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A shear stress transport incorporated elliptic blending turbulence model applied to 

near-wall, separated and impinging jet flows and heat transfer 

Abstract: An elliptic blending turbulence model, considering the Shear Stress Transport 

(SST) characteristics in boundary layer together, is developed and validated. This model 

consists of four governing equations which have the same forms as those used in our 

previous k-ω-φ-α model (belonging to the elliptic blending turbulence models). The 

major improvement is that a new turbulent viscosity definition, which inherits the 

advantages of the elliptic blending turbulence models and the SST turbulence models, is 

constructed. The new model is applied to near-wall, separated and impinging jet flows 

and associated convective heat transfer. The computational results are compared with 

available DNS and experimental data and to those computed using the previously 

developed k-ω-φ-α model and the popular Menter’s SST k-ω model. It is shown that the 

current new model has similar behaviors with the previously developed k-ω-φ-α model 

for the near wall flow and heat transfer. For separated and impinging jet flows and the 

associated heat transfer, the current new model yields better results than Menter’s SST 

k-ω model and our previous k-ω-φ-α model.  

Keywords: turbulence model; elliptic blending; shear stress transport; separated flow; 

impinging jet flow; convective heat transfer. 

Nomenclature 

Greek letters 

  Elliptic variable 

 , , * , 0  Turbulence model coefficients 

99  Thickness of the boundary layer 

  Dissipation rate 

  Specific dissipation rate 

  Von Karman constant 

 ,   Molecular dynamic and kinematic viscosity 

t , t  Turbulent dynamic and kinematic viscosity 

ijΩ  Vorticity rate tensor 

  Wall-normal turbulent anisotropy, kv /2=  

  Density of fluid 

d  Turbulence model constant 



k ,  ,  ,   Turbulent Prandtl numbers 

, w  Shear stress and wall shear stress 

  Mean temperature of the fluid 

w  Wall temperature 

in  Fluid temperature at inlet 

+  The normalized temperature  

  Turbulence model constant  

Latin letters 

a1 Turbulence model constant 

B  Inlet width of the 2D jet 

fC  Skin-friction coefficient 

pC  Pressure coefficient 

pc  Specific heat of the fluid 

1C , *
1C , 2C , *

2C , 4C , 5C , C , TC , C , 1C , 2C  Turbulence model parameters 

DC  Cross-diffusion term 

d, D  Diameter of the pipe 

kD , t
kD  Turbulent diffusion of k 

f  Elliptic relaxation function 

kf , f  Damping functions 

bF  Blending function 

kG  Production of turbulent kinetic energy 

H  Step height or distance from jet exit to plane 

I  Turbulent intensity 

k   Turbulent kinetic energy or thermal conductivity of the fluid 

L  Turbulence length scale 

n Turbulence model constant 

Nu Nusselt number 

p  Pressure or turbulence model constant 

Pr, Prt  Molecular and turbulent Prandtl number  

q  Heat flux 

HRe  Reynolds number based on H 



tRe  Turbulent Reynolds number 

Re  Friction velocity based Reynolds number 

S  Magnitude of strain rate 

Sij Strain rate tensor 

t  Physical time 

T Turbulence time scale 

Tlim Upper bound of the turbulence time scale 

ui  Instantaneous velocity vector 

'
iu  Velocity fluctuation  

u, v, w Velocities along x, y and z directions 

Ub  Mean velocity of the bulk flow 

Uref  Velocity of the free stream flow 

u+  Normalized velocity by friction velocity 

u  Friction velocity,  /wu =  

V0  Mean velocity on the inlet of the 2D jet 

2v  Velocity variance scale 

x  Coordinate in the stream-wise direction 

y  Wall distance or coordinate in the wall-normal direction 

y+  Non-dimensional wall distance 

1. Introduction 

Though Large Eddy Simulation (LES) seems more powerful than Reynolds Averaged 

Navier-Stokes (RANS) on unsteady turbulence simulation, the refined modeling of wall 

effects in the RANS framework is still an energetic topic currently. Indeed, because 

resolution of wall structures by LES would require very expensive meshes, the 

application range of LES is limited just for problems without wall effects or 

wall-bounded flows with Low Reynolds Number (LRN) and limited domain. In practice, 

several hybrid RANS-LES approaches are developed and become increasingly popular in 

recent years[1]. The main advantage of hybrid methodologies is that the wall turbulence 

is modeled using RANS approach thus the mesh requirement in the near wall region is 

significantly reduced, leading to an increase of the numerical capacity.  

 Many types of near-wall RANS model have been used in hybrid RANS-LES 

approaches, from one equation models to full Reynolds Stress Models (RSM): to name a 

few, the one-equation Spalart–Allmaras model is chosen in the Delayed Detached Eddy 

Simulation (DDES) model of Spalart et al. [2]. The two-equation Menter’s −k SST  



model is used in the DDES by Mikhail et al.[3] and the Scale Adaptive Simulation (SAS) 

developed by Menter and Egorov [4]. The four-equation f−  model of Laurence et 

al.[5], which is based on the elliptic relaxation approach, is applied in the two velocities 

hybrid RANS-LES model by Uribe et al.[6]. The Elliptic Blending RSM (EBRSM) 

model of Manceau and Hanjalic[7] is adopted in the seamless approach of Fadai-Ghotbi 

et al. [8]. 

Among them, the −k SST  model based hybrid approaches is more popular due to 

its simplicity and robustness . However, the −k SST  model does not have superiority 

for some type of flows. For example, the −k SST  model predicts the separation point 

much early in the diffuser flow[9, 10]. For the problem of impinging jet flow and heat 

transfer, the −k SST  model is not as good as the turbulence models based on elliptic 

relaxation or elliptic blending approaches[10, 11]. Consequently, as supplements, it is of 

importance to develop alternative RANS turbulence models.  

On the other hand, both LES and hybrid RANS-LES require unsteady 3D modeling. 

Actually, it is not necessary to carry out unsteady 3D calculations in some problems with 

steady characteristics, or with typical 2D or axisymmetric configurations. Under these 

circumstances, RANS turbulence models with good performance are advantageous. 

One attractive type of RANS turbulence models is the elliptic relaxation or elliptic 

blending based models: the fv −2 model[12] and its variants, i.e. the f− model[5], 

the kv /BL 2− model[9] and the  −−−k  model[10, 13]. These models have 

inherent superiority for near wall flow because they naturally integrate wall turbulence 

‘damping’ by using the wall-normal fluctuations 2v  as additional scale, and they have 

been successful in simulation for impinging jet flow and heat transfer.  

The researches on the fv −2 model and its variants have been sustained about 30 

years, leading to several versions of models. Overall, the developments of the fv −2

models can be divided into two categories: one stems from the −k  system, another 

stems from the −k  system. The −k  system based fv −2 models have a major 

drawback associated with the wall boundary condition of  , especially the unreasonable 

initial value of  [10]. Therefore, as stated by Billard and Laurence [9] that it is difficult 

to give considerations to both stability and accuracy. The −k  system based fv −2

models can eliminate the disadvantageous effect of the boundary condition and enhance 

the stability of the models [10, 13, 14]. Recently, the authors developed a  −−−k  

model based on the Wilcox’s −k  model and the kv /BL 2−  model and applied it 



successfully to the near wall and separated flows[10]. Later, the model was further 

improved (referred to as the 2018−−−− k  model later) and applied successfully to 

impinging jet flow and heat transfer[13]. 

In this study, we extend our effort to devise a more robust model, which inherits the 

advantages of the 2018−−−− k  model and the −k SST  model. In the next 

section, the proposal of the new model is presented in detail. This is followed by the 

presentation of the solution procedure of the model. Then its performances are verified by 

comparing with the 2018−−−− k  model and the −k SST  model through testing 

with two dimensional and axisymmetric configurations. Several typical cases have been 

successfully considered, including the near wall flow, the separated flow and the 

impinging jet flow. Additionally, the new model is applied to the simulation of heat 

transfer and shows superior abilities. Finally, some conclusions are drawn. 

2. Numerical model 

In the RANS framework, for incompressible flow, the mean flow satisfies the RANS 

equations: 
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For eddy viscosity models, the turbulent stresses are assumed to be linearly proportional 

to the strain rate and are calculated using 
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where the eddy viscosity, μt , in turn, is calculated using turbulence models. 

2.1 Formulation of the present turbulent model 

The present turbulent model can be considered as an enhanced version of the 

2018−−−− k  model and they have the same governing equations (refer to Yang 

and Liu[13] and Appendix A). To avoid repetition, they are not described here.                                             

The major improvement of the present model is that it incorporates the shear 

stress transport characteristics in the boundary layer to the model. The Menter’s 

−k SST  model has been proved to be more accurate and reliable for a wider class of 

flows (for example, adverse pressure gradient flows, airfoils, transonic shock waves) than 

the standard and the baseline −k  models. The reason is that the −k SST  model 

successfully accounts for the transport of the turbulence shear stress in the definition of 



the turbulent viscosity. It is acknowledged that the fv −2  model and its variants are 

superior in near wall region, whereas the −k SST  model is superior elsewhere. 

Accordingly, the turbulent viscosity in present model is defined as  
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where a1 is a constant and F2 is a blending function, as the same used in the −k SST  

model. In this definition, the first term on the right hand side is coming from the 

2018−−−− k  model and the second term is from the −k SST  model. A blending 

function, αp, is used to achieve a smooth transition from 2018−−−− k  model used 

in near wall region to −k SST  model used elsewhere. This blending formulation 

inherits the advantages of the 2018−−−− k  model and the −k SST  model. 

Another modification is the model coefficient σk. It is a constant in the 

2018−−−− k  model but in present model it is replaced by a blending formulation 

( ) 211 k
p

k
p

k  +−= .                                                 (5) 

This blending formulation can improve significantly the performance of the model for 

impinging jet flow with moderate distance from nozzle to plate (as seen in Fig. 20).  

 The last modification is the production of the kinetic energy, Gk. In the 

2018−−−− k  model, it has been shown that using a blending formulation can yield 

better results [13]. That is, in the near wall region the correction of Kato and Launder [15] 

is used, i.e. 

SQG tk = .                                                           (6) 

In other regions, the conventional formula is used. i.e. 

2SG tk = .                                                            (7) 

However, in present model, it is found that the correction of Kato and Launder [15] 

works well for whole flow region, thus, Eq. (7) is used to calculate the production of the 

kinetic energy. 

Although most model constants do not require any recalibration from the values 

given in the 2018−−−− k  model, a few model constants are needed to recalibrate 

to ensure good performance of the new model. For sake of clarity, the complete equations 

and constants of the present model are recalled in Appendix A.  

It is obvious that the present model does not introduce any additional terms that 

may result in numerical difficulty. Consequently, the present model has good numerical 

stability as the 2018−−−− k  model.    



2.2 Energy equation and the turbulent Prandtl number 

For incompressible flow, the governing equation of the energy can be simplified to the 

mean temperature (θ) equation. After using the Boussinesq approximation, the unknown 

eddy diffusivity of heat can be modeled by defining a turbulent Prandtl number, Prt. The 

governing equation of mean temperature can be expressed as 
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where Pr = μcp/k represents the molecular Prandtl number. 

 The turbulent Prandtl number Prt depends on several factors, e.g., the molecular 

Prandtl number of the fluid, the viscosity of the fluid, and the Reynolds number of the 

flow[16]. There are substantial DNS and experimental data on the Prt for 2D channel air 

flow. Based on the shape of the temperature in the log-layer of the boundary layer, the Prt 

can be assumed to be constant. However, there are no universal values of Prt, even in the 

simple wall shear flows. For example, for air flow with Pr = 0.71, the Prt ranges between 

0.73 and 0.92 [16].  

 For fully developed channel flow, Kays and Crawford [17] proposed a formula for  

Prt as 

( ) ( ) ( ) ttt

t
 165.5exp10441.0228.05882.0

1
Pr

2
−−−+

= .                    (9) 

This formula yields a value of 1.7 at the wall and decreases asymptotically to a value of 

0.85 far from the wall. 

Although the Kays and Crawford formula (Eq. (9)) provides a better shape for the 

Prt in boundary layer, it does not always yield better heat transfer predictions in complex 

flows. Generally speaking, different type of flows require different Prt[13]. However, 

investigation of the effects of Prt is out of the major objective of present study. For the 

purpose of convenience, the results presented in present paper are all obtained using the 

Kays and Crawford formula.  

3 Solution procedure 

The 2018−−−− k model and the popular −k SST  model[18] are used to 

comparatively display the ability and the superiority of the present model. All 

computations have been performed using the FLUENT CFD code. The present model and 

the 2018−−−− k  model are both implemented using the User-Defined Function 

(UDF) functionality. The −k SST  model is an inner-coded turbulence model in 

FLUENT and so it can be used directly.  

The numerical method is the same as that used by Yang and Liu [13]. For the 



purpose of clarity, it is also described here briefly. The pressure-based segregated 

algorithm is used to solve the governing equations. The convection terms in the 

momentum, energy and turbulence equations are all discretized by the second order 

upwind scheme. The least squares cell-based method is adopted to evaluate the gradients 

and derivatives. The SIMPLEC algorithm is used to deal with the velocity-pressure 

coupling process at the early stage of iteration then switches to the Coupled algorithm. 

The default under-relaxation factors are adopted for the pressure and velocities. For 

variables in the turbulence model, under-relaxation factors are set to be different values 

depending on the complexity of the flow, for example, 0.8 for the near wall and separated 

flows, and 0.5 for the impinging jet flow. 

 The no-slip condition is used on solid walls, namely, ui = 0, k = 0, φ = 0, α = 0. For ω 

both in the present model and the 2018−−−− k  model, )/(3 2
10 yw  =  is used 

[10, 13] with y1 representing the distance from the wall to the centre of the first cell 

adjacent to the wall. It is different with that used in the −k SST  model, in which  

)/(6 2
11 yw  =  is used. The thermal condition on solid wall may be specified to be 

adiabatic, constant temperature or constant heat flux, to consist with the problem 

requirements. A zero gradient condition is applied at the outlet that is not periodic in the 

streamwise direction, for all variables, except pressure. The inlet condition is strongly 

problem dependent so that it will be stated in each case later. It should be noted that, in all 

cases, the condition of y+ < 1 is always ensured at the first grid point adjacent to the wall. 

4 Results and discussion 

Compared with the 2018−−−− k  model and the −k SST  model, the ability of 

the present model for predicting the fluid flow and the heat transfer is evaluated for 

several test cases. It should be noted that the LRN correction is not included in the 

−k SST  model because this correction may produce a delayed onset of the 

laminar-turbulent transition and deteriorate the prediction of the model for impinging jet 

flow, as shown in Yang and Liu[13]. In all cases in present study, Pr = 0.71. 

4.1 Near wall flow  

Because there are many published available DNS data in literatures, the fully developed 

turbulent 2D channel flow and axisymmetric pipe flow have been widely used for 

scrutinizing the near-wall behaviors of turbulence models. For 2D channel flow, four 

cases with different friction Reynolds number (Reτ = 180, 550, 2000 and 5200) are 

chosen for the comparison of fluid flow. The adopted DNS data, provided by Lee and 

Moser[19], are available online at http://turbulence.ices.utexas.edu. Two friction 

http://turbulence.ices.utexas.edu/


Reynolds number (Reτ = 395 and 1020) are chosen for the comparison of heat transfer. 

The corresponding DNS data are extracted from Abe et al.[20]. For axisymmetric pipe 

flow, four cases with different friction Reynolds number (Reτ = 180, 360, 550 and 1000) 

are chosen for the comparison of fluid flow. The reference DNS data are extracted from 

Khoury et al.[21]. Two friction Reynolds number (Reτ = 180 and 1050) are chosen for 

comparison of heat transfer. The DNS data come from Saha et al.[22] and Satake et 

al.[23], respectively. At the inlet, the periodic boundary condition is used for fluid flow 

and the constant temperature condition is used for heat transfer. On walls, the constant 

heat flux condition is applied.  

 The mean streamwise velocity (normalized by friction velocity as u+ = u/uτ) profiles 

for the 2D channel flow are shown in Figure 1. It can be seen that, for all cases, the 

velocity profiles computed form the present model and the 2018−−−− k  model 

are almost undistinguishable and in excellent agreement with the DNS data. Apparently, 

the −k SST  model under-predicts the velocity both in the buffer layer and the defect 

layer, especially in the low Reτ case.  

The good prediction for velocity profiles results from a better scaling of the eddy 

viscosity. Detailed analysis can be found in Yang and Liu[13]. Figure 2 shows the 

normalized turbulent viscosity (ν+ = νt/ν) profiles. The results from the present model and 

the 2018−−−− k  model are similar and in good agreement with the DNS data. 

Particularly, in the defect layer, they predict reasonable structure of the turbulent viscosity, 

whereas the −k SST  model over-predicts the turbulent viscosity dramatically, thus 

under-predicting the velocity profile. 

The normalized temperature ( hucpw /)(  −=+ ) profiles computed using 

different turbulence models are compared in Figure 3. It can be seen that the present 

model and the 2018−−−− k  model predict similar temperature profiles. They are 

both in good agreement with the DNS data. The −k SST  model under-predicts slightly 

the temperature in the buffer layer and the defect layer.  

Figure 4 shows the normalized mean streamwise velocity profiles for the pipe 

flow. Comparing with the DNS data, the present model and the 2018−−−− k  

model can predict velocity profiles very well. The −k SST  model under-predicts the 

velocity profile in the buffer layer and the defect layer significantly. It is obvious that the 

smaller the Reynolds number, the worse the result. This is not surprised because the 

−k SST  model used in present work does not include the LRN correction, so that it is 

only appropriate for High Reynolds Number (HRN) flow. 

Figure 5 shows the non-dimensional turbulent viscosity profiles for the pipe flow. 



Similar to the 2D channel flow (Figure 3), the results predicted by the present model and 

the 2018−−−− k  model are in good agreement with the DNS data, whereas the 

−k SST  model over-predicts the turbulent viscosity dramatically in the defect layer.  

Figure 6 shows the non-dimensional temperature profiles for the pipe flow. In the 

LRN case (Reτ = 180), the present model yields the best result compared with the DNS 

data. The 2018−−−− k  model over-predicts the temperature in the defect layer 

slightly. It should be noted that the −k SST  model, which under-predicts significantly 

the velocity in this case (Figure 4), predicts strangely the temperature well. The reason 

may be that the temperature is not only dependent on velocity profile, but also 

dependent on other quantities (such as the viscosity and the Prandtl number). In the high 

Reynolds number case (Reτ = 1050), three turbulent models can predict good 

temperature profiles both in the viscous sublayer and the log-layer. In the defect layer, 

the results predicted by the present model and the 2018−−−− k  model are 

similar and in good agreement with the DNS data, whereas the −k SST  model 

under-predicts it dramatically.   

4.2 Separated flow 

The 2D backward-facing step flow and the sudden expansion pipe flow (both are 

abbreviated as step flow later) are selected most frequently as benchmarks for turbulence 

model validation because they have simple geometries but abundant flow phenomena, 

such as flow separation, recirculation, reattachment and redevelopment.  

The experiment of Vogel and Eaton[24] is used to test the performance of 

turbulence models for 2D separated flow. The sketch of the geometry and the relevant 

boundary conditions of the computational model are shown in Figure 7. The horizontal 

size of computational model is -3.8H ≤ x ≤ 20H, where H is the step height. The origin of 

the coordinate system is located at the intersection of the step wall and the bottom wall. 

The expansion ratio of the test section is 1.25. The inflow conditions, which are extracted 

from a separated simulation, coincide with the experimental conditions (the boundary 

layer thickness δ99 = 1.1H at the location of x = -3.8H). The temperature is uniform at 

inlet. On the bottom wall, a constant heat flux condition is applied. On other walls, the 

adiabatic condition is adopted. The static pressure is set to be constant at outlet. The 

Reynolds number, ReH, based on the step height H and the free stream velocity, Uref, is 

28000. The number of computational meshes is 302500, which is enough to provide 

grid-independent solutions.  

The distributions of the skin friction coefficient (defined as )/(2 2
refwf UC = ), 



along the bottom wall, computed using different turbulence models, are compared with 

the experimental measurements in Figure 8. It shows that all three turbulence models can 

predict the reattachment point (≈ 6.67H) accurately. However, they under-predict Cf in 

the redevelopment region remarkably. Comparatively speaking, in the separated region, 

the −k SST  model provides better result. In the redevelopment region, the result from 

the present model is better.  

Figure 9 shows the normalized streamwise velocity (u/Uref) profiles on several 

planes perpendicular to the bottom wall. It shows that the difference among three models 

is very small and all three turbulence models can yield good results compared with the 

experiments.  

Figure 10 shows the distribution of the local Stanton number (defined as 

)](/[St inwrefpUcq  −= ) along the bottom wall. Similar to Cf, the −k SST  model 

provides better result in the separated region and the present model provides better result 

in the redevelopment region.   

Similar problem in axisymmetric configuration is the flow in a sudden expansion 

pipe. In present study, the experiments of Baughn et al.[25, 26] are used to test the 

performance of turbulence models for axisymmetric separated flow. Figure 11 shows the 

sketch of the geometry and the relevant boundary conditions of the computational model. 

The coordinate system is as shown in Figure 11. The inlet is placed at the location of x = 

-d and the outlet is placed at x = 25d, where d is the diameter of the upstream pipe. The 

expansion ratio is D/d = 2.5, where D is the diameter of the downstream pipe. The 

Reynolds number of the flow, ReD, based on D and the bulk velocity in the downstream 

pipe, is 17300. At the inlet, conditions obtained from a separated simulation of fully 

developed pipe flow using the same turbulence model, are applied. The constant static 

pressure condition is set to the outlet. For thermal conditions, a uniformly distributed 

temperature is set at inlet. On the inlet wall and the step wall, the adiabatic condition is 

adopted. On the side wall, two type conditions are individually considered according to 

different requirements. Specifically, the constant temperature condition is adopted for the 

analysis of the temperature distribution (Figure 13) and the constant heat flux condition is 

applied for the analysis of Nu (Figure 14). The reason is that the measurement of 

temperature was only carried out with the constant temperature condition[26] and the 

calculation of Nu in the case with constant heat flux condition[25] (integral can be 

avoided) is easier than the case with constant temperature condition. The number of 

computational cells is 137600, which is fine enough to obtain grid independent solutions. 

The centerline velocity (along the axis and normalized by the centerline velocity 

in upstream pipe) is shown in Figure 12. It is obvious that the 2018−−−− k  model 



delays the velocity decay significantly. The velocity decay predicted by the present model 

is in good agreement with the experimental measurement[26]. The −k SST  model 

yields also good result. 

The normalized mean temperature profiles (defined as )/()( inwin  −−=+ ) at 

several locations in the downstream pipe are compared in Figure 13. Apparently, the 

temperature profiles computed by three turbulence models are in good agreement with 

experiments[26]. As a whole, the present model predicts better results.  

The local Nusselt number (Nu) on side wall is normalized by the Nusselt number 

computed using the classic Dittus-Boelter relation for the fully developed pipe flow 

(NuDB). Figure 14 shows the comparison of the computed results and the experimental 

measurement[25]. It can be seen that only the present model can predict the peak value of 

Nu well, which occurs at the reattachment point. The 2018−−−− k  model and the 

−k SST  model under-predict the peak value. 

4.3 Impinging jet flow 

Turbulent impinging jet flow is a challenge for turbulence models because it has several 

complex features (such as free shear, stagnation and high streamline curvature) which are 

difficult to be predicted. Therefore, this flow is a good vehicle for evaluation of 

turbulence models. In present study, the plane (2D) impinging jet flow and circular 

(axisymmetric) impinging jet flow are both considered. 

The experiment of Ashforth-Frost et al. [27] is chosen to check the performance 

of the turbulence models in 2D impinging jet flow. Two cases with different distance 

from nozzle to plate (H/B = 4 and H/B = 9.2) are considered. The Re (based on the width 

of the slot, B, and the mean velocity at inlet, V0) is 20000. The detailed information about 

the computational model, including the size of the computational domain and the 

boundary conditions, can be found in Yang and Liu[13]. For the convenience of 

discussion, the sketch is shown in Figure 15. The number of meshes, 140000 for the case 

of H/B = 4 and 180000 for the case of H/B = 9.2, are enough to provide grid-independent 

solutions. The experiment of Zhe and Modi [28] is also included for comparison. 

 Figure 16 shows the comparison of the x-velocity profiles (normalized by V0) 

predicted by all three turbulence models and the experimental data of Ashforth-Frost et al. 

[27] and Zhe and Modi [28] on different vertical planes perpendicular to the impingement 

wall in the H/B = 4 case. It can be observed that the present model yields the best velocity 

profiles on all vertical planes. Only the profiles predicted by the present model have the 

same shape with those from the experiment of Zhe and Modi [28], although there is a 

certain degree of difference in value.  



The distributions of the Nusselt number (defined as )](/[Nu inwkqB  −= )  on 

the impingement wall in the H/B = 4 case, including those predicted by the three 

turbulence models and that measured by Ashforth-Frost et al. [27], are compared in 

Figure 17. Obviously, the result predicted by the present model is better than other 

models. The Nu distribution predicted by the 2018−−−− k  model agrees fairly 

well with the experimental result, but that predicted by the −k SST  model is not good. 

It should be noted that the result predicted by the −k SST  model in present study is 

different from that in Yang and Liu[13]. The reason is that the LRN correction is not used 

in present study but it is used in Yang and Liu[13].  

Figure 18 shows the comparison of the x-velocity profiles predicted by all three 

turbulence models and the experimental data of Ashforth-Frost et al. [27] and Zhe and 

Modi [28] on different vertical planes in the H/B = 9.2 case. Overall, the present model 

yields the best velocity profiles on all vertical planes. The 2018−−−− k  model 

and the −kSST  model over-predict dramatically the velocity in the near wall region. 

Figure 19 shows the comparison of the Nusselt number distribution on the 

impingement wall predicted by the three turbulence models and that measured by 

Ashforth-Frost et al. [27] in the H/B = 9.2 case. Apparently, only the present model is 

able to generate the steady decrease of the Nu profile as experiment. In contrast, the 

2018−−−− k  model and the −k SST  model predict false secondary peak for 

Nu.  

It is found that the Nu distribution is affected strongly by σk, one of the model 

coefficients. To demonstrate this, the Nu is recalculated using the present model. Except 

to set σk to be a constant of 0.6 (the same as in the 2018−−−− k  model), other 

conditions keep unchanged. The results are shown in Figure 20. It illustrates that the false 

secondary peak occurs when σk = 0.6. Consequently, in present model Eq.(5) is used for 

σk. 

The problem of a circular jet issuing from a long straight pipe nozzle impinged 

orthogonally onto a flat plate is chosen to check the performance of the turbulence 

models in axisymmetric impinging jet flow. Though there are amounts of experiments for 

this problem, only one case with Re = 23000 and H/D = 2, which means the ratio of the 

distance from jet exit to plate and the diameter of the circular nozzle, is chosen in present 

study due to limitations of coverage. To be specific, the experiment of Tummers et al.[29] 

is used for analysis of the flow dynamic. The experiments of Baughn and Shimizu[30], 

Baughn et al.[31] and Katti and Prabhu [32] are used for analysis of heat transfer. 

The computational model is constructed according to the experimental conditions. 



The sketch of the computational domain and the accompanying boundary conditions are 

shown in Figure 21. The computational domain is a rectangle of 8D×10D. The length of 

the nozzle pipe is 6D. At inlet, a fully developed turbulent pipe flow is specified. This is 

achieved by extracting the related quantities from a separated simulation of pipe flow 

under the same condition. At outlet, the constant pressure condition is applied. A constant 

heat flux condition is specified on the impingement wall and a constant temperature 

condition is applied at inlet. On the nozzle wall, the adiabatic condition is adopted. The 

mesh sensitivity is investigated and it indicates that the number of meshes (260000) used 

in present study is enough to obtain grid-independent solutions. 

The skin friction coefficients Cf (defined as )/(2 2
bwf UC = ) distributed along the 

impingement wall, computed using different turbulence models, are compared with the 

experimental data of Tummers et al.[29] in Figure 22. The difference among three 

turbulence models occurs mainly in the region of laminar-to-turbulent transition. This 

result indicates that the three models have different ability to predict laminar-to-turbulent 

transition. 

Figure 23 shows the mean radial velocity (normalized by the bulk velocity of 

nozzle, Ub) for different wall-normal traverses. For the traverses at r/D = 0.25 and r/D = 

0.5, the results predicted by the present model and the 2018−−−− k  model are in 

good agreement with the experimental results[29], whereas the −kSST  model 

under-predicts the peak near the wall. For the traverses at r/D = 0.75 and r/D = 1, the 

difference among three models mainly appears in the shear layer. The −k SST  model 

yields better result.  

Figure 24 shows the local Nu (defined as )](/[Nu inwkqD  −= ) distributed on the 

impingement wall. It can be seen that the experimental data are scattered to a certain 

extent. Even so, it is clear that there is a dip within r/D = 1 and r/D = 2, which is 

followed by a secondary peak within r/D = 2 and r/D = 3. The present model and the 

2018−−−− k  model predict the dip and the secondary peak very well comparing 

with the measured data of Baughn and Shimizu[30] and Baughn et al.[31]. However, the 

dip and the secondary peak are not well reproduced by the −k SST  model. At large 

distance from the axis (r/D > 2), the Nu profiles predicted by the present model and the 

2018−−−− k  model are in good agreement with the experimental data of Baughn 

and Shimizu[30] and Baughn et al.[31] but the −k SST  model under-predicts 

somewhat the Nu. 



Conclusions 

An elliptic blending turbulence model is developed incorporating the shear stress 

transport characteristics and its abilities on simulating fluid flow and heat transfer are 

tested on several typical flows with 2D and axisymmetric configurations. The calculated 

results are verified using available DNS and experimental data. The present model is also 

compared with the 2018−−−− k  model and the −k SST  model. The results 

lead to the following conclusions: 

(1) In near wall flow and heat transfer, the results predicted by the present model and the 

2018−−−− k  are in good agreement with the DNS data. The −k SST  

model under-predicts the velocity and temperature profiles in the log-layer and the 

defect layer to some degree. 

(2) In the 2D step flow, three turbulence models yield fairly good results comparing with 

the experimental measurement. In the axisymmetric step flow, the results predicted 

by the present model are in good agreement with experiments. Whereas the

2008−−−− k  model delays significantly the velocity decay at the centerline, 

and it cannot predict the peak of Nu on the side wall. 

(3) In the impinging jet flow and heat transfer, the present model yield the best results for 

all cases. In the 2D case with small distance between jet exit and impingement wall 

(H/B = 4.0), the velocity profiles predicted by the −k SST  model are better than 

those predicted by the 2008−−−− k  model. In contrast, the local Nu 

distribution predicted by 2008−−−− k  model is better than that computed by 

the −k SST  model. In the 2D case with moderate distance (H/B = 9.2), both of 

the 2008−−−− k  model and the −k SST  model fail to predict the local Nu 

distribution. 
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Appendix A: Formulation of the present model 

The equations of the present model are summarized below. 
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distance to the nearest wall. 

The model constants extracted directly from 2018−−−− k  model are listed 

in Table A.1 and those re-calibrated are listed in Table A.2. 

References 

[1] P.A. Durbin, Some recent developments in turbulence closure modeling, Annual 

Review of Fluid Mechanics, 50 (2018) 77-103. 

[2] P.R. Spalart, S. Deck, M.L. Shur, K.D. Squires, M.K. Strelets, A. Travin, A new 

version of detached-eddy simulation, resistant to ambiguous grid densities, 

Theoretical and Computational Fluid Dynamics, 20 (2006) 181-195. 

[3] M.S. Gritskevich, A.V. Garbaruk, J. Schütze, F.R. Menter, Development of DDES 

and IDDES formulations for the k-ω shear stress transport model, Flow, Turbulence 

and Combustion, 88 (2012) 431-449. 

[4] F.R. Menter, Y. Egorov, The scale-adaptive simulation method for unsteady turbulent 

flow predictions. Part 1: theory and model description, Flow, Turbulence and 

Combustion, 85 (2010) 113-138. 

[5] D.R. Laurence, J.C. Uribe, S.V. Utyuzhnikov, A robust formulation of the v2−f 

model, Flow, Turbulence and Combustion, 73 (2005) 169-185. 

[6] J.C. Uribe, N. Jarrin, R. Prosser, D. Laurence, Development of a two-velocities 

Hybrid RANS-LES model and its application to a trailing edge flow, Flow, 

Turbulence and Combustion, 85 (2010) 181-197. 
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Table captions 

Table A.1. Model constants extracted directly from the 2018−−−− k  model. 

Table A.2. Model constants re-calibrated in the present model. 

 

Figure captions 

Figure 1. Comparisons of the normalized mean streamwise velocity profiles for 2D 

channel flow. (a) Reτ = 180; (b) Reτ = 550; (c) Reτ = 2000; (d) Reτ = 5200. 

Figure 2. Comparisons of the normalized turbulent viscosity profiles for 2D channel flow. 

(a) Reτ = 180; (b) Reτ = 550; (c) Reτ = 2000; (d) Reτ = 5200. 

Figure 3. Comparisons of the normalized temperature profiles for 2D channel flow. (a) 

Reτ = 360; (b) Reτ = 1020. 

Figure 4. Comparisons of the normalized mean streamwise velocity profiles for 

axisymmetric pipe flow. (a) Reτ = 180; (b) Reτ = 360; (c) Reτ = 550; (d) Reτ = 1000. 

Figure 5. Comparisons of the normalized turbulent viscosity profiles for axisymmetric 

pipe flow. (a) Reτ = 180; (b) Reτ = 360; (c) Reτ = 550; (d) Reτ = 1000. 

Figure 6. Comparisons of the normalized temperature profiles for axisymmetric pipe 

flow. (a) Reτ = 180; (b) Reτ = 1050. 

Figure 7. Sketch of the geometry and boundary conditions of the 2D step flow. 

Figure 8. Comparison of the skin friction coefficients on the bottom wall of the 2D step 

flow. 

Figure 9. Velocity profiles at different traverses of the 2D step flow. 

Figure 10. Comparison of the local Nu on the bottom wall of the 2D step flow. 

Figure 11. Sketch of the geometry and boundary conditions of the sudden expansion pipe 

flow. 

Figure 12. Comparison of the u-velocity on centerline of the sudden expansion pipe flow. 

Figure 13. Comparison of the temperature profiles at different traverses of the sudden 

expansion pipe flow. (a) x/H = 0.25; (b) x/H = 6; (c) x/H = 10; (d) x/H = 22. 

Figure 14. Comparison of the local Nu on the side wall of the sudden expansion pipe 

flow. 

Figure 15. Sketch of the geometry and boundary conditions for the 2D impinging jet 

flow. 

Figure 16. Comparisons of the mean streamwise velocity profiles at different vertical 



planes in the 2D impinging jet flow for the case of H/B = 4. (a) x/B = 1; (b) x/B = 2; (c) 

x/B = 3; (d) x/B = 5. 

Figure 17. Comparison of the local Nu along the impingement wall in the 2D impinging 

jet flow for the case of H/B = 4. 

Figure 18. Comparisons of the mean streamwise velocity profiles at different vertical 

planes in the 2D impinging jet flow for the case of H/B = 9.2. (a) x/B = 1; (b) x/B = 2; (c) 

x/B = 3; (d) x/B = 5. 

Figure 19. Comparison of the local Nu along the impingement wall in the 2D impinging 

jet flow for the case of H/B = 9.2. 

Figure 20. Effect of the σk on the local Nu distribution along the impingement wall. 

Figure 21. Sketch of the geometry and boundary conditions for the axisymmetric 

impinging jet flow. 

Figure 22. Comparison of the skin friction coefficients distributed along the impingement 

wall in the axisymmetric impinging jet flow. 

Figure 23. Comparisons of the mean streamwise velocity profiles at different vertical 

planes in the axisymmetric impinging jet flow. (a) r/D = 0.25; (b) r/D = 0.5; (c) r/D = 

0.75; (d) r/D = 1. 

Figure 24. Comparison of the local Nu along the impingement wall in the axisymmetric 

impinging jet flow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Tables 

Table A.1.  

β* β0 σω κ p σφ Cε2 C1 C2 CT CL Cη 

0.09 0.0708 0.5 0.41 4.0 1.0 1.787 1.7 0.9 6.0 0.164 79 

 

Table A.2. 

Cμ Cε4 Cε5 σd σk1 σk2 ζ a1 

0.2 1.0 0.23 0.52 0.6 1.1 0.5 0.31 
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Figure 2. 
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