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the measured vibration displacement, are investigated. The effectiveness of the proposed method 

is demonstrated numerically and validated experimentally using a step-shaped beam. 
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1. Introduction 

To ensure the structural safety and reliability, effective damage detection methods are highly 

essential. In particular, vibration based damage detection methods have been widely investigated 

during the recent decades [1]. Relying on the examination of different vibration parameters such 

as mode shapes [2, 3], natural frequencies [4], transfer matrices [5], electro-mechanical impedance 

[6] or modal curvature etc. [7], various types of damage indices have been developed to detect the 

local structural damage. Along with these methods is the possible deployment of a variety of 

measurement techniques using Laser Doppler Vibrometer (LDV) [8, 9], piezoelectric sensors [10, 

11] and strain gauges [12, 13] etc.. As one of the latest developments, “Pseudo-Excitation” (PE) 

method provides a damage detection framework by evaluating the damage-induced perturbation to 

the local dynamics of the structure [14, 15], which can also be regarded as a local force 

identification problem in principle [16, 17]. Compared with other vibration based damage 

detection methods, PE method exhibits multiple advantages, mainly in its non-requirement of 

prior knowledge on the overall structural vibration models, boundary conditions or baseline 

signals. Furthermore, owing to its local inspection nature, it can be applied to complex structures 

through examining the corresponding local dynamics of structure component-by-component 

[18-20]. 

 

However, the original version of the PE method can only detect the damage location where sudden 

change occurs in the damage index (DI) curve. Considering that the DI is a complex function of 

the structural damage, PE method can hardly inform on the damage severity, even though DI 

quantitatively identifies the deviation from the local equation of motion of the healthy structure. 

To overcome this drawback, one possible way is the determination of the mechanical properties of 

the structures, which is closely related with the structural damage, for instance, stiffness [21]. 

Especially for composite structures, changes in stiffness can be used to quantitatively assess the 

degradation in mechanical property induced by factors such as fatigue damage accumulation [22], 

for further achieving the prediction of the structural residual life [23]. Obviously, the material 

stiffness can usually be measured through the standard tensile test, but the main drawback is that it 

is destructive which only gives the overall structural stiffness rather than the local property. To 

overcome these problems, various inverse approaches based on structural dynamic responses, such 



as wave velocity [24, 25] and natural frequency [26, 27], have been developed to identify the 

mechanical properties. Different from the above identification methods, which are usually based 

on minimizing the difference between the measured dynamic behavior and a pre-established 

model, a Corrected Force Analysis Technique (CFAT) based material characterization has been 

developed. Material properties in areas where no external loads are applied can be identified [28]. 

Furthermore, a broadband identification method for an orthotropic composite plate has been 

established by evaluating the local equation of motion [29]. Inheriting the features of the original 

PE method, this method does not need the construction of structural vibration model and the 

complex iterative process. However, high-order spatial derivative terms of the vibration 

displacement are still involved. For their calculation, the implementation of the finite difference 

scheme makes the identification results venerable to the measurement noise. 

 

In recognition of these problems, a local specific stiffness identification method using a spatial 

multi-scale “weak” formulation is developed in this paper. Different from evaluating the local 

equation of motion at a given point, a flexible weight function, served as a scanning window, is 

introduced, allowing converting the identification philosophy from “point-by-point” to 

“region-by-region”. Taking a beam structure as benchmark, the “weak” formulation-based local 

specific stiffness formula is derived to eliminate the high-order spatial derivative of the 

displacement, whilst providing an improved robustness against the measurement noise. 

 

The outline of this paper is as follows: Section 2 introduces the basic principle of the local specific 

stiffness identification method. Influences of the key parameters on the noise immunity capability 

and the detection accuracy, such as the selection of the measurement interval, the scale factor and 

the derivative order of the measured vibration displacement are discussed in Section 3. Numerical 

simulation and experimental validation using a step-shaped beam with a thickness variation are 

then carried out in Sections 4 and 5 to demonstrate the effectiveness of the proposed method. 

Finally, conclusions are drawn in Section 6. 

 

2. Identification method based on a multi-scale “weak” formulation 

The dynamic response at any given point on a structural component should satisfy a certain 



equation of motion. This can be mathematically expressed for every given point inside the 

structure, which is referred to as “strong” formulation. Taking a beam-like structure with 

homogeneous material properties under a flexural harmonic excitation as an example, the steady 

vibration displacement w(x) is governed by 
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where Ẽ=E(1+jηE) is the complex Young’s modulus. E, ηE and j are the Young’s modulus, the loss 

factor and the unit imaginary number. I, ρ and S are the cross-sectional moment of inertia, density 

of material and cross sectional area of the beam element, respectively. ω is the angular frequency 

of the excitation and f(x) represents the distributed external force over the beam element, which 

equals to zero for the beam segment with free-surface under inspection . Since light damping has 

little effect on the vibration at off-resonant frequencies, only the real part of Ẽ is taken into 

consideration when the excitation frequency is away from any natural frequencies of the whole 

structure [30]. 

 

For a structure with known geometrical parameters, the specific stiffness of the material κ (κ = E/ρ) 

can, in principle, be identified by measuring the steady vibration displacement w(x) at a given 

frequency. The basic idea is to evaluate a κ value which warrants a zero f(x) value within the beam 

region without any surface loading, irrespective of the boundary condition of the entire structure. 

Thus, the estimated specific stiffness κ should be the solution of the following “strong” 

formulation expression 
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where the superscript (4) represents the fourth order derivative. For the implementation of Eq. (3), 

w(4)(x) can be obtained through finite difference approximation, written as 

 
( )   4

2 1 1 24

1
1 4 6 4 1

T

i i i i i iw w w w w w
d

− − + += − −   (4) 

in which the subscript i denotes the i-th measurement point and d is the interval between the 

adjacent measurement points. 



 

As a commonly used method to calculate the high order derivative, the finite difference approach 

is inherently tied with the conflicting feature between the truncation error and the noise 

contamination. Mathematically, the smaller interval d is, the more accurate the finite difference 

result will be, alongside an increasing noise contamination. Furthermore, it should be mentioned 

that a corrected finite difference scheme can be used to reduce the bias error when large 

measurement interval or high frequency excitation is implemented [31]. 

 

To tackle this problem, a multi-scale “weak” formulation-based local specific stiffness 

identification is proposed by examining the vibration displacement in a local region. Considering 

that the specific stiffness is a constant within the region [x-τ, x+τ], the “weak” formulation 

retrofitted from Eq. (2) can be written in an inner product form, as 
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where ξ is an integral variable, τ is the scale factor and η(x) is the weight function which can, in 

principle, take arbitrary forms. The estimated specific stiffness κ̃ using the “weak” formulation 

can be obtained by 
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Certainly, the specific interest in the local points within the scanning region can be fulfilled by an 

appropriate selection of η(x), with which the local (at a certain point) and overall (within the 

scanning region) characteristics of the specific stiffness can be balanced. 

 

According to Eq. (6), the high order derivative of the vibration displacement still remains. To take 

a further step, κ̃ can be extended to a series of variants through integration by part. Especially, 

when the selection of η(x) satisfies the following conditions, as 
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with η(0) denoting η(x). The finial form of κ̃ can be written as 
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in which the high order derivative is transferred to η(x). Therefore, the unwanted derivative 

operation to get w(4)(x) can thus be avoided. 

 

Furthermore, if the specific stiffness within the inspected local region is a constant, the following 

variant of the “strong” formulation in Eq. (2) can be obtained, as 
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According to the previous analysis, it is not difficult to find that the “weak” formulation-based 

specific stiffness κ̃ can be extended to a more general form as 
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Thus, an enhanced multi-scale “weak” formulation involving different derivative orders of 

displacement, w(i)(x), can be obtained as 
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where ai is the normalized coefficients of the “weak” formulation corresponding to the i-th 

derivative of displacement. 

 

Different from the “strong” formulation in Eq. (3), κ̃ can be seen as an indicator to the local 

specific stiffness within a scanning window. By so doing, the strict prerequisite of satisfying the 

local equation of motion “point-by-point” is shifted to a different “region-by-region” paradigm. In 

that sense, the measurement noise can be partly suppressed from “strong” to “weak” modality [15]. 

Furthermore, it can be seen that the direct benefit of the weak formulation, Eqs. (8) and (11), is to 

calculate the high order derivative of the weight function, instead of the vibration displacement 

itself. As a result, the finite difference calculation can be completely or partly avoided to enhance 

the noise immunity of the identification. It is important to note that the identified κ̃ is a function 

of x according to the above derivation. Despite the assumption that the material parameters (E and 

ρ) are constants in the space domain, the proposed method provides the possibility to assess 

different material properties inside a local area which can be demonstrated in the following 

sections. 



 

3. Parameter selections 

To further illustrate the identification method discussed in the preceding section, a homogeneous 

and isotropic cantilever beam is first investigated using finite element simulations. Although the 

finite element model may not perfectly simulate the structure in the reality, the modelling error can 

be ignored when the vibration displacement is only used for the comparison between “strong” and 

“weak” formulation. As shown in Fig. 1, the beam structure is made of aluminum with a specific 

stiffness κ of 2.6×107 m2/s2 (Young’s modulus E = 70 GPa, density ρ = 2700 kg/m3). The beam is 

650 mm long and 5 mm thick. A harmonic point excitation is applied at the right end of the beam, 

referenced to the coordinate system shown in Fig.1. A vibration model is created using the 

commercial finite element code ABAQUS and the size of the linear beam element with cubic 

formulation is set to 1 mm. The structural vibration displacement is obtained at 200 Hz, which is 

away from any natural frequencies of the structure. 
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Fig. 1 A cantilever beam for proof-of-concept validation 

 

3.1. “Strong” formulation-based method 

For comparison, Eq. (3) based on the “strong” formulation is firstly applied to identify the local 

specific stiffness of the beam. Considering that the high order derivative calculation w(4)(x) is 

sensitive to the spatial measurement interval d, the identification results with different d, ranging 

from 1 to 15 mm, are shown in Fig. 2 by using the same vibration displacement data. The 

constructed κ curves along the beam span show that the expected results are in accord with the 

actual situation that can be obtained through the adjustment of the measurement interval. When d 

equals to 1 mm that is the length of the finite element, the error of finite element method is 



magnified via the finite difference calculation as Eq. (4). Therefore, Fig. 2(a) is unable to deliver 

the acceptable identification. As d increases, the identified κ trends approach to the nominal 

aluminum property in agreement with the previous discussions. It should be mentioned that 

obvious errors appear at x=300 mm and x=525 mm, as shown in Fig. 2(d). According to Fig. 3, 

both the displacement and its 4th order derivative are close to zero at these points, so that the 

denominator of Eq. (3) approaches to zero and the identified κ becomes unstable and even 

singular. 

 

  

(a)                                 (b) 

  

(c)                                 (d) 

Fig. 2 “Strong” formulation-based identification results using different measurement intervals d: 

(a) 1 mm, (b) 5 mm, (c) 10 mm and (d) 15 mm 

 



  

(a)                                 (b) 

Fig. 3 FE simulated normalized vibration responses of the aluminum beam: (a) vibration 

displacement and (b) its fourth order derivative 

 

To quantify the detection results, a relative error e of identified κ is defined as 
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where N is the number of the measurement points within the inspection region Ω and κ* is the 

actual value of the specific stiffness. The relative errors based on the “strong” formulation with 

different measurement intervals are shown in Fig. 4. Considering that the upper and the lower 

bounds of the identified κ are set to 0 and 2κ* respectively, the maximum relative error can reach 

but capped to 1. The average relative error e gets to a minimum value when the measurement 

interval is 8 mm and keeps a low level within a wide range. Although it may not theoretically 

feasible to determine the optimal measurement interval for a given scenario, a balance between the 

truncation error and the noise disturbance can still be struck through examining the variation 

pattern of e: typically decreasing at first before reaching a slight increasing trend. Meanwhile, the 

spatial resolution of the identification decreases as the measurement interval increases. 

 

 



 

Fig. 4 Relative error of “strong” formulation-based identification results using different 

measurement intervals 

 

To quantitatively examine the noise immunity capability of the proposed method, a white 

Gaussian noise with a standard deviation of 1‰ in the magnitude of w(x) is added to the 

calculated vibration displacement. In other words, the signal-to-noise ratio (SNR) of noisy 

vibration displacement is 60 dB. Using the same four different measurement intervals, the “strong” 

formulation-based identification results are shown in Fig. 5. Compared with the results in the 

absence of the measurement noise in Fig. 2, the identified κ using the noisy displacement is 

obviously quite different from the actual value with d varying from 1 to 15 mm. The noise effect, 

magnified in the high order derivative calculation, leads to a large fluctuation of κ, suggesting the 

low noise robustness of the “strong” formulation. Although the relative error curve in Fig. 6 shows 

a downward trend when the measurement interval increases, the resulting relative error, typically 

more than 50%, is unacceptable by any standards. 

 

  

(a)                                 (b) 



  

(c)                                 (d) 

Fig. 5 “Strong” formulation-based identification results using different measurement intervals d 

with the noisy displacement: (a) 1 mm, (b) 5 mm, (c) 10 mm and (d) 15 mm 

 

 

Fig. 6 Relative error of “strong” formulation-based identification results using different 

measurement intervals with the noisy displacement 

 

3.2. “Weak” formulation-based method 

The selection of the weight function η(x) determines the quality of the “weak” formulation-based 

local specific stiffness identification. In order to capitalize on the windowing feature of the “weak” 

formulation and better highlight the local characteristics of the structure while satisfying the 

boundary conditions in Eq. (7), a power-of-cosine function is utilized as η(x), defined by 
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where τ is the scale factor that controls the length and the shape of the weight function. The fourth 

order derivative of the power-of-cosine function can be written as 
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As shown by the solid line in Fig. 7, the prominent advantage of the power-of-cosine function is 

that the weighting is mainly focused on the central region and spreads to zero at the boundaries of 

the window. This property also holds for the 1st to 3rd order derivatives of the weight function. 

Therefore, the “weak” formulation-based method using the power-of-cosine function acts like a 

smooth regional scanner, rather than a point inspector as shown in Fig. 1. The spatial resolution of 

the “weak” formulation-based method can be regulated by the scale factor τ. It should be 

mentioned that other functions can also be used as long as the boundary conditions in Eq. (7) are 

satisfied, such as a polynomial function (η(x)=(1-(x/τ)2)4). 

 

   

Fig. 7 Curves of the normalized weight function η(x) and η(4)(x) 

 

The vibration displacement with the measurement interval d = 1 mm is then processed with the 

“weak” formulation-based method as Eq. (8). The constructed κ̃ with different τ, 40 mm, 60 mm, 

80 mm and 100 mm, respectively, are shown in Fig. 8. It is obvious that the specific stiffness can 

be identified effectively by the κ̃ curves in the absence of the noise interference. For the most of 

regions in Fig. 8, κ̃ equals to the nominal aluminum property values marked by the dotted line. 

Same as the “strong” formulation-based method, obvious errors appear at x = 300 mm and 525 

mm, due to the fact that both the displacement and its 4th order derivative are close to zero at 

these points. 

 



  

(a)                                  (b) 

 

(c)                                 (d) 

Fig. 8 “Weak” formulation-based identification results using different scale factors τ: 

(a) τ = 40 mm, (b) τ = 60 mm, (c) τ = 80 mm and (d) τ = 100 mm 

 

The enhanced version of the multi-scale “weak” formulation-based method is then used to solve 

this problem. In order to avoid the high order finite difference calculation, n is set to 1 in Eq. (11), 

i.e. only w(x) and w(1)(x) are used in the calculation process. With the normalized coefficients ai 

set to the reciprocal of the amplitude of w(i)(x), the identified results with different scale factors are 

shown in Fig. 9. The relative error plotted in Fig. 10 shows that the enhanced multi-scale “weak” 

formulation-based method further reduces the relative error. Meanwhile, the obvious errors around 

the vibration nodes shown in Fig. 9 disappear. Because of the different node locations of w(x) and 

w(1)(x), Eq. (11) avoids the problem of zero denominator in Eqs. (3) and (8). 

 



  

(a)                                  (b) 

  

(c)                                  (d) 

Fig. 9 Enhanced “weak” formulation-based identification results using different scale factors τ: 

(a) τ = 40 mm, (b) τ = 60 mm, (c) τ = 80 mm and (d) τ = 100 mm 

 

 

Fig. 10 Relative error using different values of τ in the “weak” formulation-based methods 

 

Upon imposing the same noise as used in the previous discussion, the identified κ̃ based on the 

“weak” formulation using different τ are shown in Fig. 11. Given a smaller τ (as shown in Fig. 

11(a)), the noise effect can be observed clearly, which eventually can mask the actual value of the 

specific stiffness. It implies that the noise robustness of the “weak” formulation-based method is 

limited when the scale factor τ is small. With a larger τ, the noise induced oscillation in the κ̃ 



curve decreases because of the enhanced averaging effect of the measurement noise through the 

extension of the power-of-cosine function. A satisfactory result can be obtained when τ ≥ 80 mm. 

Similar phenomena can be observed when using the enhanced “weak” formulation-based method 

as illustrated in Fig. 12. A detailed evaluation of the identified results is shown in Fig. 13. The 

relative error of the enhanced “weak” formulation-based method using both w(x) and w(1)(x) 

increases to a certain extent when small τ is used. This is different from the conclusion drawn in 

the absence of the noise shown in Fig. 10. Although, the error near the vibration node can be 

eliminated because of the use of w(1)(x), the introduction of the 1st order finite difference slightly 

reduces the noise immunity capability when a small τ is used. 

 

  

(a)                                 (b) 

  

(c)                                 (d) 

Fig. 11 “Weak” formulation-based identification results using different scale factors with the noisy 

displacement: (a) τ = 40 mm, (b) τ = 60 mm, (c) τ = 80 mm and (d) τ = 100 mm 

 



  

(a)                                 (b) 

  

(c)                                 (d) 

Fig. 12 Enhanced “weak” formulation-based identification results using different scale factors 

with the noisy displacement: (a) τ = 40 mm, (b) τ = 60 mm, (c) τ = 80 mm and (d) τ = 100 mm  

 

 

Fig. 13 Relative errors using different values of τ in the “weak” formulation-based methods with 

the noisy displacement 

 

To quantify the noise robustness against different noise levels, the relative error of the enhanced 

“weak” formulation-based method with different SNRs is illustrated in Fig. 14. Obviously, a lower 

SNR would need a larger τ. However, a smaller τ is needed to improve the spatial resolution of the 

identification. It is therefore crucial to strike a balance between the noise immunity capability and 



the spatial resolution for the enhanced “weak” formulation-based method. 

 

Relative error

e = 10%

 

Fig. 14 Relative error under different noise levels using the enhanced “weak” formulation-based 

method 

 

4. Numerical study on the stiffness changes due to the thickness reduction 

To further validate the effectiveness of the proposed method in identifying the local specific 

stiffness of a structure, a step-shaped beam, made of aluminum, is considered. Detailed 

geometrical parameters are shown in Fig. 15. The beam thickness is 5 mm at the left end, reduced 

by 0.5 mm and 1 mm sequentially. A harmonic point-excitation force is applied at x = 1000 mm at 

200 Hz. Again, a finite element model is created using beam element of 1 mm long. ABAQUS is 

used and a Gaussian white noise with a standard deviation of 1‰ in the magnitude is then added 

to create the noisy vibration displacement data set. 
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Fig. 15 A step-shaped beam for thickness reduction validation 

 

Using the vibration displacement without and with the added noise, the constructed local specific 

stiffness curves using the enhanced “weak” formulation-based method are shown in Figs. 16 and 



17, respectively. Assuming that the thickness reduction is unknown, an equivalent drop in the local 

specific stiffness can be detected using the proposed method. Considering a beam with a 

rectangular cross-section in this case, the cross-sectional moment of inertia I and cross sectional 

area S can be written as 

 
3

12

bh
I =   (15) 

 S hb=   (16) 

where h and b are the thickness and the width of the beam structure. According to Eq. (3), the 

specific stiffness κ and the thickness h satisfy 
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Therefore, the equivalent drop in the local specific stiffness would be equal to the reduction in the 

square of the thickness, which can be calculated as marked in the dotted line in Figs. 16 and 17. 

 

  

(a)                                   (b) 

Fig. 16 Thickness reduction detection using the enhanced “weak” formulation-based local 

stiffness identification with different τ: (a) τ = 40 and (b) 80 mm 

 

 



  

(a)                                   (b) 

Fig. 17 Thickness reduction detection under noisy condition using the enhanced “weak” 

formulation-based local stiffness identification with different τ: (a) τ = 40 and (b) 80 mm 

 

As representative results in Fig. 16, the enhanced “weak” formulation-based method can identify 

the local thickness of the beam clearly with different τ, showing the stepped shape along the beam 

length. However, when a Gaussian white noise is added, only when τ = 80 can one obtains a 

satisfactory detection. As anticipated, increasing the scale factor τ is an effective way to improve 

the noise immunity capability of the proposed method. 

 

It is pertinent to note that the abrupt change in the thickness (at x = 350 and 650 mm) affects the 

identified κ̃ curve significantly. When the step is involved in the weight function, the assumption 

that the parameters (E and I) are constants in the space domain cannot be satisfied. Meanwhile, the 

discontinuity in the vibration displacement and its fourth order derivative is inevitably greatly 

magnified. Reaching these locations, the discontinuous effect will be extended to the vicinity of 

the step when a scanning window is used in the enhanced “weak” formulation-based method, 

affecting the nearby areas as observed in Figs. 16 and 17. Therefore, the selection of the scale 

factor τ plays a vital role in balancing the noise immunity capability and the length of the 

disrupted area. 

 

5. Experimental validations 

5.1. Setup 

Experimental validations are subsequently carried out using the same step-shaped beam involving 

thickness reductions. The aluminum structure, with dimensions depicted in Fig. 18, is 



fix-supported at the left end and excited by an electromechanical shaker at x = 990 mm, producing 

a harmonic point-force excitation at 200 Hz (referring to the coordinate system in Fig. 18 and the 

coordinate origin is located at the left end of the structure). A scanning Laser Doppler Vibrometer 

(Polytec PSV-500) is used to measure the flexural displacement within the selected inspection 

region from x = 150 mm to 850 mm on the flat surface without steps. The measurement interval 

between two adjacent points is 2.74 mm. 
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Fig. 18 Experimental setup and structural dimensions 

 

5.2. Results and discussions 

Considering that the spatial resolution of the equipment in vibration measurement is limited, the 

interval between two adjacent measurement points is much larger than that in the numerical 

simulation. Therefore, in order to keep a high sampling accuracy in the weight function and the 

inner product operation, the vibration displacement measured by the PSV-500 is resampled using 

shape-preserving piecewise cubic interpolation. The original measurement interval is divided into 

three segments, thus increasing the spatial resolution from 2.74 mm to 0.91 mm. The resampled 

vibration displacement, which is used in the subsequent identification process, is shown in Fig. 19. 

 



 

Fig. 19 Normalized vibration displacement at 200 Hz used in the experimental validation 

 

The enhanced “weak” formulation-based method is used. The local specific stiffness curves along 

the beam structure, identified from the measured vibration displacement, are shown in Fig. 20. 

Four different scale factors with τ ≤ 100 mm are used. Two large saltation points can be observed 

at x = 350 mm and 650 mm, where the thickness of the beam changes in stepped variation. The 

disturbed areas induced by this discontinuous effect are also extended to the vicinity of the step. 

Thanks to the high signal-to-noise ratio of the measurement, three steps of the equivalent local 

specific stiffness can be observed with τ ≥ 80 mm. The equivalent κ̃ are 2.59×107 m2/s2, 0.93×107 

m2/s2 and 1.66×107 m2/s2, corresponding to the thickness of 5 mm, 3 mm and 4 mm, respectively. 

Consistent with the preceding theoretical and numerical analyses, the downwards trend of the 

noise induced oscillation in κ̃ curves can be observed by increasing the scale factor of the weight 

function. From Figs. 20(a) to (d), the outline of the stepped beam becomes more and more 

apparent, showing the validity and the accuracy of the proposed method in local specific stiffness 

identification. 

 

  

 (a)                                    (b) 



  

(c)                                   (d) 

Fig. 20 Experimental results using the enhanced “weak” formulation-based thickness reduction 

detection with different scale factors: (a) τ = 40, (b) 60, (c) 80 and (d) 100 mm 

 

It can be seen from Eq. (1) to (11) that the requirement for the proposed method is to obtain the 

steady vibration displacement. The material parameter κ, in principle, can be identified under any 

excitation frequency. In the case that the excitation is not harmonic, the vibration displacement at 

one frequency component in the frequency domain can also be used after Fourier transform. 

Therefore, by using a broadband excitation signal, such as a periodic chirp signal [21], the 

proposed method can even trace κ according to frequency. The selection of 200 Hz in both 

numerical and experimental validations is just an example to show the validity of the proposed 

method without loss of generality. In order to evaluate the potential of the proposed method in 

practical applications when the excitation frequency cannot be selected arbitrarily, the experiments 

using the excitations with 1 kHz and 2 kHz are carried out. The identified κ̃ curves using the 

enhanced “weak” formulation with τ = 80 mm are illustrated in Fig. 21. The changes in local 

specific stiffness show the outline of the stepped beam, whilst showing the feasibility of the 

proposed method for other frequencies. 

 

 



  

(a)                                   (b) 

Fig. 21 Experimental results using the enhanced “weak” formulation-based thickness reduction 

detection with τ = 80 mm when the excitation frequency is (a) 1 kHz and (b) 2 kHz 

 

6. Conclusions 

An enhanced multi-scale “weak” formulation is developed in this paper to identify the local 

specific stiffness of a structure, exemplified by a benchmark beam structure. Compared with the 

original Pseudo-Excitation approach, the proposed method can not only detect the discontinuous 

changes induced by structural damage, but also quantitatively identify the equivalent local specific 

stiffness. To tackle the inherent noise immunity problem in the “strong” formulation-based method, 

a power-of-cosine weight function is employed as a smooth region scanner, instead of a point 

detector. In this way, the estimation of the high order derivative through finite difference 

calculation, required by the strong formulation-based method, is avoided. The robustness of the 

proposed method is investigated using Gaussian white noise with different SNRs. The influences 

of several key parameters, involved in both the “strong” and “weak” formulation-based methods, 

are investigated, such as measurement interval, scale factor and the derivative order. Taking a 

step-shaped beam structure as an example, both numerical analyses and experimental validations 

are carried out. Variations in the beam thickness can be detected and depicted through the 

identified κ̃ curves. Results show the significant improvement of the proposed method, as 

compared with the original strong version, in terms of noise immunity and identification accuracy. 
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