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Abstract

The Acoustic Black Hole (ABH) phenomenon can be exploited to manipulate and mitigate flex-
ural wave propagation in thin-walled structures. ABH structures feature unique space-dependent
wavenumber variation and wave celerity reduction in the tapered ABH area, thus posing chal-
lenges to the existing modelling techniques. In this work, the Partition of Unity Finite Element
Method (PUFEM) is revamped to simulate the structural response of an ABH wedge subject
to a harmonic loading. This method allows the incorporation of auxiliary enrichment functions
into the finite element framework in order to cope with the ABH-induced wave oscillating be-
haviour, exemplified by the varying wavenumber and amplitude in space. The PUFEM tapered
Timoshenko beam elements are constructed by employing wave enrichment functions with the
Wentzel-Kramers-Brillouin (WKB) approximation method. A wavelet enrichment is also in-
vestigated as hierarchic refinement. Using these enriched elements, the frequency responses of
an ABH wedge and the convergence of numerical solutions are computed and compared with
the classical linear FEM and the elements enriched with ‘local’ wave solutions. An adaptive
meshing scheme is designed and implemented to further accelerate the solution convergence. It
is shown that the PUFEM offers a good computational accuracy and drastic reduction of degrees
of freedom for solving the broadband ABH problems, outperforming the classical FEM.

Keywords: Acoustic Black Hole, Partition of Unity Finite Element Method, WKB method,
Wavelet
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1. Introduction

The Acoustic Black Hole (ABH) phenomenon shows good prospects for the manipulation
and mitigation of the flexural bending waves in mechanical structures like beams and plates. An
ABH-featured structure is tailored with a smoothly decreasing thickness profile according to a
power-law function h(z) = cx”,where v > 2 and c is a constant [1]. As the flexural waves
travel towards the thin ABH section, the incident wave undulates with a continuous increase of
wavenumbers and a gradual reduction of wave celerity, alongside an amplification of the wave
amplitude. In an ideal scenario where the thickness goes to zero, waves would spend infinitely
long time to travel inside the ABH area, thus resulting in no wave reflections. Meanwhile,
the vibrational energy is focused and accumulated in the thin tapered region due to the wave
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modulations and compression induced by the structural inhomogeneity. In practical cases where
the zero thickness is non-achievable, applying surface damping treatment over the tapered region
can significantly reduce the wave reflections and enhance the energy absorption [2].

Various models have been exploited to characterize the ABH phenomena. The Wentzel-
Kramers-Brillouin (WKB) method was first used to analyse the dispersion properties of flexural
wave propagation in a tapered wedge [1]. Preliminary ABH studies based on the WKB ap-
proach mainly focused on the wavenumber analysis of the travelling waves in a semi-infinite
wedge-like beam [1, 2]. Other models, not limited by the sufficient smoothness hypothesis of
the WKB approach, were also used to deal with ABH structures with more realistic geomet-
rical configurations and boundary conditions. Typical examples include finite difference ap-
proaches [3], impedance matrix methods [4], transfer matrix methods [5], wavelet-decomposed
Rayleigh-Ritz models [6] and Finite Element Method (FEM) [7, 8] etc. ABH-profiled structures
feature unique space-dependent wavenumber variation and wave celerity reduction over a broad
frequency range. Therefore, most methods require a refined discretization scheme with high
resolution in order to capture the strongly localized and highly oscillatory ABH behaviours, es-
pecially when the local wavelengths in ABH cells become shorter. For example, a dense mesh
grid should be adopted by the finite difference method [3] and conventional FEM [8], while the
wavelet series with refined scales or short support length should be chosen as the global ex-
pansion functions in Rayleigh-Ritz methods [6]. This, inevitably, leads to a drastic increase in
the computational cost, which may become crucial when dealing with more complicated ABH
problems such as structures with multiple embedded ABH cells or auxiliary ABH absorbers
[9, 10], parameter optimizations of ABH tapers [11, 12], interactions of ABH structures with
surrounding medium, and so on. Therefore, there is a need to develop more efficient simula-
tion tools capable of better capturing the shortened local wavelengths as well as the amplified
oscillating behaviours along the ABH taper in a broad frequency band.

In recent decades, enriched numerical methods have been developed to improve the com-
putational efficiency and accuracy for the short-wave modeling, which usually involves a large
number of wavelengths in the problem domain. These simulation techniques allow the incorpo-
ration of auxiliary functions with good approximation properties for the concerned problems in
the formulation stage. As one of these enriched methods, the Partition of Unity Finite Element
Method (PUFEM) [13, 14] offers the advantage of sharing high similarities with the conven-
tional FEM, thus allowing easy implementation by using existing finite element meshes and
codes. The PUFEM has been applied to acoustic and elastic wave propagation problems in
homogeneous media with a uniform wave speed [15, 16, 17, 18]. It has been shown that the
enriched elements can achieve accurate predictions with a significant reduction of the degrees
of freedom in comparison with the conventional FEM. Applications of the PUFEM to problems
with location-dependent wave celerity or wavenumber are mainly limited to acoustic problems
up to now. Typically, Lagrange multipliers were used to enforce the element continuity between
domains with an abrupt jump of sound speed [19, 20, 21]. Special short-wave elements are con-
structed for modelling acoustic and water wave propagation in media with continuous variations
of wave speeds in space [22, 23, 24, 25, 26]. The local wave solutions for the equation of motion
in the vicinity of a node (or plane-wave basis) are chosen as the auxiliary enrichment functions
[22, 24]. These elements are mainly applicable for cases where the change in wavenumbers
within a single element is not significant.

In this work, the PUFEM is adapted to simulate the structural vibrations of a wedge-like
ABH beam. Different formulations are proposed to deal with the broadband ABH-specific prob-
lems, aiming at improving the computational accuracy and efficiency of the PUFEM. The ta-
pered Timoshenko beam elements are first constructed by using wave enrichment functions with



the WKB approximation method. These enriched elements are crafted with the information of
solutions obtained from the governing differential equations of the tapered beam. Wavelet func-
tions, which possess localized compact support properties conducive to representing the ABH
oscillations, are also taken as the enrichment functions of the PUFEM. Comparisons are made
with the element enriched with the ‘local’ wave solutions for the tapered beams as well as the
classical linear FEM. The performance of these elements is evaluated in terms of computational
accuracy and data reduction. Numerical analyses are carried out on a quadratic ABH wedge,
so the applicability of the WKB-based enrichment can be checked against the enrichment using
analytical wave solutions, which only exist for a quadratic wedge.

The outline of the paper is as follows. In section 2, after recalling the basic theory of the
tapered beam vibration, the WKB wave solutions by the Euler-Bernoulli and Timoshenko beam
models are given and these wave functions are to be employed to build the PUFEM Timoshenko
beam elements. Formulations of the element enriched with wavelet functions and the other en-
riched elements are also presented in this section. In section 3, the performance of different
PUFEM elements and that of the classical linear FEM is shown and compared. Convergence
curves, obtained using the mesh refinement by reducing the uniform element length or the hier-
archic refinement by increasing the wavelet scaling parameters, are presented and analyzed. An
adaptive mesh scheme is proposed to further reduce the calculation errors and enhance the solu-
tion convergence. The applicability of the WKB approximate solution as enrichment functions
for PUFEM is then discussed. Finally, conclusions are drawn in the last section.

2. Formulation

2.1. Statement of the problem

Consider the flexural vibration of a beam with a variable thickness h(x) and a constant
width ¢ in Fig. 1 (a). We are interested in the structural response of the tapered beam subject
to a harmonically oscillating loading at a circular frequency @ so that the time-dependent term
et is omitted hereafter (i = v/—1). There are two main theories dedicated to beams: Euler-
Bernoulli and Timoshenko theories. For the former, the axial displacement of the beam, at a
distance z from the neutral layer, is written as u(z, z) = —zw’, where w(x, z) = w(x) is the
lateral displacement of mid-surface in z direction and the prime donates the spatial derivative
with respect to the coordinate x. For the latter, the beam axial displacement is replaced by
u(x, z) = zP(x), where B(z) is the rotation angle of the cross section. The equation of motion

of a tapered Euler-Bernoulli beam is given by
[EI(z)w")" — &*pA(z)w — f. =0, (1)
and those of a tapered Timoshenko beams write

[KGA(x)(B +w")] +@*pA(z)w + f. = 0, 2)
RGA(z)(8 +w') — [BI(x)B] — &®pl(z)8 = 0, 3)

where f, is the distributed oscillating loading. For a transverse point force located at z =
on the beam, the loading term can be expressed as f, = Fyd (z — ), Where 5(-) is the Dirac
delta function. Geometrical parameters involved in the above equations are the area moment of
inertia I(x) = t h3(z)/12, the cross section area A(x) = t h(x) and the shear correction factor
k = 5/6 for a rectangular cross-sectional beam [27]. Material parameters are the Young’s
modulus F, the shear modulus G and the density p. The Euler-Bernoulli beam model, as a
special case of a Timoshenko beam, neglects the effects of the shear deformation and rotary



inertia. This simplified model is widely used in the existing literature on various aspects of
ABH phenomena.
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Figure 1: (a) Schematics of the ABH wedge and (b) four possible free waves associated with one node.

2.2. Wave solutions

The closed-form solutions for Eq. (1) or Egs. (2) and (3) in terms of elementary functions
are difficult to be found, so that we have to resort to using approximate solutions. The WKB
method provides appropriate approximate solutions to the differential equations whose coeffi-
cients are slowly varying function in space [28, 29]. For a tapered Euler-Bernoulli beam, the
WKB constant-frequency solutions to Eq. (1) can be sought as a set of four waves:

W () = W (2)e™®) | n =12 3,4, 4)

where S, () is the eikonal of the quasi-plane wave (or the generalized phase) and Wy, () is the
varying amplitude function. The spatial derivative of the eikonal k,(z) = S,/ can be solved
from the so-called ‘eikonal equation’ [2, 29]. The expression of &, (x) writes

kn(z) = (i) [’;}ngﬂ 1/4.

Here, the two real-valued solutions (n = 2, 4) correspond to the two oscillatory waves travelling
in two opposite directions and the other two imaginary solutions (n = 1, 3) correspond to the
near-field evanescent waves. The local wavenumber along the beam is given by k(z) = |k, (z)).
The eikonal S,,(z) can be found by integrating k,,(x) over space. The wave amplitude func-
tion w,, (x) is determined from the energy-conservation theorem or the corresponding ‘transport
equation’ as [29, 30, 31]

®)

@n(2) = ClpA(a)] P [BI ()] V7, (6)

where C' is a constant and w, (z) is the same for the four types of waves. The applicability of
the WKB method relies on the sufficient smoothness condition of the beam thickness variation.
The spatial change of the local wavenumbers should be small over a distance of wavelength
order [1]. This condition yields the inequality:

k'(z)
k2 (@)
The left-hand side term of condition (7) is referred to as the ‘Normalized Wavenumber Variation’

(NWYV) [7], which gives an estimation on the applicability range of the WKB approximation.
The NWV depends on both the position along the beam and the vibration frequency.
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The WKB solutions for the displacement and rotation of a tapered Timoshenko beam take
the form ' R ‘
wn(x) = @n(x)ezsn(x) > ﬁn(l‘) = /Bn($)elsn(x)‘ 3)

The expressions of &, (z) = S, corresponding to the four types of waves are given by

1/2
11 1\ o, 11 1\, pAl)_,
2 (KG+E) o i\/zx (;@G E> PEUTEIY| ©)

where the index n = 1, 2, 3, 4 refers to one of the four combinations in (9). The displacement
amplitude function is written as [29]

1/2 o —1/2

cin-c[sta] 1+ (5 ) ()] oo
The amplitude function for the cross-section rotation angle can be determined by using the rela-
tion 3, (z) = iy, (z)[pw?/kGky(x) — kn(x)]. The ABH effects can be revealed by analyzing
the WKB solutions for the tapered wedge whose thickness follows h(x) = ca. Figure 2 depicts
the dependence of the local wavenumbers and the wave celerity on the location and frequency

of the propagating flexural waves in a quadratic ABH wedge (v = 2), which is calculated from
the Timoshenko model.
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Figure 2: The wavenumber and phase velocity of propagating flexural wave in a quadratic AHB wedge (calculated
using the parameters in Table 1)

For a specific Euler-Bernoulli ABH beam with a quadratic thickness variation h(z) = cz?,
analytical wave solutions in terms of the power functions can be derived [32]. The analytical
solution to Eq. (1) is sought by

w(z) = CaPr, (11)
where
3 |17 pio? 2
=—4 | —+1/4+ 12— . 12
P1,2,34 5 1 +1277 (12)

This analytical solution is not limited by the sufficient smoothness condition (7) and is more
accurate than the corresponding WKB Euler-Bernoulli solution, especially in the low frequency
range.



2.3. PUFEM tapered Timoshenko beam elements

As compared with Euler-Bernoulli beams, Timoshenko beams offer an easier platform for
the implementation of the PUFEM [18]. For a free-free tapered Timoshenko beam, the associ-
ated variational formulation to Eqgs. (2) and (3) writes:

L
/ (@*6wpA(z)w + &*6pI (z)B + 68’ EI(z)B + (38 + ow')kGA(z) (8 + w') — dwf.) dz = 0,

' (13)
where §(-) donates the virtual quantity and x = 0, L are the positions of two beam ends. La-
grange multipliers can be used to enforce the essential boundary conditions with PUFEM and
the coupling conditions between two domains with different characteristics (see for instance
Refs. [19, 20, 21]).

Similar as in classical FEM, the tapered beam is discretized by a set of nodes into a number
of non-overlapping elements and each node is associated with a given number of degrees of free-
dom (DoFs). The translational and rotational displacements within each element are expressed
by a set of piecewise basis functions in terms of nodal unknowns. The key ingredient of the
PUFEM relies on the choice of an appropriate enrichment for the conventional finite element
approximation by including special auxiliary functions with good approximation properties for
the solutions of the concerned problems. Each PUFEM beam element of length [, = z9 — 21
is given by the geometric mapping (&) = Nix1 + Naza, where 1 and x5 are the nodal posi-
tions and & € [—1, 1] is the local coordinate. Here, N1 = (1 — £)/2 and Ny = (1 + &)/2 are
the classical linear shape functions. In each element, the lateral displacement and rotation are
expanded, respectively, as:

2
w=">" Nul€) D tmn Pmn, (14)
m=1 n
2
B = Nm(g) Z bm,n \Ilm,n- (15)
m=1 n

The computational performance of the PUFEM is dependent upon the choice of the enrichment
functions ®,,, , and V¥,, ,,. These functions are not necessarily the exact solutions to the gov-
erning differential equations of the tapered Timoshenko beam (see Ref. [14]). Therefore, the
PUFEM allows flexible choice of enrichment. Several types of enrichment methods are tested
and assessed in the following sections, aiming at improving the computational performance of
the PUFEM.

For the wave enrichment, the WKB approximate solutions for tapered Euler-Bernoulli beams
(Eq. (4)) and tapered Timoshenko beams (Eq. (8)) can be taken as enrichment functions ®,, ,,
and V,, ,. The Euler-Bernoulli solutions for the rotation are sought by using the relation

B = —w'. The WKB wave enrichment functions write
mon ’A i 'm,l7 9 i m, ,w3 T e' m, 7w4 T e‘ m, ,
{Pmn} € {1, 01 ()51, Wy (z)e 52, g (x)e ™3, @y (x)e"m1 } (16)
(Ui} € {1, Bu(@)em1, Bo(w)e™m2, By(w)ema, By(a)eSma}, (17)

where the subscript donates four possible free wave solutions associated with a node z,,, (Fig. 1
(b)) and the eikonal term is defined as S, »(z) = ffm kn(s)ds. The wave enrichment functions
in Egs. (16) and (17) are expressed in terms of the unmapped physical coordinate x. In addition
to the four free waves, a constant term is also added to the enrichment basis in order to capture
the contribution of the loading and to enhance the convergence of the numerical solutions [18].



For an ABH thickness variation h(x) = cx”, the WKB Euler-Bernoulli wavenumber k(z) has
a simple expression so that the analytical expression of S,, ,, can be found. The eikonal term
Sm,n of a tapered Timoshenko beam can be evaluated using numerical integration, while the
WKB Timoshenko enrichment is believed to lead to better convergence at higher frequencies.

For the sake of comparisons, an enrichment based on the analytical solutions for quadratic
Euler-Bernoulli wedges and an enrichment based on ‘local’ wave solutions for tapered Timo-
shenko beams are also studied. The former can be carried out in a similar manner as the WKB
wave enrichment, through using the equivalent exponential expression of Eq. (11) in Ref. [32].
For the latter, the enrichment functions are given by

{(bm,ng \Ilm,n} E {1’ eikm,l(ffwm% eikm,Q(fK*xm)’ eikm’g(xfmm)’ eikm74(xfxm)}7 (18)

where k,, ,, is evaluated at the node x,, by Eq. (9). Other conventional enrichment methods
for PUFEM, such as the polynomial enrichment used in Ref. [18], can also be taken for com-
parison purposes. The polynomial-enriched elements usually show advantages over high-order
enhanced Timoshenko beam elements [18, 33]. It was also found that the local wave enrich-
ment offers slightly better computational performance than polynomial enrichment with the
same number of enrichment terms at each node. Therefore, only the results from the former are
shown in the following analyses to facilitate the discussion.

The PUFEM with wavelet enrichment is then developed and investigated in this work. The
wavelet functions have compact-supported or fast-decaying oscillating shapes [34, 35] and pos-
sess the superior capability to represent the solutions with strongly localized variation pattern,
which is conducive to capturing the ABH-induced wave compression phenomenon [6, 36]. The
spline scaling functions [34, 35, 37] used in the wavelet analysis are chosen as the enrichment
functions:

(B U} € {1,...,27%0,(2n,, — ), ..., forn € Z}, (19)

where 1,, = (£—x,)/le, r is cardinal B-spline function of order r, j € Z is the scaling param-
eter and n is the translation parameter. The constant term is added to the above PUFEM basis
to ensure a good approximation of the solution in the present case. In addition, it is also helpful
when imposing essential boundary conditions of the beam as well as the coupling conditions
to consider the pressure loading on each side of the beam in typical vibroacoustic problems. It
can be observed that ¢,.(277,, — n) is generated from one single function ¢,.(7,,) by using par-
ticular scale and translation values. The approximation resolution of the enrichment functions
is controlled by the scale and the hierarchic refinement can be implemented by adjusting the
value of j [35]. Better resolutions can be obtained by using enrichment functions with a larger
scaling parameter j or a shorter support length, as shown in Figs. 3 (a) and (b). The wavelet en-
richment should be applied with an ordinary mesh and a sufficient high resolution [34, 38, 18].
To avoid the singularity in the numerical calculation, the range of n should be truncated and
selected so that the wavelet enrichment functions have non-zero values within the bounded in-
terval of 7,,,, which is illustrated in Fig. 3 (a). The advantage of using B-spline wavelets is that
its scaling functions are analytically expressible, thus conducive to numerical implementation
[35]. Meanwhile, B-spline scaling function exhibits smooth oscillations within its support than
other types of wavelets, like Daubechies wavelet [38]. As a result, the resultant system ma-
trix is better conditioned and can be evaluated with much reduced Gauss points. A systematic
hierarchic refinement can then be conducted without much numerical difficulties. The quintic
B-spline function ¢g [39] is chosen as wavelet enrichment in this work to show that the wavelet
enrichment can improve the computational performance of the PUFEM when applied to ABH
vibration problems, rather than focusing on comparisons among different types of wavelets.
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Figure 3: (a) Quintic spline scaling functions with 7 = 1 and (b) quintic spline scaling functions with j = 2.

3. Numerical Analyses and Discussions

A quadratic wedge-like ABH beam with a variable rectangular cross section is taken as the
test configuration in this section (Fig. 1 (a)). Geometrical and material parameters of the tested
ABH wedge are given in Table 1. Both ends of the beam are free of constraints. A unit harmonic
point loading is imposed at the right end x; = L to activate the ABH taper, corresponding to a
node of the mesh.

Wedge thickness | h(z) = 0.01(x + 0.02)2/(0.2+0.02)%, 0 <z < L
Length and width | L =0.2m,¢ = 0.0l m
Material properties | E = 70 GPa, G = 27 GPa, p = 2780 kg/m?

Table 1: Geometrical and material parameters used in our computations.

3.1. PUFEM computational performance

The performance of PUFEM with different enrichment functions is first investigated. To this
end, cross Frequency Response Functions (FRF) are calculated and compared with the reference
solution obtained from the classical linear FEM, as shown in Fig. 4. The point response is
evaluated at 0.3L from the left end of the beam (x = 0.06m). The reference FEM solution is
obtained using 10,000 classical Timoshenko beam elements with linear shape functions and the
reduced Gauss integration scheme is adopted for calculating the stiffness matrix to avoid shear
locking [33, 18]. The FRF curves of the PUFEM with WKB wave enrichment and local wave
enrichment are calculated with 16 elements of equal length and 5 enrichment functions. The
corresponding number of DoFs is 17 x 5 x 2 = 170. The calculation of the wavelet enrichment
is carried out with 4 elements of same length. The scaling parameter j is set to be 3 so that the
total number of DoFs, here 188, is comparable with that of the wave enrichment.

Comparative results using the WKB wave enrichment are given in Figs. 4 (a) and (b). It can
be seen that the structure under investigation exhibits rather complex dynamics, evidenced by
multiple structural resonances. Generally speaking, a good agreement between the WKB wave-
enriched elements and the reference solution can be observed within the entire frequency band.
Therefore, the WKB Euler-Bernoulli and Timoshenko enrichment provide similar performance
in terms of accuracy. The point response of the enrichment using analytical Euler-Bernoulli
solutions is similar to that based on WKB solutions, which is not shown here for simplicity.

Two other types of enrichment, using wavelet and local wave functions, are also compared
with reference FEM solution in Figs. 4 (c) and (d), respectively. It can be seen that both can



offer accurate predictions up to a certain frequency limit, above which the PUFEM curves start
to deviate from the reference solution. More specifically, the wavelet enrichment (Figs. 4 (d))
can ensure the accuracy up to around 23 kHz, outperforming the local wave enrichment, which
can roughly reach 10 kHz with reasonably good accuracy. It should be stressed that the above
comparisons involve formulations with roughly the same number of DoFs. As will be illustrated
later by convergence studies, the working frequency band of the PUFEM can be extended by
using mesh refinement or by increasing the wavelet resolution.
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Figure 4: FRF curves w/Fp (at 0.3L from left end) calculated by the PUFEM with: (a) — WKB Euler-Bernoulli
enrichment, (b) — WKB Timoshenko enrichment, (c) — —— local wave enrichment, (d) — wavelet enrichment.
reference solution with classical FEM.

To examine the ability of the PUFEM in characterizing typical ABH-specific features, Figs. 5
(a)-(c) show the structural response along the ABH wedge near the upper working frequency
range in Fig. 4 using different enrichment methods. Results from the classical linear FEM with
100 elements (202 DoFs) are also shown in Fig. 5 (d) for comparison purposes. One can ob-
serve the typical ABH phenomena from plotted deformation shapes: gradually shortened local
wavelengths and increased oscillating amplitudes along the reduced structural thickness. Com-
parisons in Fig. 5 also illustrate that, by using the similar number of DoFs, the element enriched
with WKB wave functions can cope with more spatial oscillations than other types of elements.
Meanwhile, the wavelet enrichment can also provide a good approximation over the whole prob-
lem domain. On the contrary, the enrichment with the local wave solution, whose wavenumber
is evaluated at each node and holds a constant value over the element (Eq. (18)), shows less ac-
curate results in terms of depicting the strong variation of wavenumbers and amplitudes within
the element at higher frequencies. It is also found that all PUFEM elements perform better than
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Figure 5: The deformed shapes along the ABH wedge calculated by the PUFEM with (a) — WKB Timoshenko
enrichment at 40 kHz, (b) —— - local wave enrichment at 10 kHz , (c) — wavelet enrichment at 23 kHz, and by (d)
------- the linear FEM (100 elements) at 7 kHz. the corresponding reference solution with classical FEM.

the linear FEM (Fig. 5 (d)). Deviations and mismatch of calculated shapes with the reference
solution at the thin wedge part can be observed for the PUFEM with wavelet and local wave
functions and the linear FEM. The zoom-in sub-figure in Fig. 5 (a) shows the detailed structural
displacement within the 1st element from the left end (thin part of the ABH wedge). One can
observe that a single enriched element can capture multiple wavelengths (more than 2 for the
present case), which is a typical feature of wave enrichment, as well as the ABH-induced wave
modulation effects.

Figure 6 presents the comparison of the convergence of different formulations at two se-
lected frequencies, 20 kHz and 40 kHz. In the present case, the wedge is meshed by the elements
with equal length. All convergence curves, except for the PUFEM with wavelet enrichment, are
obtained by using the mesh refinement, i.e. reducing element spacing from a coarse mesh. The
wavelet enrichment is refined by increasing the scaling parameter j, with the element number

kept at 4. The L2 errors are plotted against the number of DoFs. The relative errors are estimated
via L?-norm as

L
\/fO ’wwmputed - w'ref|2dx
E =

\V foL |wref‘2d93

where w;..s is the reference solution. The reference FEM solution for convergence studies is
obtained by using 200,000 elements with linear shape functions and reduced Gauss integration.
According to Fig. 6, the PUFEM with WKB Euler-Bernoulli and Timoshenko enrichment and

x 100% , (20)

10



the analytical Euler-Bernoulli enrichment all converge to the reference solution faster than the
other formulations and can achieve reasonably good accuracy with a relatively small number of
DoFs. Typically, the errors of all these wave-enriched elements drop below 1% when the DoF
number is larger than 80 and reach 10~*% level when further increased to 500. It should be
noted that the error estimation here is limited by the resolution of the reference solution, which
explains the sudden change of the curve shape around a very low error percentage O(107%).
The difference in terms of convergence between the PUFEM elements, enriched with WKB
approximate solutions and with the analytical wave solution, is not significant. At the higher
frequency of 40 kHz, the advantage of the analytical wave enrichment becomes less obvious and
the WKB Timoshenko enrichment works slightly better than WKB Euler-Bernoulli enrichment.
Note that a quadratic wedge is taken as the tested configuration in this work so that analytical
wave enrichment functions exist, while the WKB approximation can be used for tapered wedge
with general profiles. Therefore, the WKB methods can provide good approximation functions
for the PUFEM tapered Timoshenko beam element. It can also be found from Fig. 6 that the
wavelet-enriched elements and those by local wave functions have higher convergence rates than
the classical linear element and can reach high accuracy with a much smaller number of DoFs.
The convergence results indicate their relative errors behaving like ¢ ~ p [.” in which 7 =~ 7 (I,
is the element length and is inversely proportional to the total number of DoFs). Compared with
the local wave enrichment, the wavelet enrichment has smaller values for the constant p and
thus better computational efficiency. The results show that all types of PUFEM formulations
outperform classical linear FEM and the classical linear element has the expected convergence
rate of 2.

@ | | | )
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Figure 6: Comparison of convergence at (a) 20 kHz and (b) 40 kHz. classical linear FEM, ———PUFEM
with WKB Euler-Bernoulli enrichment, ———— PUFEM with WKB Timoshenko enrichment, PUFEM with

analytical Euler-Bernoulli enrichment, —A—— PUFEM with wavelet enrichment, — ¢ — PUFEM with local wave
enrichment.

3.2. PUFEM with adaptive mesh

To reduce the calculation errors and enhance the convergence of the numerical solutions, an
adaptive mesh scheme is proposed and implemented for the formulations discussed previously.
The mesh design is based on the characteristics of wave propagation in an ABH wedge.

According to Eq. (5), the local wavenumber k(z) is inversely proportional to the square
root of the local thickness y/h(x), so the local wavelength in the quadratic ABH taper will in-
crease linearly along x-coordinate. In the proposed discretization scheme, the mesh spacing is
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therefore adapted with a linear increase along the wedge length coordinate and the difference in
lengths between the two neighbouring elements is set to be constant. This non-uniform mesh
allows a finer resolution at the thin portion of the wedge, where the wave amplitude undergoes
severer variations. Carrying out the same refinement used in Fig. 6, Fig. 7 shows the compar-
ison between the convergence curves of the PUFEM with WKB Timoshenko enrichment and
wavelet enrichment using uniform mesh and adaptive mesh, at two selected frequencies, respec-
tively. It can be seen that the non-uniform adaptive mesh can effectively reduce the numerical
error for all enrichments. More specifically, with the number of DoFs above 150, the adaptive
mesh reduces the error by roughly two orders of magnitude as compared to the uniform mesh.
Comparing different formulations using adaptive mesh (results not shown here), it was observed
that conclusions obtained from the uniform mesh still apply: the wave enrichment based on the
WKB and analytical solutions shows the best performance and the wavelet enrichment out-
performs the local wave enrichment and the classical linear element. Figure 8 compares the
convergence properties among various wave enrichment with different solutions using adaptive
mesh at 40 kHz. It can be observed that the WKB Timoshenko enrichment shows superiority
over both WKB and analytical Euler-Bernoulli enrichment at 40 kHz when using the adaptive
mesh refinement, suggesting a greater contribution of the shear and rotation inertia effects.

@ | | )
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Figure 7: Comparison of convergence at (a) 20 kHz and (b) 40 kHz. —-[]—- WKB Timoshenko enrichment us-
ing uniform mesh, —=—— WKB Timoshenko enrichment using adaptive mesh, —-/\ —- wavelet enrichment using
uniform mesh, —A—— wavelet enrichment using adaptive mesh.

3.3. Applicability of WKB approach

As mentioned above, the applicability of the WKB approximation method relies on the
condition of sufficient smoothness of the beam thickness variation: the change in the local
wavenumbers along the tapered beam should be small over a distance comparable to one wave-
length. The NWYV, i.e. the left-hand side term of Eq. (7), provides an estimation of the validity
of the WKB method. For a given quadratic Euler-Bernoulli wedge, NWV is only dependent on
the frequency but not the position [1]. Therefore, at higher frequencies, the NWYV is smaller
and the WKB approximation is more accurate. It is opined that, in the low frequency range,
the NWYV should be kept below 0.3 to satisfy the sufficient smoothness condition [7]. Previous
works on the validity of the WKB method for ABH problems were conducted based on the
reflection coefficients of propagating waves [40, 7]. The applicability of the WKB method un-
der the PUFEM framework can be evaluated in terms of vibrational response using the element
enriched with WKB wave functions. Results suggest that the WKB approach can still provide
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Figure 8: Convergence curves of wave enrichment at 40 kHz using adaptive mesh ——— WKB Euler-Bernoulli
enrichment, ——=— WKB Timoshenko enrichment, analytical Euler-Bernoulli enrichment,

appropriate approximation functions with good accuracy for the PUFEM in the low frequency
range even with NWYV values which are considered to be high from the view point of wave
reflection. For the test case used in the present study, the NWYV value is 0.4 at 300 Hz, which is
between the 1st and 2nd resonance frequencies of the beam. By using one single element, the
relative error using the element enriched with WKB Euler-Bernoulli or Timoshenko solutions is
around 0.01% while the one with analytical Euler-Bernoulli enrichment is near 10~4%. At other
low frequencies with a large NWYV, similar observations can be made using a small number of
elements: the WKB wave-enriched elements can provide reasonably accurate results, albeit not
as accurate as the analytical Euler-Bernoulli enrichment.

4. Conclusions

In this work, the PUFEM tapered Timoshenko beam elements are developed to solve the
forced vibration response of an ABH wedge. Several types of PUFEM elements are constructed
using different enrichment functions, namely wave enrichment based on WKB approximate
solutions for the tapered Euler-Bernoulli and Timoshenko beams and the one based on wavelets.
The computational performance of different formulations is evaluated in terms of structural
response and solution convergence. By capitalizing on the ABH-specific wavelength variation,
an adaptive mesh scheme is also proposed.

The prevailing conclusions are given below:

1). Through numerical simulations and analyses, it was shown that, upon a proper selection
of the enrichment scheme, the PUFEM is capable of predicting and reproducing the typical
ABH-induced wave phenomena in a broad frequency band, by using a relatively small number
of DoFs. This reduction of DoFs is achieved by the enrichment enabling one single element to
capture multiple wavelengths and local wavelength variation.

2). The performance of the PUFEM shows strong dependence on the matching between
the approximation properties of the enrichment functions and the physical nature of the ABH
phenomena. The WKB wave enrichment, crafted with the inherent wave propagation informa-
tion of the tapered beam, offers the best performance in terms of computational accuracy and
data reduction. The wavelet enrichment functions can also provide an efficient and accurate
approximation for the ABH-induced wave behaviour. The wavelet-enriched element shows its
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versatility and flexibility in dealing with the strongly localized and highly oscillatory system
behaviour owing to its compact support, flexible scaling and translation features.

3). The PUFEM with the WKB wave solutions and the wavelet functions show superiority
over the enrichment with the nodal-defined local wave solutions and the classical linear FEM.
The proposed adaptive mesh scheme is shown to further increase the computational efficiency
of the PUFEM.

4). Through comparisons with analytical wave enrichment, the WKB wave solutions are
found to be good approximation functions for PUFEM, applicable at relatively low frequencies
where the sufficient smoothness hypothesis may not be strictly satisfied.

As a final remark, an overall strategy based on different PUFEM formulations has been es-
tablished for solving the structural vibration problem of an ABH tapered wedge. The PUFEM
allows easy inter-element connections. In a broader perspective, the proposed PUFEM frame-
work can also be applied to other beams with a thickness variation going beyond the scope of
ABH beams, and eventually be extended to other physical problems with spatially varying wave
speeds. Future effort is needed to apply the present numerical approach for solving more prac-
tical problems, such as ABH wedges with surface damping treatment or vibroacoustic coupling
systems.
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