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Highlights

 The bending rigidity of single walled carbon nanotubes strongly correlates to the

tube length due to the honeycomb lattice structure. The rigidity increases with the

tube length and converges to the value predicted by classical continuum theories.

 The nonlocal parameter of single walled carbon nanotubes for nonlocal

continuum modeling is almost independent of the chirality and linearly increases

with the tube diameter with a scale factor 1.5.

Abstract
Continuous efforts to discover the novel carbon nanotube ultrahigh frequency

resonators or sensors have being made since past two decades. The bending rigidity

plays a key role in determining the frequency magnitude. Although it is previously

justified that the bending rigidity has the almost linear dependence on the cubic of

tube diameter, its dependence on another characteristic scale, i.e., the tube length is

missing. Considering that the direct experimental observation faces significant
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challenge due to the low measurement precision by the inevitable thermodynamic

fluctuation, we theoretically explored such size effect by means of three approaches

respectively at different scale levels including quantum mechanics lattice dynamics

calculations, molecular mechanics simulations and nonlocal continuum modeling for

single-walled carbon nanotubes. The results from the different approaches give the

consistent conclusion that there exists a strong correlation between the tube length and

the bending rigidity, i.e., the rigidity increases with the tube length and converges to

the value predicted by continuum theories. Moreover, we also find the nonlocal

parameter reflecting the microscopic lattice effect in present continuum modeling

almost independent of the chirality and linearly increases with the tube diameter with

a scale factor 1.5. The comprehensive study may not only guide the design of

ultrahigh frequency carbon nanotube devices but also provide insight to the bending

nanomechanics of other devices made from nanotubes, nanobeams and nanowires.

Keywords: Carbon nanotubes, bending rigidity, Lattice dynamics, Molecular

mechanics, nonlocal continuum theories

1. Introduction

Different with bulk nanomaterials, single-walled carbon nanotubes (SWCNTs) [1]

have quasi-one-dimensional hollow cylinder structure comprised of hexagonal carbon

ring. The quasi-one-dimensional nature makes them possess a basic mechanical

parameter, the bending rigidity. The bending rigidity determines their static buckling

resistance under axial or bending loading [2,3], the thermodynamic stability of CNTs

[4] in ambient environments, the vibrational frequencies of the CNT as high

frequency resonators [5-8] and the sensitivity of the CNT as high frequency sensors [9]

to detect small molecule. The mode frequency of a CNT resonator or sensor can be up

to GHz magnitude; this means that a slight variation in the bending rigidity will give

rise to significant change in magnitude of mode frequency. In other words, the

performance of a CNT resonator or sensor greatly depends on the characterization

precision of the bending rigidity. Therefore, the effective characterization of the

bending rigidity is critically important. Based on classical continuum theories

http://www.youdao.com/w/inevitable/
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Yakobson et al. [10] proposed a formula 3D CR to characterize the intrinsic

bending rigidity D in the long wavelength limit, 342C  N/m, R the radius of

SWCNTs. The effect of the honeycomb microstructure on the bending rigidity was

neglected in the formula. The similar relation was also found by Guo and Zhang [11]

using the molecular mechanics (MM) model and deformation mapping technique. Ru

[12] argued that the bending rigidity of SWCNTs should be regarded as a material

parameter independent of representative thickness in the continuum formula [13].

Actually, the thickness parameter indeed disappears in the formula by Yakobson et al.

[10]. Previous molecular dynamics simulations [14] showed that the bending rigidity

approximately satisfies the above formula while no results on the effect of sample

length were reported by such an approach. On the experimental side [15], due to the

challenge in measurements, the length effect on the bending rigidity was hard to

observe. To investigate the length effect, some authors [16-20] tried to consider the

nonlocal effect [21], i.e., the microstructure effect into classical continuum models

and found that different nonlocal continuum theories gave even opposite conclusions.

Moreover, the nonlocal parameter reflecting the microstructure effect is usually

achieved from experiments or quantum mechanics calculations, but no such data were

provided so far for SWCNTs. Therefore, we characterize the bending rigidity using

quantum mechanics lattice dynamics (LD) calculations and MM simulations,

respectively. Both results suggest that the bending rigidity increases with the sample

length and gradually converges to the value predicted by 3D CR in the long

wavelength limit, indicating the strong correlation between the bending rigidity and

the sample length. We also present the value of nonlocal parameter of SWCNTs by

means of quantum mechanics LD results.

The paper is organized as follows: we firstly character the bending rigidity of

SWCNTs by the approach of quantum mechanics LD. The effects of radius, chirality

and length (equivalently the wavelength) of SWCNTs on the bending rigidity are

explored. MM simulations are then conducted to characterize the bending rigidity of
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SWCNTs. The corresponding results are discussed and compared with those by

quantum mechanics LD calculations. We further extract the nonlocal parameters

reflecting the microstructure effect by comparing the dispersion relations respectively

by the appropriate nonlocal continuum theory and quantum mechanics LD

calculations. The effects of radius and chirality on the nonlocal parameter are

discussed. The conclusive remarks are given at the end.

2. The bending rigidity of SWCNTs by quantum mechanics lattice dynamics

calculations

Based on LD theories [22] ， the harmonic interaction force constant (HIFCs) of

SWCNTs are calculated using the self-consistent charge density functional

tight-binding approach [23]. We note that this approach well reproduces the

experimental phonon dispersion of graphite [24]. Before calculating HIFCs the

corresponding lattices are fully optimized with a convergence precision of 1×10-8

eV/Å for the atomic force. As calculating HIFCs, a convergence standard of 1×10-9 is

used for the self consistence of charge density. The vacuum layer thickness in each

SWCNT sample is taken 1.5 nm as least. The constrains including the translational

symmetries, the point group symmetries and the rotational invariance conditions are

applied to HIFCs via a least-squares method [25]. The phonon dispersion relation

between frequency  and wavevector q of each SWCNT is then achieved by the

open source code Phonopy [26] after inputs of HIFCs. In the long wavelength limit

0q , the dispersion of flexural acoustic (FA) modes [27] should satisfy

2 4

p

D q
m

  , pm the mass of unit length of SWCNT. This means that we may extract

the bending rigidity D from the quadratic dispersion data using 2 4

, 0

/p
q

D m q





 .

We calculate the phonon dispersions for armchair and zigzag SWCNTs with radius R

ranged from 0.2 nm to 0.69 nm. Representatively, the full dispersions of the (8,8)
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SWCNT are plotted in Fig.1. This tube has four acoustic branches among which the

lowermost two are degenerated and correspond to the FA modes. The other two

correspond to the torsional acoustic (TA) and longitudinal acoustic (LA) modes. The

Fig.1 The full phonon dispersions of the (8, 8) SWCNT by our quantum mechanics

LD calculations.

LA modes usually have higher frequency than that of TA modes as the axial Young’s

modulus is larger than the shear modulus. Using the low frequency data

corresponding to very small q , i.e.,
1000

q
a


 , a the equilibrium lattice constant of

the tube, we calculate D of all tubes considered. As shown in Fig.2, the obtained D

satisfies 3D CR with the constant C=338 N/m. The results well agree with those

by Yakobson et al. [10]. In the long wavelength limit, the microstructure effect may be

neglected due to the wavelength is far larger that the lattice constant. This is the

reason for the consistence of results by completely different two approaches, i.e., the

LD calculations and the continuum model [10]. For the moderate wavelengths the
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Fig.2. The relation between the bending rigidity and the radius of SWCNTs in the

long wavelength limit.

microstructure effect will plays a role. To demonstrate this, we define the effective

bending rigidity eD at different wavelength  . Here 2
q
  ,

4 2

416
p

e

m
D

 


 .

Obviously, eD D only in the long wavelength limit. We plot the relation ~ eD

of the (8, 8) SWCNT in Fig.3. It can be seen that eD drastically increases as

Fig.3. The dependence of the effective bending rigidity of the (8, 8) SWCNT on the

wavelength.

200   nm and nearly converges to D at  =400 nm. This trend is also observed in
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other SWCNTs, indicating that the bending rigidity of the SWCNT strongly correlates

to its length due to the honeycomb lattice structure. In classical continuum theories it

is assumed that the material is continuous in space. Consequently, the bending rigidity

of a rod like structure is independent on its length.

3. The bending rigidity of SWCNTs by molecular mechanics simulations

We have calculated the bending rigidity of SWCNTs by the quantum mechanics LD

approach which bases on the reciprocal space. To further our understanding on the

length dependence, we would like to conduct real space MM simulations. The

optimized Tersoff empirical potential [28] which well reproduced the phonon

dispersion of SWCNTs is used to describe the atomic interactions in SWCNTs. The

simulation procedures are as follows: for a SWCNT with the given length, the atoms

at its left end are fixed and the left part is free. This corresponds to the clamped-free

mechanical boundary condition. After a series of forces iF (i=1,2,3,4) vertical to the

axis are applied to the atoms at the right end, the corresponding displacement

responses id are recorded. Before loading, the initial sample is fully optimized and

relaxed to a zero-stress state. After obtaining the numerical ~i iF d relation, we may

estimate the effective bending rigidity eD using the formula
3

3
i

e
i

FLD
d

 from the

elementary beam theory [29]. The same procedures are then taken for SWCNTs with

different sample length to observe how eD changes with the length. We also

consider the clamped-clamped mechanical boundary condition, i.e., the atoms at each

end are fixed. The loading iF is applied at the middle of the tube for the boundary

condition. Correspondingly, the effective bending rigidity eD is estimated by the

formula [29]
3

192
i

e
i

FLD
d

 . All simulations are done using the open source code
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Lammps [30] distributed by Sandia National Laboratories.

As indicated by the corresponding formulas, the numerical relation ~i iF d from

simulations should be linear in order to precisely estimate eD . Representatively, the

displacement responses of the (5, 5) SWCNT having a length 14.8 nm under different

boundary conditions are shown in Fig.4a and Fig.4b. The observed linear responses

Fig.4. Plots of the linear relation between the force and the displacement response of

the (5,5) SWCNT respectively under (a) clamped-free and (b) clamped-clamped

boundary conditions.

indicate that our results are reliable. Fig.5a shows the dependence of eD on the

slender ratio of the (5, 5) and (10, 0) SWCNTs under the clamped-free boundary

condition. The slender ratio is defined as the ratio of the sample length to the tube

http://www.sandia.gov/
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diameter. We can see that eD increases with the slender ratio and gradually

converges to D. The trend is consistent with that in Fig.3 by quantum mechanics LD

calculations. We note that the shearing effect on eD in our MM simulations is less

than 0.5% as the slender ratio is larger than 15. The total increase magnitude defined

by ( ) /e eD D D is up to 5% at least, showing that the shearing effect is not the

Fig.5. Plots of the dependence of effective bending rigidity on the slender ratio for (5,

5) and (10, 0) SWCNTs respectively under (a) clamped-free and (b) clamped-clamped

boundary conditions.

reason for the trend. For the clamped-clamped boundary condition the same trend is

also observed for the (5, 5) and (10,0) SWCNTs, as shown in Fig.5b. The slender ratio

used in our MM simulations is less than 100 which is far smaller than the equivalent

one (~1000) in Fi.g3. That is why the increase trend in Fig.3 looks sharp.



10

4. The nonlocal parameter of SWCNTs for nonlocal continuum modeling

LD calculations and MM simulations are the atom-based numerical approach. The

corresponding computational costs are high especially for large SWCNTs. In contrast,

continuum modeling with much higher computation efficiency has shown the ability

in describing some mechanical behaviors of large SWCNTs without loss of basic

physics. For example, it was argued [31] that the mechanical buckling of CNTs may

be understood based on the corresponding continuous theories. Therefore, a question

is that if we may describe the dependence of the bending rigidity on the sample length

at the continuum level. In classical continuum theories the stress  or strain  is

local, i.e., the stress is only related to the strain at a given material point, resulting in

the failure of classical continuum theories in describing the microstructure effect. To

consider the effect, the nonlocal continuum theories were developed and applied to

dynamics of SWCNTs in literature [16,32,33]. As modeling the SWCNT as a beam,

the one dimensional nonlocal constitutive relation [21] may be written as

2
2

0 2( )e b E
x
 

 


, E the Young’s modulus; b is an internal characteristic

length and usually given as the bond length or the lattice constant in previous work

[16,19,32,33]; 0e is an adjustable parameter to match the corresponding results with

those by experiments or quantum mechanics calculations. Based on the nonlocal

constitutive relation and the Euler beam theories, the dispersion relation of SWCNTs

may be deduced as [16] 2 4
2 2

0[1 ( ) ]
e

p

D q
m e b q

 


. As 0q , 2q is the negligible high

order component of q in the term 2 2
01 ( )e b q , the formula will reduce to the

classical form 2 4

p

D q
m

  in the long wavelength limit 0q . We note that in the

formula 2 4
2 2

0[1 ( ) ]
e

p

D q
m e b q

 


the shearing effect is neglected considering the

fact that this effect plays minor role for large sample length, as justified by our MM
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simulations. For the moderate wavelength, we have 2 2 2
0

1
1 4 ( ) /

eD
D e b 




. This

formula shows that the effective bending rigidity eD increases with the

wavelength  , consistent with the conclusion by our LD calculations. By comparing

the dispersion relations by the formula and our LD calculations, we extract the

parameter 0e b defined as the nonlocal parameter for each SWCNT considered. The

corresponding results are shown in Fig.6. It can be seen that 0e b is almost

independent of chirality and linearly increases with the diameter with a scale factor

1.5. In known nonlocal continuum modeling 0e b was usually regarded as a constant

for different SWCNTs. Therefore, present results shed substantial light on nonlocal

continuum modeling of the tube like nanostructures. Taking 0 1.5 (2 )e b R  , the

effective bending rigidity of SWCNTs can also be correlated to their slender ratio

Fig.6. The dependence of the nonlocal parameter 0e b on the tube diameter.

defined by s as
3

2 21 9 /e
CRD

s






. The new formula shows that eD D as s .

Actually, it may help provide us with a reference of frequency error due to the

neglection of length effect on the vibrational frequency of SWCNT sensors or

resonators. To demonstrate this, taking a cantilever SWCNT with R=0.5 nm,
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mp=2.59×10-15 kg/m and s=20, its first order mode frequency 1 is calculated to

be 2 4 4
1 1.875 / (16 ) 56.92e pD s R m   GHz, about 10% lower than that (~62.92 GHz)

without considering the length effect. We note that although there exist several

nonlocal continuum models [17], the present one [16] can give the analytic and

comparable dispersion with ours. The development of advanced nonlocal continuum

model is beyond the scope of this work.

5. Conclusive remarks

We have done a comprehensive study on the effect of SWCNT length on its bending

rigidity using different approaches including quantum mechanics LD calculations,

MM simulations and nonlocal continuum modeling. Both results from LD

calculations and MM simulations show that the bending rigidity increases with the

length and gradually converges, solving the argument on the length effect in previous

nonlocal continuum modeling. By comparing the dispersions of SWCNTs

respectively from LD calculations and the appropriate nonlocal continuum model, we

find that the nonlocal parameter is independent on the tube chirality while linearly

increases with the diameter. The present work may not only provide insight in

understanding bending nanomechanics of SWCNTs but also serve as a benchmark

study for other one-dimensional nanostructures such as nanobeams and nanowires.
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