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Rupture process of liquid bridges: The effects of thermal fluctuations
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Rupture of a liquid bridge is a complex dynamic process, which has attracted much attention over several
decades. We numerically investigated the effects of the thermal fluctuations on the rupture process of liquid
bridges by using a particle-based method know as many-body dissipative particle dynamics. After providing
a comparison of growth rate with the classical linear stability theory, the complete process of thinning liquid
bridges is captured. The transitions among the inertial regime (I), the viscous regime (V), and the viscous-inertial
regime (VI) with different liquid properties are found in agreement with previous work. A detailed description of
the thermal fluctuation regime (TF) and another regime, named the breakup regime, are proposed in the present
study. The full trajectories of thinning liquid bridges are summarized as I → V → VI → TF → breakup for
low-Oh liquids and V → I → Intermediate → V → VI → TF → breakup for high-Oh liquids, respectively.
Moreover, the effects of the thermal fluctuations on the formation of satellite drops are also investigated. The
distance between the peaks of axial velocity is believed to play an important role in forming satellite drops. The
strong thermal fluctuations smooth the distribution of axial velocity and change the liquid bridge shape into a
double cone without generating satellite drops for low-Oh liquids, while for high-Oh liquids, this distance is
extended and a large satellite drop is formed after the breakup of the liquid filament occurs on both ends, which
might be due to strong thermal fluctuations. This work can provide insights on the rupture mechanism of liquid
bridges and be helpful for designing superfine nanoprinting.
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I. INTRODUCTION

Due to surface-tension-driven instability, a long liquid
bridge tends to spontaneously decay into drops. This ubiq-
uitous phenomenon has attracted great attention because of
its importance for many potential applications, including su-
perfine nanoprinting [1,2], nanoscale manufacture [3], DNA
arraying [4,5], reagents transport [6], etc. The vast prospects
for these applications appeal for the further understanding
of the breakup dynamics of liquid bridges. The pioneering
studies concerning instability of liquid bridges date back
more than a century; these were proposed by Plateau [7] and
Rayleigh [8], respectively. They provided a stability analysis
to illustrate that an indefinitely long liquid jet would pinch
off if its circumference is smaller than the wavelength of
perturbation. The competition between surface tension and
inertia plays a key role in the breakup dynamics for liquid
bridges according to Rayleigh’s research. The famous Navier-
Stokes equations are required to be solved accurately to un-
derstand the thinning mechanism of liquid bridges. Unfortu-
nately, these three-dimensional nonlinear equations are hope-
lessly complicated and time consuming [9]. Alternatively, the
three-dimensional Navier-Stokes equations were simplified
into a one-dimensional model by adopting the lubrication
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approximation [10]. If the variations along the liquid bridge
are slow and the liquid bridge is sufficiently slender, the
variables in the transversal direction can be described as a
simple function which only depends on the axial coordinate
and time. The amount of computation is significantly reduced
under this assumption. Besides with lubrication approxima-
tion, the self-similar theory [11] was also introduced to avoid
the singularity of Navier-Stokes equations near the pinch
point. The length scale of the solution now solely relies on
time until the liquid bridge breaks up. The scaling number α

has been widely investigated by theoretical and experimental
analysis [12–20]. There are three main regimes during the
thinning process, namely, inertial regime (I), viscous regime
(V), and viscous-inertial regime (VI). They are influenced by
the Ohnesorge number (Oh) as

Oh = μ√
ρσR0

, (1)

where Oh is the ratio between viscous length lv = μ2/ρσ and
characteristic length R0 of the system which is chosen as the
radius of the original liquid bridges. The three main regions
for a thinning liquid bridge are illustrated as follows.

A. Inertial regime (I)

If fluids are nearly inviscid, i.e., Oh � 1, the viscous
effect can be ignored and the balance between inertial and
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surface tension determines the deformation of the interface.
The pinch-off is caused by the principal curvatures through
the mean curvature, which is described by the Young-Laplace
equation. A special feature of regime I is the overturning of
the free surface, which has been studied both by experiments
and simulations [12,13]. The double-cone shape is formed
when the liquid bridge breaks up and the angles are predicted
as 18.1° and 112.8°, respectively. In a self-similar theory,
the scaling relation between the minimal radius of the liquid
filament hmin and time is found in regime I as [14–16]

hmin

R0
∝ τ 2/3, (2)

where τ is normalized by tI , which is the characteristic pinch-
off time in the I regime as tI = √

ρR0/σ , and is defined as
τ = t0 − t/tI. t0 is the breakup time.

B. Viscous regime (V)

On the contrary, when Oh � 1, the viscous effect domi-
nates the dynamics of the liquid bridges. Navier-Stokes equa-
tions are approximate to one dimension which depends on the
assumption of a long slender bridge. In the V regime, sym-
metrical and asymmetrical rupture processes can be captured;
meanwhile, squeezing and the pinch-off stage are investigated
respectively [17]. Now a similar solution is achieved by
Stokes flow as [18,19]

hmin

R0
∝ τ 1. (3)

C. Viscous-inertial regime (VI)

However, the local Reynolds number Relocal is close to
zero and infinite if the liquid bridges approach pinch-off
in theoretical analysis for the I and V regimes, which is
contradictory and unphysical. Hence these two regimes are
believed to be not able to depict the whole process to breakup.
A regime where the effects of viscosity, inertia, and capillarity
are balanced should be considered [20]. In the VI regime,
Relocal ∼ 1 is satisfied and α is the same as that in the V
regime and a highly asymmetric interface shape joining a thin
thread to a droplike profile is the special feature.

D. Regime transitions

Due to the existence of the VI regime, the transition from
the I to the VI regime or from the V to the VI regime is
unavoidable and takes place at small scale. It is very important
to understand these transitions during the thinning process.
According to the assumption of Relocal ∼ 1, the transition
occurs when [21,22]

hmin

R0
∝ Oh2(I → VI),

hmin

R0
∝ Oh−3.1(V → VI). (4)

However, a recent study presented by Castrejón-Pita et al.
showed that the transition may be more complex as described
above [23]. They found a number of intermediate regimes
in the process of filament thinning by using the Galerkin–
finite-element method and experimental measurements. These
intermediate regimes delay the onset of the final VI regime.
The additional V regime was discovered for low-Oh liquids,

suggesting that viscous force would dominate the thinning
process even though the Oh number is quite small. Similarly,
the presence of the I regime for high-Oh liquidds was thought
to be the reason for the formation of satellite drops. Castrejón-
Pita’s work enriches our understanding of the transitions
during the rupture process of liquid bridges. The V regime
transition was also found by Li and Sprittles [24] with low-
Oh liquids, but the transition of the I regime in high-Oh
liquids was not captured in Li’s simulations. They provided
an accurate phase diagram for the breakup of liquid bridges
and identified the boundaries among different regimes.

E. Thermal fluctuations

More importantly, when hmin reduces to the molecular
size, the dynamics of liquid bridges cannot be governed by
the traditional Navier-Stokes equations under the continuity
hypothesis [25–28]. The filament dynamics near pinch-off is
mainly controlled by thermal fluctuations. However, due to the
limitations of the temporal and spatial resolution in the exper-
imental measurements, the effects of thermal fluctuations are
hard to analyze at laboratory scale [29,30]. A powerful alter-
native is numerical methods, such as Lagrange particle-based
molecular simulation (MD). MD gets rid of the boundary
integral and interface tracking which are usually adopted in
the Euler frame [31]. Moreover, the breakup dynamics can
be well depicted in MD without using lubrication approxi-
mation and self-similar assumption in mathematical analysis
for avoiding singularity in the equations. In particular, the
effects of the thermal fluctuations can be investigated by
MD, which is crucial in the rupture of microfluidics. Moseler
and Landman first proposed a stochastic modification (SLE)
instead of the deterministic lubrication equation (LE) to carry
out the influences of the thermal fluctuations on jet breakup
[32]. The analytical solutions were compared with the results
of MD simulations, which suggest that the thermal fluctu-
ations render liquid bridges form double-cone neck shapes
near pinch-off. This new phenomenon cannot be captured
by LE. The comparison of the growth rates in the liquid
jets between MD outcomes and linear stability theory was
presented by Choi et al. [33]. They revealed that the rupture
time is obviously affected by the level of thermal fluctuations
in the simulations. However, the high computational cost
hinders the development of MD in investigating the dynamics
of liquid bridges. In fact, the molecular details are relatively
unimportant to pinch-off [34], so the coarse-grained method,
as dissipative particle dynamics (DPD) [35–38], is a feasible
avenue for studying the effects of the thermal fluctuations. The
clogging of nanojets near the nozzle was first investigated by
Tiwari and Abraham through DPD simulation [39]. They also
summarized the relation between thermal length and rupture
time with the frame of DPD [40]. The crossover problem
between different regimes was discussed by Mo et al. [41,42].
They concluded that the crossover point is mainly dependent
on the stochastic coefficient in DPD. The size of the thermal
fluctuation dominated regime increases with the decreasing of
the stochastic coefficient. However, the evaporation problem
is non-negligible and its effect on the breakup of the liquid
bridges is unknown in DPD [43]. This influence should be
excluded in order to match with Rayleigh’s assumption [26].
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In the present study, we adopt many-body dissipative particle
dynamics (MDPD), which is able to achieve the coexistence
of vapor and liquid phases [44], to study the rupture dynamics
and effects of the thermal fluctuations on the thinning of liquid
bridges which we have used successfully in our previous work
[45]. The aim of the present paper is to reveal the complete
process of thinning liquid bridges including the I, V, VI, and
thermal fluctuation (TF) regimes; reports of this are lacking
in the previous literature. In addition, the transitions between
different regimes are analyzed with various Oh numbers ac-
cording to the variation of hmin, maximum axial velocity wmax,
and Relocal, respectively. The effects of thermal fluctuations
on the rupture dynamics of liquid bridges are focused on,
especially for the formation of satellite drops with different
Oh numbers.

Herein, we briefly revisit the background of MDPD, and
give the relation between the MDPD simulation parameters
and the real physical units in Sec. II. In addition the con-
vergence of the present simulations is also discussed. Then
the comparisons of growth rates between our results and the
classical linear stability theory are provided in Sec. III. The
complete process of liquid bridge thinning is analyzed and
the transitions among different regimes are studied with the
help of self-similar theory. Furthermore, the effects of the
thermal fluctuations on the formation of satellite drops with
different Oh numbers are investigated in detail. Finally, a brief
conclusion is presented in Sec. IV.

II. SIMULATION METHODS

A. MDPD methods

MDPD is a method that deviates from the standard DPD
to revise the quadratic relationship between pressure and den-
sity in the equation of state of DPD. The density-dependent
conservative force FC

i j is established to satisfy van der Waals
equations for generating vapor and liquid coexistence, which
is defined as

FC
i j = [

AwC (ri j ) + B(ρi + ρ j )w
C
d (ri j )

]
ei j, (5)

where the local densities ρi and ρ j are accumulated by the
weight function wρ (ri j ) as

wρ (ri j ) = 15

2πr3
d

(
1 − ri j

rd

)2

, (6)

where rd is the cutoff radius for repulsive force. The coeffi-
cients A and B are used to describe the strength of attractive
and repulsive forces, respectively.

Except for the conservative force, the forms of dissipative
force FD

i j and random force FR
i j in MDPD are the same as

those in the standard DPD as

FD
i j = −γwD(ri j )(vi j · ei j )ei j, (7)

FR
i j = ξwR(ri j )θi j
t−1/2ei j . (8)

Herein, the dissipative parameter γ , random parameter ξ ,
and the corresponding weight functions should obey the

FIG. 1. Schematic of the rupture process of the liquid bridge. The
periodic boundary condition is applied to mimic an infinitely long
filament. The wavelength λ is managed to get different reduced wave
number x. The liquid bridge gradually shrinks at the position of the
minimum radius and pinches off to form satellite drops.

fluctuation-dissipation theorem as

γ = ξ 2

2kBT
, wD(ri j ) = [wR(ri j )]

2. (9)

It is also introduced in the SLE [46]. Hence, the level
of thermal fluctuations in MDPD is determined by the tem-
perature T of the system. 
t is the interval of time in the
simulations. All the particles in MDPD are governed by these
three forces and follow Newton’s second law.

The velocity-Verlet (VV) algorithm is widely adopted for
integrating the MD and DPD systems because of its numerical
stability and simplicity [47]. FD

i j depends on the particle
velocity and the force calculation contains a temporal mis-
alignment between the position and velocity [48]. Hence, the
modified velocity-Verlet (MVV) algorithm is used by Groot
and Warren [37] and is expressed as

ri(t + 
t ) = ri(t ) + 
tvi(t ) + 1

2m
(
t )2F i(t ),

v∗
i (t + 
t ) = vi(t ) + φ
tF i(t ),

F i(t + 
t ) = F i[r(t + 
t ), v∗(t + 
t )],

vi(t + 
t ) = vi(t ) + 1

2m

t[F i(t ) + F i(t + 
t )]. (10)

In the MVV algorithm, the prediction of particle velocity
v∗

i for the next step is first proposed before updating the real

TABLE I. The liquid properties with different attractive coeffi-
cients A.

A B ρ σ μ Oh lv vc tI tv

–50 25 6.9 13.01 7.22 0.311 0.581 1.802 10.703 0.322
–60 25 7.7 19.45 10.76 0.359 0.773 1.808 9.247 0.428
–70 25 8.4 26.76 18.31 0.499 1.499 1.461 8.215 1.026
–80 25 9.1 36.25 33.90 0.762 3.484 1.069 7.364 3.258
–90 25 9.8 47.30 64.01 1.214 8.836 0.739 6.690 11.956
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FIG. 2. (a) The variation of breakup time t0 of liquid bridges with different 
t , ranging from 0.0025 to 0.02. The error bars show the
standard deviation among the five repeated cases. (b) The variation of hmin with time under 
t from 0.01 to 0.0025.

velocity, and it is controlled by a factor φ. v∗ is then used
to calculate all kinds of force for the next step in MDPD,
including FD

i j which relies on particle velocity. The average of
forces of current and the next step is used to reach the actual
particle velocity vi. The MVV algorithm is suitable for MDPD
without increase in computational cost. φ was tested in the
standard DPD system by Groot and Warren and they found
φ = 0.65 is the optimal choice for the balance between system
stability and computational efficiency. However, Zhang et al.
proposed that φ = 0.55 allows larger time steps in MDPD
systems based on their numerical results [48]. In the present
paper, we still adopt φ = 0.65 for simulations as the tempera-
ture in our simulations can still be well controlled in this case.
In addition, the random force is proportional to the inverse of
the square root of 
t . Hence the specific choice of 
t might
affect the strength of thermal fluctuation for liquid bridges.
The detailed influences of 
t on the rupture of liquid bridges
will be discussed in the next section.

B. Liquid bridges

There are three ways to investigate filament thinning: (1)
Ejecting jets from nozzles with different velocities; (2) dip-
ping droplets slowly under gravity; (3) unstabilizing liquid
bridges with small perturbation. In the present study, we
investigate the breakup process of an infinitely long liquid
bridge. The self-similar solutions are only feasible when the
slenderness assumption is valid [49,50]. The sinusoidal per-
turbation along the axis is imposed to make the liquid bridge
unstable as

r(z)

R0
= 1 + ε sin

(
x

z

R0

)
, (11)

where ε is the perturbation amplitude. x is the reduced wave
number calculated by the wavelength λ:

x = 2πR0

λ
. (12)

The schematic diagram is shown in Fig. 1. λ is controlled
to study different perturbations in order to compare the growth
rates between simulations and theories.

The properties of liquids, such as density ρ, viscosity μ,
and surface tension σ , can be controlled by the attractive A
or repulsive B coefficients in conservative force as shown
in Eq. (5). For simplicity, we adjust A to achieve different
liquid properties with a fixed value of the repulsive parameter
B in the present study. The viscosity is calculated by shear
flow tests through the Lees-Edwards boundary condition as
described in detail in our previous work [51]. The surface
tension can be obtained by the fitting equation provided by
Arienti et al. [52]:

σ f it = − π

240

(
0.42Ar5

c ρ
2 + 0.003Br5

c ρ
3
)
. (13)

Furthermore, it is important to choose appropriate charac-
teristic scales to normalize the physical units when carrying
out scaling arguments and asymptotic analysis [53]. In the
present simulations, the quantity of length was nondimen-

FIG. 3. The comparison of growth rate among MDPD results
and three theories under Oh = 0.359. The sinusoidal perturbation
is determined by the given x. According to Rayleigh instability, the
liquid bridge begins to thin and break up eventually. For each value
of x, the breakup time is monitored in order to get ω. The initial
perturbations of x = 0.2 and 0.9 are also shown as snapshots.
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FIG. 4. Two Oh numbers are simulated to compare with Eq. (16).
The black and red lines represent outcomes from Eq. (15) under the
given Oh number. The discrete points are the growth rate obtained by
MDPD simulations.

sionalized with the initial radius of the liquid bridge R0. The
intrinsic characteristic parameters of different fluids, such as
viscous length scale lv, viscous velocity vc, and characteristic
timescale tI for low-Oh liquids and tv for high-Oh liquids, are
used to normalize the quantity of speed and time.

lv = μ2

ρσ
, vc = σ

μ
, tI =

√
ρR3

0

σ
, tv = μ3

ρσ 2
. (14)

The values of these intrinsic characteristic parameters for
different liquid properties are listed in Table I. The mapping
between the MDPD parameters and real physical units is still
ambiguous. The relation can be obtained through matching
the dimensionless isothermal compressibility [54]. According
to the dimensional analysis carried out by Arienti et al. [52],
lv and tv for water are about 13.9 nm and 193 ps, respectively.

FIG. 5. The comparison of maximal growth rate ωmax between
MDPD results and the analytical solution. ωmax is normalized by ω0.
The range of Oh numbers is from 0.311 to 1.214.

The length and time unit in MDPD can be calculated as
LMDPD = 17.98 nm and TMDPD = 450.93 ps by matching the
case of A = −60 with water where R0 is equal to 6.0 in our
simulation, suggesting that the radius of the liquid bridge is
about 107.88 nm for real water.

III. RESULTS AND DISCUSSION

A. Thinning process of liquid bridges

First, we test the influence of 
t on the dynamics of
liquid bridges. According to Groot and Warren’s work, the
stability of the system is kept if 
t < 0.06 under φ = 0.65 in
DPD. However, the critical 
t in MDPD should be smaller
because of its nonlinear repulsive force. Therefore, we choose

t ranging from 0.0025 to 0.02 to study its influence on
the breakup time t0 of a liquid bridge. The reduced wave
number x is set as 0.3 and all the cases are repeated five
times to obtain the average breakup time under different 
t .
Figure 2(a) shows the variation of t0 versus 
t . Based on
Fig. 2(a), we find that t0 is not obviously affected by 
t in
our simulations. t0 is ten times larger than tI and remains
stable when 
t is smaller than 0.0125. The occurrence of
error bars is caused by the random fluctuations near rupture
and the statistical errors in the simulations. Then we keep an
eye on the detailed evolution of hmin under different 
t . Figure
2(b) suggests the variation of hmin with time. Although 
t
will affect the strength of random force as shown in Eq. (8),
it seems not to be evident to influence the dynamics of liquid
bridges if 
t is less than 0.01, which is in agreement with the
results of t0. In summary, the influences of 
t on the dynamics
of liquid bridges are relatively unimportant if 
t is small
enough in the simulations. Hence, we set 
t as 0.01 in the
following simulations to balance the computational accuracy
and efficiency.

Next, we compare our results with linear stability theory.
The perturbation on the profile of liquid bridges grows and

FIG. 6. The evolution of hmin with time under Oh = 0.359. The
four regimes are observed according to scale fitting with self-similar
theory. The TF regime is well described in the simulation and another
regime, named the breakup regime, is captured.

023116-5



ZHAO, ZHOU, ZHANG, CHEN, LIU, AND WANG PHYSICAL REVIEW E 102, 023116 (2020)

FIG. 7. (a) The variation of wmax with hmin for Oh = 0.359. The complete process is divided into four regimes where the transition from
the V to the VI regime can be captured. (b) The variation of Relocal with hmin.

the surface area of the liquid bridge decreases. For inviscid
incompressible liquids, this instability is caused by the com-
petition between inertia and surface tension, and Rayleigh
found the expression for growth rate ω, where effect of
viscosity is ignored, as [8]

ω = ω0

√
I1(x)

I0(x)
x(1 − x2), (15)

where ω0 = 1/tI. In(x) is the modified Bessel function of order
n. ω is a real number with x < 1 and the perturbations will
grow exponentially to make the jet unstable under any arbi-
trarily small perturbations. Inversely, the perturbations will
be damped by viscosity eventually if x > 1. The maximum
of ω for instability can be calculated according to Eq. (15),
suggesting that the largest ω occurs when x = 0.697, which is
the famous Rayleigh mode.

However, Eq. (15) is only valid for the assumption of
inviscid and incompressible liquids and should be revised
when the viscous effect becomes more and more impor-
tant. Chandrasekhar [55] studied the effect of viscosity on
instability through solving the Navier-Stokes equations and

found

ω = ω0

[√
1

2
(x2 − x4) + 9

4
Oh2x4 − 3

2
Ohx2

]
. (16)

Here ω is a function of both x and the Oh number. The value
of x for the fastest-growing mode is determined by the Oh
number as

x =
√

1

2 + √
18Oh

, (17)

which decreases with large Oh number. As Oh increases con-
tinually, ω eventually only depends on the balance between
surface tension and viscosity. Equation (17) changes into

ω = ωv
1
6 (1 − x2), (18)

where ωv = vc/lv = σ/μR0.
In our simulation, we achieve a wide range of ω by

choosing x from 0.15 to 0.9. ω is measured by Cline and
Anthony’s experimental method [56], in which ω ∼ 1/t0. Sim-
ulation results of Oh = 0.359 for growth rate compared with

FIG. 8. (a) The evolution of Lz with hmin for Oh = 0.359. Lz first increases slowly in the period of thinning followed by Lz ∝ h−0.18
min , and

then quickly reduces with the power law of Lz ∝ h2.78
min . (b) The variation of slenderness ratio hmin/Lz.
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FIG. 9. The evolution of hmin with time to breakup under Oh =
1.21. The I regime is found in high-Oh liquids.

Eqs. (15), (16), and (18) are shown in Fig. 3. It suggests that
our results fit well with Eq. (16) under small x. This indicates
that the effects of surface tension and viscosity on ω are
equally important for Oh = 0.359. However, the numerical
results deviate from Eq. (16), but approach Eq. (15) with
the increasing in x. This situation was also discovered in
MD simulations [33], and it was believed that the dynamics
of nanoscale liquid jets do not always follow the classical
theories due to the existence of thermal fluctuations. Another
possible reason for these deviations is that the Laplace pres-
sure becomes higher with the increase of curvature under
large x. Under this situation, the surface tension dominates
the thinning process of the liquid bridges which makes the
simulation results tend to Eq. (15). This deviation is also
analyzed with different Oh numbers, as shown in Fig. 4. It
indicates the comparison of ω between MDPD results and
Eq. (16) for Oh = 0.359 and 0.762. A large Oh number,
i.e., more viscous liquids, decreases ω and delays the time to
breakup, but the deviation in Fig. 3 seems not to be recovered

with a larger Oh number. Then we insert Eq. (17) into Eq. (16)
to calculate the maximal growth rate ωmax with the range of
Oh from 0.311 to 1.214. As shown in Fig. 5, the results from
MDPD simulations are in good agreement with the prediction
of the theory, which illustrates that the MDPD model can
capture the thinning and rupture dynamics of liquid bridges.
The specific advantage of MDPD is its ability to investigate
the effects of thermal fluctuations.

Due to the unknown deviation under large x as discussed
above, we choose x = 0.3 for the initial perturbation and
change the Oh number to find out the transition in the period
of liquid bridge thinning. The low-Oh liquids, i.e., Oh =
0.359, are studied first. According to the referenced plot (i.e.,
red lines) between hmin and time to breakup whose values are
achieved by self-similar theory, the four regimes exiting in the
period of liquid bridge thinning are observed. The detailed
divisions are based on the points with minimal standard devia-
tion between theoretical value and simulation results as shown
in Fig. 6. First, hmin decreases along the 2/3 slope where
surface tension dominates the thinning dynamics, and the
numerical scaling number α of the best fitting in this region
is about 0.634 calculated by the least-squares method. The I
regime lasts until hmin decreases to about 0.26R0 and then the
liquid bridge enters the V regime with theoretical α = 1.0 and
α = 0.973 in the simulation. The V regime for low-Oh liquids
is quite narrow, so Burton et al. thought that the I regime
is enough to describe the breakup down to the nanoscale
[57]. The V regime for low-Oh liquids was first revealed by
Castrejón-Pita et al. [23] and then studied numerically by
Li et al. [24] However, the transition from the V to the VI
regime is hard to distinguish in Fig. 6, and evident division
can be found with the aid of wmax and Relocal. Besides, with the
transition from the I to the V regime, we can also get the TF
regime when hmin reaches 0.17R0. The points distribute along
the slope of 0.418, as obtained from the numerical solution for
SLE [34], which is approximately equal to 0.396 in the case.
In this region, the thermal fluctuations dominate the breakup
dynamics of liquid bridges. In previous papers the TF regime
is believed to be the final regime before rupture. Nevertheless
in the present study, a new regime where α approaches zero
is captured when hmin reaches 0.09R0. In this regime, hmin

FIG. 10. (a) The variation of wmax with hmin for Oh = 1.21. (b) The variation of Relocal with hmin. The transition between different regimes
can be captured depending on the value of Relocal.
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FIG. 11. The evolution of Lz with hmin for Oh = 1.21. The
increase near pinch-off captured in the fluid of Oh = 0.359 cannot
be found here in the high-Oh situation.

remains relatively constant regardless of the time. We name
this regime as the breakup regime where self-similar theory
seems to be invalid.

Then we focus on the evolution of wmax to clarify the
transition between different regimes. The relation between
wmax and hmin in the V and VI regimes is given by [18–20]

wmax ∝ h−0.5
min (V), wmax ∝ h−0.875

min (VI). (19)

Figure 7(a) shows that wmax increases with the thinning
of the liquid bridge. Based on the referenced slope line,
the transition from the V to the VI regime can be roughly
determined through the magnitude of α, and it is consistent
with previous work [23,24]. It is interesting to note that the
V regime determined by wmax is larger than that according to
hmin, which suggests that the clear division from the I to the
V regime during thinning of the liquid bridges is still hard
to achieve. However, the boundary between the TF and V
regimes is basically identical whichever variables we observe.
Additionally, α for wmax in the TF regime is about –0.28
and drops to 0 in the breakup regime. In the breakup regime,
wmax stays constant and is the same order of intrinsic viscous
velocity of the liquid with Oh = 0.359.

Then we further investigate the dynamic of liquid bridges
by analyzing Relocal along liquid bridges. Relocal is defined as

Relocal = ρLzwz

μ
. (20)

Here Lz is the distance along the axial direction between
the local point and the pinch point hmin, and wz is the axial
velocity of the local point. However, the definition of local
point is not unique. In Castrejón-Pita’s work, they chose the
position where its radius is 1.2hmin as the local point [23],
but this definition is ambiguous in physics. Therefore, we
adopt the definition provided in Li’s paper where the local
point is the position of maximum axial velocity wmax. So Lz =
|z(r = hmin) − z(wz = wmax)| and wz = wmax in Eq. (20).
Figure 7(b) shows that Relocal increases in the thinning

FIG. 12. The trajectory of α for low-Oh (blue line) and high-Oh
(red line) liquids during thinning. The points without error bars mean
that the error bar is smaller than the point.

process, like the performance of wmax, but it drops rapidly
to O(100) when hmin is smaller than 0.1R0, which suggests
that the liquid bridge enters the TF and breakup regimes.
However, the obvious transition from the I to the V regime
is difficult to capture in Fig. 7. According to the definition
of Relocal in Eq. (20), Relocal is proportional to Lz and wmax.
wmax remains stable near breakup, which suggests that Lz is
obviously changed when the liquid bridge reaches rupture.
Figure 8(a) indicates the exponent relation between Lz and
hmin. During the thinning process of the liquid bridge, Lz

gradually increases, suggesting that the point of wmax goes
far away from the pinch point. However, the position of wmax

is rapidly close to the pinch point when the liquid bridge
starts to pinch off. The exponent relation is obtained from the
simulations as

Lz ∝ h−0.18
min (thinning), Lz ∝ h2.78

min (breakup). (21)

Lz is believed to play a crucial role in the formation of satellite
drops [49,58]. Then the slenderness ratio hmin/Lz is demon-
strated in Fig. 8(b). hmin/Lz decreases to O(10−3) before the
liquid bridge begins to break up, and it makes the assumption
of a long slender bridge in self-similar theory valid. In this
region, lubrication approximation works well to describe the
dynamics of liquid bridges. However, the validation of this
assumption is questionable since hmin/Lz increases near the
pinch-off time. Hence, more detailed studies about the rupture
dynamics of liquid bridges need to be done.

Then we focus on the transition in the period of thinning
for high-Oh liquids, i.e., Oh = 1.21. The variation of hmin

with time is shown in Fig. 9. The liquid bridge starts to thin
in regime V because the lv of Oh = 1.21 is larger than the
observation scale of R0, where α is 0.967. Then it enters into
regime I (i.e., α = 0.48). Before the liquid bridge reenters the
V and VI regimes until hmin reduces to 0.06R0, it experiences
an intermediate regime (i.e., α = 0.26) which cannot be found
in self-similar theory but really exists according to experi-
ments [23]. The TF and breakup regimes are also observed
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FIG. 13. The comparison between crossovers from the VI to the
TF regime and thermal length LT under different Oh numbers.

when the filament approaches pinch-off. The presence of the I
regime in high-Oh liquids is discussed by Castrejón-Pita [23].
They pointed out that the rupture process of high-Oh liquids
consists of many intermediate regimes, and the transitions
are more complicated compared with low-Oh liquids. The
wmax and Relocal are indicated in Fig. 10. wmax increases with
the power law α = 0.825, implying that it locates in the V
regime. It becomes stable and equals vc near pinch-off, which
is similar with the tendency in low-Oh liquids. Referring to
the value of Relocal, the transitions of different regimes can be
identified more clearly. Relocal is O(100) first and increases
to O(101) where the effect of inertia increasingly becomes
dominant. Then it drops down to O(100) again. In the end,
Relocal increases slowly, showing the transition from the V
to the VI regime. It is not able to divide the VI regime and
the TF regime according to Relocal. The existence of regime
I is believed to be one of the reasons for forming a visible
satellite drop even in a high-Oh liquid. Lz is also monitored
in Fig. 11. Lz decreases monotonously during thinning and
then remains stable near breakup, which is quite different from
low-Oh liquids. The detailed analysis of this phenomenon will

be discussed in the next section based on the effects of thermal
fluctuations on the formation of satellite drops.

Finally, the complete processes for low- and high-Oh liquid
bridges are listed in Fig. 12. For low-Oh liquid bridges, the
trajectory of α is relatively simple. It starts near the I regime
and approaches the V regime following with the decrease
in hmin. Then α rapidly reduces if the liquid bridges reach
pinch-off. It is important to note that the TF regime is not
the final regime before pinch-off. α will continue to decrease
to zero until the breakup of the liquid bridges, so the whole
process of low-Oh liquid bridges is I → V → VI → TF →
breakup. Relatively, the liquid bridges with high Oh show
more complex behaviors. The main difference compared with
low-Oh liquid bridges is that high-Oh liquid bridges begin
near the V regime and subsequently enter the I regime and
an unexplored intermediate regime. After that it returns to the
V regime and the residual process is similar to that of low-
Oh liquid bridges. Therefore, V → I → Intermediate V →
VI → TF breakup is the complete process for high-Oh liquid
bridges. Although the liquid bridges for low and high Oh both
experience the TF and breakup regimes before rupture, the
detailed dynamics of breakup under different Oh numbers are
not the same, which will be studied by considering the effects
of thermal fluctuations.

B. Effects of thermal fluctuations on satellite drops

One of the most common phenomena during the breakup
of liquid bridges is the appearance of satellite drops. Satellite
drops are undesirable in printing technology since it will
decrease the fidelity of the final results. For electronic de-
vices in nanoscale, it will lead to broken or short circuits,
making the device fail. Hence, the understanding of the
drop-formation process is considerably important to manage
and eliminate satellite drops. As the formation of satellite
drops is significantly affected by the states of liquid bridges
closing to breakup, at the same time, the breakup dynamics
are dominated by thermal fluctuations, so it is reasonable
to deduce that thermal fluctuations play a crucial role in
satellite drops [22,57,59]. In order to investigate the influence
of thermal fluctuations, we use a thermal length scale LT to
express the strength of thermal fluctuations in the present

FIG. 14. The comparison between LT = 0.227 and 0.321 under Oh = 0.359. (a) wmax; (b) Lz.
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FIG. 15. The axial velocity w along the axis with different LT and the snapshot near pinch-off. (a) LT = 0.227. (b) LT = 0.321. Three
positions of the liquid bridge thin simultaneously to form satellite drops with weak thermal fluctuations. Only one position thins with strong
thermal fluctuations to generate a double-cone shape without satellite drops.

simulations as [40]

LT =
√

kBT

σ
, (22)

where kB is the Boltzmann constant and T is the temperature
of the system. If LT is large enough, i.e., hmin < LT, thermal
fluctuations will dominate the thinning process of the liquid
bridges. According to Eq. (22), the value of LT is determined
by T and σ . In the present work, we only vary T to control
the strength of thermal fluctuations rather than changing the
surface tension of the liquid bridges. In addition, the dissipa-
tive parameter γ in Eq. (7) is kept constant in order to keep the
same viscous effect during the thinning process. The transition
from the VI to the TF regime is affected by LT as shown in
Fig. 13. The red scatters indicate the crossovers from the VI
to the TF regime in the simulations and the black line shows
LT calculated by Eq. (22). We find that the crossovers are
proportional to LT and transition happens when hmin is smaller
than LT, which is in agreement with the previous experimental
work [59]. Small LT will delay the transition and decrease the
size of the TF regime. Additionally, the TF regime is supposed
to have evident repercussions on the formation of satellite
drops [59].

Then we study the effects of the thermal fluctuations on
satellite drops under different Oh numbers, especially for
the time closing to rupture. First, the low-Oh liquids, i.e.,
Oh = 0.359, are selected to investigate the variation of Lz

and axial velocity w with different LT. The comparisons of
Lz and wmax between different LT during thinning in low-
Oh liquids are showed in Fig. 14. wmax is not obviously
affected by LT as shown in Fig. 14(a). However, the strong
thermal fluctuations reduce the distance between the pinching
point and the maximal axial velocity during thinning. This
situation is caused by the different distributions of w along
the axial direction and determines the shapes of the liquid
bridges near pinch-off. Figure 15 shows the distribution of w

along the axial direction with different LT and the snapshots
of the liquid bridges close to breakup. Under weak thermal
fluctuations, there are three points thinning simultaneously
because of the multipeaks of w along the liquid filament
in Fig. 15(a). Satellite drops form between the peaks of w.
However, the strong thermal fluctuations smooth the distribu-
tion of w and only one position of the liquid bridge thins as
shown in Fig. 15(b). In this condition, the double-cone apex is
captured, which has been discovered in MD simulations [32].
Liquids retract to either side and do not form satellite drops.
The comparison of w between different thermal fluctuations
when the liquid bridge approaches to breakup is indicated in
Fig. 16. Four peaks are found when the thermal fluctuations
are weak, while there are only two peaks when the thermal

FIG. 16. The comparison of w along the axial direction be-
tween different LT when the liquid bridge approaches breakup under
Oh = 0.359.
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FIG. 17. The comparison between LT = 0.145 and 0.205 under Oh = 1.21. (a) wmax; (b) Lz.

fluctuations become stronger. wmax and the positions of the
peaks seem not to be affected by LT. It suggests that the
stronger thermal fluctuations in low-Oh liquids smooth the
distribution of w and reduce the distance between velocity
peaks which is the key for eliminating the formation of
satellite drops. Nevertheless, the situation is totally different
for liquid bridges with high-Oh number, i.e., Oh = 1.21.
The liquid bridge becomes tenuous if the viscosity increases
and the breakup point seems to locate at a random point
[9,31]. Figure 17 expresses the comparison of Lz and wmax

between different LT under large Oh. wmax now obviously
increases under strong thermal fluctuations in high-Oh liquids
as shown in Fig. 17(a), and Lz also extends, which is inverse
to the situation in the low-Oh liquids. Thus the effects of the
thermal fluctuations on the formation of satellite drops are
totally different for low- and high-Oh liquids. To investigate

this influence in detail, the distribution of w along the axial
direction and the snapshots near pinch-off are provided in
Fig. 18. Figure 18(a) shows that the pinch point stays in the
middle of the liquid bridge and the distance of the peaks of w

is relatively short without formation of satellite drops, but this
distance becomes long if the thermal fluctuations are stronger.
The liquid filament breaks up on both ends and generates
a large satellite drop in the middle, as shown in Fig. 18(b).
According to the distribution of w near pinch-off in Fig. 19,
the value wmax is significantly increased by strong thermal
fluctuations. A wide region with small w exists and the pinch
points depart away from each one to generate a large satellite
drop. In Castrejón-Pita’s conclusion, they deduced that the
presence of the intermediate I regime is the reason for forming
visible satellite drops even in the breakup of high viscous
liquids [23]. However, the simulation in the present study

FIG. 18. The axial velocity w along the axis with different LT and the snapshot near pinch-off. (a) LT = 0.145. (b) LT = 0.205. The strong
thermal fluctuations increase the distance between peaks of w and form a large satellite drop in the middle.
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FIG. 19. The comparison of w along the axial direction be-
tween different LT when the liquid bridge approaches breakup under
Oh = 1.21.

demonstrates that the formation of the satellite drops may be
mainly influenced by the thermal fluctuations on the position
of the peaks of axial velocity.

In summary, for low-Oh liquids the thermal fluctuations
tend to smooth the distribution of the axial velocity to elimi-
nate the multipeaks without changing its maximal value, and it
results in the appearance of the double-cone apex. Contrarily,
the distance between the peaks of axial velocity is greatly
extended by the thermal fluctuations in high-Oh liquids to
form a wide range of small axial velocity, which generates
a large satellite drop in the middle.

IV. CONCLUSION

The complete thinning processes of liquid bridges are in-
vestigated by the particle-based method known as many-body
dissipative particle dynamics (MDPD). The growth rates of
the liquid bridges are compared with the linear stability theory
with different Ohnesorge numbers (Oh). The deviations from
the theoretical results in the simulations under large wave

number x are studied. Larger curvature in the profile of the
liquid bridge under large x is one of the reasons for this
difference, as also discussed in molecular simulations (MD).
The transitions during thinning among inertial (I), viscous
(V), viscous-inertial (VI), and thermal fluctuations (TF) are
analyzed depending on the scaling numbers α in minimal
radius hmin, maximal axial velocity wmax, and local Reynolds
number Relocal which are calculated by the classical self-
similar theory. It is worth noting that another regime called
the breakup regime is described in the present work. In the
breakup regime, hmin basically remains constant until rupture
and the distance Lz along the axial direction between the
point of wmax and the pinch point hmin decreases evidently
in low-Oh liquids and remains stable in high-Oh liquids. The
whole trajectories of thinning liquid bridges are I → V →
VI → TF → breakup for low-Oh liquids and V → I →
Intermediate → V → VI → TF → breakup for high-Oh

liquids, respectively.
Furthermore, the effects of the thermal fluctuations on the

formation of satellite drops are studied for low-Oh and high-
Oh liquids. Strong thermal fluctuations cause the liquid bridge
shape to change into a double cone and eliminate the satellite
drops. The distribution of axial velocity is smoothed by strong
thermal fluctuations compared with the situation under weak
thermal fluctuations where multipeaks are found to result in
multiple satellite drops. The role of the thermal fluctuations in
high-Oh liquids is quite different. The distance between peaks
of axial velocity is extended by strong thermal fluctuations to
form a wide region of small axial velocity. The liquid filament
breaks up on both ends and forms a large satellite drop.
Therefore, the thermal fluctuations may be the key reason
for the formation of satellite drops in the rupture of high
viscous liquids. This research is of help in understanding the
mechanism of the formation of satellite droplets and provides
a potential method to manage the satellite droplets when liquid
bridges break up.
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