), and the

values of reference volume, v0 = 1 and 5, are used separately. Overall, the numerical

simulation results sufficiently agree with the theory, except for certain scattering
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Figure 3: Sample variance of moments in pure coagulation, where the dashed lines represent those

obtained from the WFA method, and continuous lines indicate those obtained from the CMC

method. (a) constant kernel; (b) free molecular kernel.
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caused by the stochasticity. Figure 4(a) shows the results of using two different

coagulation kernels; no significant systematic difference is exhibited. The reference

volume is v0 = 1; this implies that all particles of different sizes (except for v = 1)

in the WFA method have lower weights than that those in the CMC method. The

corresponding variance in the WFA method is smaller than that in the CMC method.

Among larger particles, the discrepancy in variance is even larger. In Fig. 4(b), the

reference volume is set as v0 = 5. It is evident that the variance in the CMC method

is smaller that that in the WFA method when the particle size is v < v0. When the

particle size is v > v0, the variance in the CMC method is larger.

During the coagulation simulation, the number of numerical particles may in-

crease or decrease in different algorithms. In the CMC method, the number of

numerical particles always decreases because two coagulating particles are removed,

and only one newly coagulated particle is added with each coagulation event. How-

ever, in the WFA method, the number of numerical particles is controlled by the

power index, α, in the weight function in Eq. (10). When α = −1, the number of

removed particles is statistically equal to that of the added particles; hence, the total

number is unchanged with time. When α > −1, the total number decreases. In the

extreme case of α = 0, the number in the WFA decreases at the same rate as that in

the CMC. When α < −1, the total number even further increases because the num-

ber of particles added is larger than that removed. In order to prevent the number

from excessively decreasing during coagulation, a top-up scheme is generally used.

The most common one is to replicate all the particles when the number of numerical

particles decreases to half of its initial value; at the same time, the simulator volume

is doubled as required by Eq. (3).

Figure 5 shows the time evolution of the relative variance between the CMC

and WFA methods after the simulator volume is taken into consideration. Initially,

the number of numerical particles and the simulator volume are the same in both

the CMC and WFA methods. In the WFA method, α = −1 is used; hence, the

simulator volume, V w
0 , does not change with time. In the CMC method, the number
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of numerical particles decreases to one-half at t = 2; at this instance, the doubling

scheme is employed, and the volume, V0, is doubled. At t = 6, another doubling of

V0 occurs in the CMC method. Equation (17) predicts (v0 = 1) the following

1

v

Var(nl)

Var(nw
l /v)

=
V w
0

V0
. (32)

The term on the left-hand side of Eq. (32) depends on the particle volume, v. In

Fig. 5, this term is shown after taking the overall average of v; this corresponds to

the slope of a straight line obtained by fitting the data points as shown in Fig. 4. It

is evident that the simulated curve correctly predicts the jump transitions at t = 2

and 6. The curve considerably approaches the dashed line between the transitions

during which the simulator volume remains constant.

Through detailed comparisons, as shown in Figs. 4 and 5, it is considerably

convincing that the theoretical relationship of the variances between the CMC and

WFA methods is correct under general conditions; this provides a simple and con-

venient guide in choosing the appropriate stochastic simulation method in terms of

the stochastic errors.

4.4. Numerical proof of resampling analyses

Equations (23) and (24) indicate the magnitude of variance introduced during

the resampling of a given discrete distribution. Numerical simulations are employed

to verify the analysis, which is applicable to any type of distribution function. In

order to demonstrate the close relevance to a practical PSD of aerosols, a continuous

log-normal distribution function is selected; the function has a mean and variance

of 1.44 and 0.58, respectively. It is worth pointing out that the actual shape of the

distribution is inconsequential to the verification. First, a discrete distribution of

N particles is generated according to the log-normal distribution. Thereafter, m

particles are randomly selected from N particles; the former particles are duplicated

(upsampled) or removed (downsampled). These processes are repeated a thousand

times to achieve stable estimations of the variances of random variables defined

in Eqs. (A.6) and (A.15). The numerical simulation results along with theoretical
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Figure 4: Ratio of variance between the CMC and WFA methods for pure coagulation at t = 2. The

weight function in the WFA method is set as w(v) = v0/v. Here, “free molecular regime” denotes

coagulation with the kernel defined in Eq. (37), and “theory” denotes the numerical prediction from

Eq. (17); (a) v0 = 1 and (b) v0 = 5.
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Figure 5: The time evolution of the slope of a straight line is obtained by fitting the data points,

as shown in Fig. 4 for the coagulation with a constant kernel. In the WFA method, the simulator

volume, V w
0 , is constant with time. In the CMC method, the volume, V0, doubles at t = 2 and

then doubles again at t = 6. This plot tends to verify Eq. (32), where the continuous curve is the

average over all values of v obtained from its left-hand side, and the horizontal dashed lines are the

values obtained from the right-hand side.
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values obtained from Eqs. (23) and (24) are shown in Figure 6; simulation results

with N = 1000 and 2000 are presented. After scaling the ratio between the sample

variance and the population variance with N , the scaled ratio becomes a function

only of the resampling rate, m/N , i.e., the first factors on the right hand sides

of Eqs. (23) and (24). The numerical simulation results considerably agree with

the theory. Increasing N from 1000 to 2000, the resampling variance decreases

to one-half. In upsampling, the variance increases as the resampling rate, m/N ,

increases from 0 to 1/3; thereafter, it decreases to zero when m/N increases to 1. In

downsampling, the variance always increases with the sampling rate. Downsampling

has more significant effect on the resampling variance than upsampling.

Both theoretical and numerical results demonstrate that the doubling scheme

is optimal in regard to the sampling variance minimization. The constant number

scheme [58] introduces the resampling variance of the scale 1/N at every time step,

which may accumulate to a considerable level that may be several orders of magnitude

higher than the doubling scheme [30]. Evidently, in doubling N , the computational

cost increases accordingly; this might be proportional to N or N2 depending on how

Cij in Eq. (6) is updated to a new time step [28].

4.5. Numerical simulation of general aerosol dynamics

The general aerosol dynamics is described as

∂n

∂t
= Inuc +Gcond + Ccoag, (33)

where the source terms of Inuc, Gcond, and Ccoag on the right-hand side denote nu-

cleation, surface growth (condensation), and coagulation, respectively. The aerosol

dynamics is then simulated by the operator splitting Monte Carlo method [64, 65],

with a second order symmetric Strang splitting as

1

2
(nuc → resampling → cond)︸ ︷︷ ︸

half step

→ coagulation︸ ︷︷ ︸
full step

→ 1

2
(nuc → resampling → cond)︸ ︷︷ ︸

half step

where “nuc” and “cond” denote modules for nucleation and condensation, respec-

tively. Resampling is discussed in Section 3.3. The factor 1/2  means a  half-time step
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scaled by N in order to cancel its dependency on N . Moreover, Var(X) denotes the variance by

adding m∗ particles. The theoretical results are obtained from Eq. (23) with m∗ > 0 and Eq. (24)
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discrete distribution resulting from the resampling.
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integration. The schematic flowchart above shows how a f ull-time step i s carried out.

Detailed aerosol dynamics depends not only on the chemical-physical properties of

aerosol particles, but also on fluid transport (e.g., concentration and temperature).

Here, an artificial case, i ncluding general aerosol dynamics, i s constructed to i nvesti-

gate the overall numerical simulation performance of the various stochastic methods.

This case i s tested to i nclude the essential characteristics of general aerosol evolution

to the extent possible. Aerosol particles are supposed to generate f rom quick nucle-

ation and subsequently undergo condensational growth and coagulation. Nucleated

particles are assumed to be uniformly distributed with the smallest unit volume, and

nucleation i s assumed to occur i nstantly. Because multiple nucleation events are

common i n reality [ 64, 66, 67], two nucleation events are assumed to occur i n the

testing case: one at the very beginning and the other at the middle of the entire time

span of the numerical simulation. Because of the wide particle size spec-trum, three

particle size regimes are generally defined: free molecular, transition, and continuum

regimes; for each regime, condensation and coagulation are modeled differently.

Aerosol particles are considered in the free molecular, continuum, and transition

regimes if the particle sizes are considerably smaller, considerably larger, and midsize

to the air mean free path, respectively. For the air under the standard conditions, the

mean free path is approximately 70 nm [68].

After considering all these factors, the non-dimensional simulation time, t, is set as

100; during this period, the nucleated particles of unit volume may grow to the order

of 103 (this intends to mimic the particle diameter growth in reality from nanometer 

to micrometer). In the general dynamic equation (Eq. (33)), the nucleation term is

modeled as

Inuc =

∫∫
[δ(t− 0) + δ(t− 50)]δ(v − 1) dt dv, (34)

i.e., unit size particles are separately nucleated at t = 0 and 50. At each nucleation

event, the number density of particles increases by 1.
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The condensation term is modeled as follows

G(v) =


v2/3, v ≤ 10

v1/3, v ≥ 100

harmonic mean, 10 < v < 100

(35)

Gcond =− ∂n(v)G(v)

∂v
. (36)

As commonly adopted in practice, the piecewise function for the condensational

growth rate, G(v), has a similar dependency on the particle size, v: v ≤ 10 for the

free molecular regime; v ≥ 100 for the continuum regime; the harmonic mean of the

two aforementioned regimes for the transition regime. It should be pointed out that

not all factors (e.g., temperature and saturation pressure), other than the particle

size, are considered in the present model. This is because they are not relevant to

the main objective of investigating the stochastic methods in the present study.

The coagulation kernel function is given by the following

β(u, v) =



(
1

u
+

1

v

)1/2 (
u1/3 + v1/3

)2
, max(u, v) ≤ 10(

1

u1/3
+

1

v1/3

)
(u1/3 + v1/3), max(u, v) ≥ 100

harmonic mean, 10 < max(u, v) < 100

. (37)

This parallels the condensation model in the treatment for different regimes.

At t = 0, particles of uniform size are generated from nucleation. Thereafter, the

particles grow because of condensation and coagulation. When the size of particles

are small (in the free molecular regime), the condensational growth rate in diameter

is constant [64]; in the continuum regime, this growth rate is inversely proportional

to the diameter. Hence, if only condensational growth is considered, then a dispersed

distribution of particles tends to become uniform in diameter; if only coagulation is

considered, then the PSD finally reaches a self-similar hump shape [69–71].

Figure 7 shows the ensemble averaged PSD at time instances t = 20, 40, 60, and 80

with three different scaling parameters α = 0,−1/2, and −1 in the weight function.

In these numerical simulations, the particle number, N , is 2000, and the repetition
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Figure 7: PSD for general aerosol dynamics at various time instances: (a) t = 20; (b) t = 40; (c)

t = 60; (d) t = 80.
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Figure 8: The evolution of the standard deviations of M0 and M1 in the general aerosol dynamics,

which is normalized by M0 and M1, respectively. The y-axis on the right is for M0 or M1. The

sharp jump at t = 50 corresponds to the second nucleation event, when a large number of particles

are generated: (a) M0; (b) M1. The inset shows Std(M1) at approximately t = 50 for α = −1

(dotted line) and α = −1/2 (dashed line).
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number, Nrep, is 400. The parameter values α = 0, −1, and −1/2 correspond to the

CMC method (i.e., no differential weight), mass flow algorithm (i.e., differentially

weighted by the particle volume), and intermediate weight function, respectively.

Overall, the simulated PSDs for α = 0, −1/2, and −1 agree extremely well, except

that the numerical simulation for α = −1 is able to resolve larger particles with a

considerably low number density of particles than that for α = −1/2 and α = 0. The

foregoing is the advocated advantage of the WFA method [37]. The PSD for small

particles exhibits high fluctuation, which originates from the involved interaction

between high coagulation rate and fast condensational growth of small particles. The

PSD for large particles is extremely smooth and has a steep front on the right-hand

side when the condensational growth tends to render a uniform PSD; this is because

smaller particles have a larger growth rate to catch up with larger particles. From

t = 20 to 40, the PSD gradually evolves to a hump shape because of coagulation; at

t = 50, the second nucleation event occurs. Hence, in Fig. 7(c), a sudden increase in

the number density of small particles is observed at t = 60, and a double-peaked PSD,

which results from the combined effects of nucleation and coagulation, develops.

Although the ensemble averaged PSDs obtained from different algorithms are

practically the same, the variances in these numerical simulations are considerably

different. Figure 8(a) shows the evolution of Std(M0)/M0, where Std denotes the

standard deviation. The extent of the stochastic fluctuation of the number density

of particles compared to its mean is reflected by Std(M0)/M0. The evolution of M0

(the three methods generate nearly identical values of M0) is also shown in the same

plot (right y-axis). From t = 0 to 50, M0 decreases by practically two orders of

magnitude because of coagulation. During this period, the change in Std(M0)/M0

is not significant and remains in the range of a few percent. The WFA method with

α = −1 exhibits the highest stochastic error; this error decreases as α varies from

−1 to 0. At t = 50, M0 abruptly increases because of the second nucleation event;

concurrently, Std(M0)/M0 suddenly increases. In fact, the absolute stochastic error,

Std(M0), is found to increase in these three methods at t = 50 (not shown here).
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During the entire numerical simulation period, the stochastic error for M0 in the

WFA is persistently larger than that in the CMC method.

Figure 8(b) shows the evolution of Std(M1)/M1 together with M1. The volume

fraction, M1, increases with time because of condensation with a small jump at t = 50

because of nucleation. The most striking difference among the stochastic errors from

different methods is that the error in the CMC method is several times smaller than

that in the WFA method between t = 0 and t = 50. On the other hand, a sharp jump

occurs in the CMC method at t = 50, and the error in the CMC method increases

several times larger than that in the WFA method when t > 50. Although pure

coagulation or condensation does not exhibit stochasticity for M1 with the CMC

method, the combination of coagulation and condensation shows weak stochasticity.

This is because the randomness in the PSD causes the volume fraction to grow

stochastically. On the other hand, M1 in pure coagulation with the WFA method

is known to fluctuate. Moreover, pure condensational growth also incurs random

fluctuation in the WFA method; such fluctuation is inversely proportional to the

total number of numerical particles, N [37]. Accordingly, it is reasonable that the

stochastic error in the CMC method is smaller than that in the WFA method. It

is considerably interesting to observe a sharp jump at t = 50 in the CMC method

but not in the WFA method; a detailed explanation is appropriate. Because the

number density, M0, practically increases 100 times at t = 50, approximately 100N

new numerical particles with the critical nucleation size should be generated, and

approximately 99% of (100 + 1)N numerical particles should be downsampled to

leave only N particles in the numerical simulation. Accordingly, in the CMC method,

based on the theoretical analysis in Eq. (24), such a high downsampling rate causes

a large stochasticity on M1 (and all higher-order moments). However, in the WFA

method, with α = −1, M1 (Eq. (20)) is calculated as follows

M1 =
1

V w
0

N∑
i=1

vi
1

vi
=

N

V w
0

. (38)

This is independent of the PSD. Thus, the resampling in the WFA method with

α = −1 has totally no effect on M1. When α = −1/2, M1 is proportional to
∑N

i=1

√
vi
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(vi ≥ 1), which is considerably smaller than
∑N

i=1 vi in the CMC method. Hence, a

relatively moderate increase is expected in Std(M1) at t = 50 with α = −1/2. The

inset in Fig. 8(b) clearly shows a small jump when α − 1/2; however, there is no

observable change when α − 1 at t = 50. A notable difference in Std(M1) between the

CMC and WFA because of resampling also exists in the kth moment when k > 1 (not

shown here).

5. Conclusions

Both the systematic and stochastic errors in the stochastic simulations of a pop-

ulation balance equation (PBE) are comprehensively investigated for two typical

stochastic methods (i.e., the classical Monte Carlo (CMC) method of Gillespie and

the weighted flow algorithm (WFA)).

The systematic error depicts the extent to which a numerical simulation with a

finite number of numerical particles, N , deviates from the true solution of the PBE.

Over a short period, the correlation among particles becomes considerably small, and

the systematic error is inversely proportional to N in all stochastic methods. The

systematic error also tends to grow exponentially with time; hence, it is recommended

to increase N with time if an extended simulation period is of interest.

The stochastic error, which is depicted by the variance in this study, is intrinsic

to all stochastic simulations. A smaller variance is always desirable to reduce the

uncertainty in the results. The present theoretical analysis and numerical simula-

tions demonstrate that the stochastic error is inversely proportional to N under all

investigated conditions (i.e., different coagulation kernels and numerical simulation

algorithms). In order to compare the relative magnitude of the variance between the

CMC and WFA methods, a concise relationship of the variances is derived analyti-

cally and verified numerically. The WFA method generally provides a smaller vari-

ance in the particle size distribution (PSD) when compared with the CMC method,

which agrees with the other numerical simulations [72]. However, when considering

the particle number density and volume fraction (i.e., lower-order moments of the
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PSD), the CMC method exhibits a lower stochastic error than the WFA method.

In the stochastic simulation of general aerosol dynamics including nucleation,

condensation, and coagulation, resampling is generally necessary to render an effi-

cient and accurate numerical simulation. Although resampling introduces no bias on

the PSD, additional stochasticity is usually added except for the doubling operation.

A formula is derived to quantify the stochastic effect of resampling. An unexpected

conclusion is that the variance caused by resampling is inversely proportional to N .

In upsampling, the addition of more particles causes the variance to increase first

and thereafter drop to zero when all particles are doubled. However, in downsam-

pling, the removal of more particles always increases the variance more significantly.

The variance introduced in resampling is considerably significant in general aerosol

dynamics when nucleation is strong, especially in the CMC method.

Most importantly, this research study provides an explicit relation to connect the

stochastic variances in the CMC and WFA. It also provides a quantitative description

on the variance caused by the resampling process.
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Appendix A. Statistical Bias and Variance in Resampling

It is important to determine whether resampling introduces statistical bias to the

underlying distribution. However, it is not easy to compare quantitatively the dis-

tributions before and after resampling. Therefore, the moments of the distributions

are investigated instead.
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It is generally presumed that the discrete distribution after resampling is statis-

tically equivalent to the distribution prior to resampling (i.e., no statistical bias is

introduced). A mathematical proof is easy to provide by considering the correspond-

ing moments of the discrete distribution of N particles

Mk(N) =
1

N

N∑
i=1

xki . (A.1)

where, xi denotes the volume of particle i, N is the initial number of particles, and

Mk(N) is the kth (k = 0, 1, 2, . . .) moment. It is worth pointing out that the moment

definition is slightly different from Eq. (19), where a virtual volume V0 is used in the

prefactor instead of N . Since the virtual volume V0 is determined by N and the

corresponding number density (see context to Eq. (3)), V0 is linearly proportional to

N . The definition in Eq. (A.1) is more natural for a general discrete distribution

without special pertinence to the PSD of aerosols. It also renders the following

derivation slightly neater.

A particle xξ is randomly selected from the N particles (where the index ξ is a

random variable taking value from 1, 2, ...N with even chance) and is added to the

existing N particles. Then the kth moment of the N + 1 particles is

Mk(N + 1) =
1

N + 1

(
N∑
i=1

xi
k + xξ

k

)
. (A.2)

Take the ensemble average of Mk (i.e., averaged over large number of independent

realizations)

Mk(N + 1) =
1

N + 1

(
N∑
i=1

xi
k + xξk

)
. (A.3)

Since

xkξ = xk =
1

N

N∑
i=1

xi
k, (A.4)
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substitute it into Eq. (A.3), then

Mk(N + 1) =
1

N + 1

(
N∑
i=1

xi
k + 

1
N

N∑−1
i=1

xi
k

)

=
1

N + 1

(
1 +

1

N

) N∑
i=1

xi
k

=
1

N

N∑
i=1

xi
k

= Mk(N). (A.5)

Therefore, the process of randomly adding one particle does not introduce statistical 

bias; the new distribution converges to the old distribution statistically. The above 

proof can be directly extended to the general case of adding or removing m particles.

In the process of adding m particles, every added particle is chosen randomly from 

the original N particles. The added particles are denoted as xξi , where ξi is a random 

number from 1 to N corresponding to the ith added particle. Then the kth moment of 

the new discrete distribution after adding m particles is a random variable, which is 

defined as

X+ =
1

N +m

(
N∑
i=1

xki +
m∑
i=1

xkξi

)
. (A.6)
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Its variance can be evaluated as

Var(X+) =E (X2
+)− [E (X+)]2

=
1

(N +m)2
E

( N∑
i=1

xki +
m∑
i=1

xkξi

)2
− [E (X+)]2

=
1

(N +m)2
E

( N∑
i=1

xki

)2

+ 2

(
m∑
i=1

xkξi

)(
N∑
i=1

xki

)
+

(
m∑
i=1

xkξi

)2
− [E (X+)]2

=
1

(N +m)2

( N∑
i=1

xki

)2

+ 2E

(
m∑
i=1

xkξi

)(
N∑
i=1

xki

)
+ E

[ m∑
i=1

xkξi

]2− [E (X+)]2

=
1

(N +m)2

N2[E (X+)]2 + 2[mE (X+)][NE (X+)] + E

[ m∑
i=1

xkξi

]2− [E (X+)]2

=
1

(N +m)2

E

[ m∑
i=1

xkξi

]2−m2[E (X+)]2


=

1

(N +m)2

E

[ m∑
i=1

xkξi

]2− [E (mX+)]2


=

1

(N +m)2
Var

(
m∑
i=1

xkξi

)
(A.7)

From line three to line four when expanding the first expectation term, the expec-

tation sign for a deterministic term is dropped off. From line four to line five, the 

conclusion (Eq. (A.5)) and relevant discussion) that adding particles do not change 

the expectation is applied to obtain the first two terms in the square brackets.

It is known that (page 12 of Lange [73])

Var

(
m∑
i=1

xkξi

)
=

m∑
i=1

Var(xkξi) +
m∑
i=1

∑
j 6=i

Cov (xkξi , x
k
ξj

), (A.8)

where

Cov (xkξi , x
k
ξj

) = E (xkξix
k
ξj

)− E (xkξi)E (xkξj). (A.9)
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Evidently, all Var(xkξi), (i = 1 . . .m) have the same value, which is denoted as Var(xkξ )

Var(xkξ ) =E [(xkξ )
2]− [E (xkξ )]

2

=
1

N

N∑
i=1

(xki )
2 − (xk)2

=
1

N

N∑
i=1

(xki − xk)2 (A.10)

Based on symmetry, all Cov (xkξi , x
k
ξj

) for (i 6= j) have the same value, which is found

to be [73, page 27]

Cov (xkξi , x
k
ξj

) = − 1

N − 1
Var(xkξ ) (A.11)

Accordingly, substitute Eqs. (A.11), (A.8), and (A.10) into (A.7); this substitution

results in the variance of the kth moment of the discrete distribution after adding m

particles:

Var(X+) =
m(N −m)

(N +m)2N
Varp[Mk(N)], (A.12)

where Varp[Mk(N)] is the unbiased estimator of the variance of the kth moment

Varp[Mk(N)] =
1

N − 1

N∑
i=1

(xki − xk)2. (A.13)

Here, the variance is calculated for a given discrete distribution. A subscript, p, is at-

tached to the variance symbol in order to distinguish it from the variance calculated

for a stochastic variable. Specifically, if k = 0, Varp[M0(N)] is zero. Hence, resam-

pling does not introduce stochasticity to M0, which originates from the inclusion of

the factor 1/(N+m) in Eq. (A.6). In other words, the total number density does not

change during a stochastic resampling operation. If k 6= 0, Varp[M0(N)] is generally

non-zero (except for a uniform distribution); resampling introduces stochasticity to

the kth moment when k 6= 0.

Similarly, the variance of randomly removing m particles is

Var(X−) =
m

(N −m)N
Varp[Mk(N)], (A.14)

where

X− =
1

N −m

(
N∑
i=1

xki −
m∑
i=1

xkξi

)
. (A.15)
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The key conclusions (Eqs. (A.12) and (A.14)) have been verified numerically in the

main content.
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