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ABSTRACT

The concept of topological quantum number, or topological charge, has been used extensively to describe topological defects or solitons.
Nematic liquid crystals contain both integer and half-integer topological defects, making them useful models for testing the rules that
govern topological defects. Here, we investigated topological defects in nematic liquid crystals using the phase-field method. If there are no
defects along a loop path, the total charge number is described by an encircled loop integral. We found that the total charge number is con-
served, and the conservation of defects number is determined by a boundary during the generation and annihilation of positive–negative
topological defects when the loop integral is confined. These rules can be extended to other two-dimensional systems with topological
defects.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0021079

INTRODUCTION

The defects in liquid crystals can be described in some cases by
topological charges. The topological charge is one of the most widely
used topological concepts in physics. A topological charge of defect
is a spatial point around which the loop integral1 q ¼ 1/2π

Þ
dθ,

where dθ is the angle difference between the directions of the field at
the beginning and ending points of a small segment, dl, of the loop
[Fig. 1(a)]. Topological charge of defects usually have either integer
or half-integer values and may be positive or negative, depending on
the nature of the corresponding physical fields. Therefore, topologi-
cal defects can be regarded as quasi-particles; they can move,
interact, generate, and annihilate.2 Treating topological defects as
particles, rather than describing them in terms of fields, typically
simplifies the corresponding model.

The concept of topological defects charge has been applied
to many systems, including systems that exhibit quantum Hall

effects,3 vortex systems in superconductors,4 handle body-shaped
particles,5–7 surface-treated microparticles,8,9 micrometer-sized
beads,10 optical and electrical reversible switching,11 epithelial
cells,12 and fibers dipped in liquid crystals (LCs).13 The topological
charge has also been applied to active matter,14–17 cosmology,18

and particle physics.19 The relationships between the genus g, the
topological charge of defects, and self-assembly20 have been found
to be consistent between the systems in which they have been
characterized.

Nematic liquid crystal (NLC) molecules have a rod-like shape.
The physical properties of a non-polarized NLC are the same at
either end. For a closed loop formed by NLC molecules, the direc-
tor revolves by times of 180° in a nonpolar NLC; this process may
generate half-integer topological defects. In a polarized NLC, the
loop repeats every 360°, which may result in the generation of
integer topological defects. Therefore, NLC systems contain both
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integer and half-integer topological charges and are suitable for the
study of the dynamic evolution of topological charge of defects.

In this work, we generate topological defects in nematic liquid
crystals and study their dynamics in a two-dimensional (2D) space
using the phase-field method. Our phase-field simulations pre-
dicted the evolution of the topological defects charge, including
their generation and annihilation,21 within the continuum vector
field description. The simulated results indicate that the algebraic
sum of topological charges inside an enclosed loop can be deter-
mined by the difference between two line integrals along the inner
and outer loop paths, provided that there are no topological defects
along the loop paths. The total charge number was found to obey a
Stokes’ like relationship. In addition, the total defects charge within
the loop was conserved22 if the loop integral was confined.

MODEL AND METHODS

The defects in liquid crystals can be described in some cases
by topological charge of defects. Two main models are currently
used to describe liquid crystals: the Oseen–Frank (O–F) model23

and the Landau–de-Gennes (L–dG) model.24 In studies that
compare these models,25 it was found that the L-dG model
accounts for both uniaxiality and biaxiality, in addition to all of the
physically observable singularities. Thus, it is one of the most
general continuum theories for NLCs. In this study, both models
were used in phase-field simulations of topological defects charge
to determine the major differences between the models and to
demonstrate the generality of our conclusions.

Our phase-field simulations were based on either the L-dG
model of phenomenological expansion of free-energy density.

L-dG describes NLCs as a traceless symmetrical order-
parameter tensor Qij,

26

Qij ¼ S ninj � 1
3
δij

� �
, (1)

TrQ ¼ 0, (2)

where S is a scalar order parameter within the range of
�1/2 , S , 1. At room temperature, S = 0.4 to 0.6. In this study,
we used S ¼ 0:50. The NLC director is represented by
~n ¼ (sin θ cosf, sin θ sinf, cos θ), where θ is the angle between the
z axis and the director, and f is the angle between the x axis and
the projection of the director in the x–y plane.

The bulk free energy density is given by fbulk,

fbulk ¼ 1
2
aQijQij � 1

3
bQijQ jkQkl þ 1

4
c1(QijQij)

2 þ 1
4
c2QijQ jkQklQli ,

(3)

where a is assumed to depend linearly on temperature T, whereas
b, c1, and c2 are considered to be temperature-independent. The
gradient energy fgrad is given as follows:

fgrad ¼ 1
2
L1∇iQ jk∇iQ jk þ 1

2
L2∇iQik∇jQ jk þ L3εijkQil∇kQ jl , (4)

where L1 ¼ 4:20� 10�12(N), L2 ¼ 5:51� 10�12(N), and
L3 ¼ 1:02� 10�12(N) are determined by k11 ¼ 6:70� 10�12(N),
k22 ¼ 3:60� 10�12(N), and k33 ¼ 9:00� 10�12(N) [representing
the O-F splay, twist, and bend elastic constants of 5CB (LC
1264),27 respectively] and S,28,29 and εijk is the Levi–Civita symbol,

L1 ¼ (k33 þ 2k22 � k11)/(9S
2), (5)

L2 ¼ 4(k11 � k22)/(9S
2), (6)

L3 ¼ (k33 � k11)/(9S
3): (7)

The surface anchoring energy density30 is defined as follows:

fs ¼ W1(~Qij � ~Q
k
ij)þW2(~Q

2
ij � S2)

2
, (8)

where W1 . 0 [W1 = 9.00 × 10−8(N)] corresponds to the direction
of the anchoring strength favoring tangential orientation of the ~υ
director, and W2 . 0 ensures the existence of a minimum for the
surface scalar-order parameter. ~Qij ¼ Qij þ 1

3 Sδij and
~Q
k
ij¼PijQklPlj,

where Pij ¼ δij � υiυj, where ~υ is the unit vector of the boundary
tangent line.

The total free energy of the system is defined as follows:

F ¼ F0 þ
ð
Ω
(fbulk þ fgrad)d

3x þ
ð
@Ω

fsds: (9)

In phase-field simulations, the spatial–temporal evolution of
phase-field parameters is governed by the time-dependent-
Ginzburg–Landau equation,

@Qij(r, t)

@t
¼ �Γ

δF
δQij(r, t)

(i, j ¼ x, y, z), (10)

FIG. 1. Illustration of behavior corresponding to the Ampère’s circuital law and
schematic diagram of the relationship between loop integrals and topological
charges. (a)~lu is a unit vector tangent to l � out, d~l is an infinitesimal segment
of~lu,~lv is a unit normal vector pointing outside at l � out,~n is the NLCs direc-
tor,~n1 and~n2 are adjacent directors at l � out, @l~n is an infinitesimal change in
d~l, ~B ¼ (~n� @x~n �~N,~n� @y~n �~N,~n� @z~n �~N) and~N is the unit vector of the
plane normal direction. ~N and l � out conform to the right-hand rule. (b) The
red point represents the topological charge.
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where Γ is the viscosity coefficient of NLCs. Numerical solutions to
Eq. (10) yield the spatial and temporal distributions of NLC direc-
tors and, therefore, the domain and defect evolution in NLCs.

We defined a new field ~B ¼ (~n� @x~n � ~N ,~n� @y~n � ~N ,
~n� @z~n � ~N), where ~n is the director, ~N is the unit vector along the
plane normal [Fig. 1(a)], and @x~n is the rate of change of ~n in the
x direction. The value of ~n� @x~n � ~N is equal to the angle change
of~n in the x direction.

In Fig. 2, red and blue lines correspond to the L–dG and O–F
energy models, respectively, k11, k22, and k33 are assumed to be
equal, and θ is the angle between~n1 and~n2 (Fig. 2, inset).

In NLCs, �~n is generally equivalent to ~n, because non-
polarized NLC molecules are indistinguishable. Therefore, θ ¼ +π
and f (π) ¼ f (�π) ¼ f (0). The L–dG model has been shown to be
more consistent with the actual symmetry of NLCs than the O–F
model. However, the O–F model has a simpler expression for the
free energy than the L–dG model and comparable accuracy in
systems with integer charge topological defects. Therefore, the O–F
model can be used to simplify NLC models that exclude half-
integer defects and to simulate hybrid aligned nematic, optically
compensated bend, and twisted nematic LC systems.

RESULTS AND DISCUSSION

Figure 3 shows a schematic diagram of defect energy as a
function of charge number (q), calculated using the L–dG and O–F
models. In addition, Fig. 3 shows integer (top) and half-integer
(bottom) texture maps. The results shown in Fig. 3 demonstrate
that, in the O–F model, the half-integer defects are in a high-
energy, unstable state and, therefore, will not appear during defect
evolution. The L–dG model can be used to describe integer and
half-integer topological defects. The following discussion is based
on phase-field simulations using the L–dG model.

To determine the relationship between the topological defects
and the loop integral, we simulated NLCs assuming a regular area
with two holes (g ¼ 2) and considered voids and other discontinui-
ties in the system. The distributions of directors and defects are
shown in Fig. 4. The red and blue markers in Fig. 4 represent topo-
logical defects charge of q ¼ þ1/2 and q ¼ �1/2, respectively.
Annihilation of opposite topological charges occurred between the
states shown in Figs. 4(a) and 4(b). A single annihilation event
occurred from Figs. 4(b) and 4(c).

Figures 4(d)–4(f ) show the polarizing optical microscopic
(POM) images calculated from the director distribution in
Figs. 4(a)–4(c). The boundary conditions along the loop assume
that the directors are parallel to the direction of the loop. The
results are shown in Figs. 4(a)–4(c) demonstrate that defects evolu-
tion obeys pairwise (þ1/2 and �1/2) annihilation within the plane.
During these annihilation processes, the sum of the topological
defects charge on the plane is conserved. Annihilation between +1
and −1 topological defects has been observed experimentally in
LCs.2 In this study, the annihilation was found to follow the law of
charge conservation. Similar topological defects charge conserva-
tion phenomena have been observed in rod-like virus bacteriophage
systems.31

Assume that there is a 2D system with several topological
defects. If a loop is drawn that encircles the defects and genera,
then the enclosed area may be divided into many smaller areas
[Fig. 1(b)]. For a single small area, a loop can be defined along its
boundary, for example, counterclockwise. If there is a topological
charge qi within this loop, then qi ¼ 1

2π

Þ
~B � d~l, where the integral

is taken along the boundary path of the small area. If there is no
topological defect within this small area, then qi ¼ 0. For two adja-
cent small areas, the loop integrals contain a common segment ab,
wherein the directions of the integrals of the neighboring loops are

FIG. 2. Diagram of energy density vs director angle. The inset shows an illus-
tration of the director angle θ.

FIG. 3. Comparison between half-integer (bottom) and integer (top) defects.
Solid green lines represent the texture, and dotted green lines represent the
liquid crystal orientation. The central graph shows energy vs the charge numbers
(q ¼ 1

2π

Þ
d θ) of defects. Results based on the Landau–de Gennes and Oseen–

Frank models are represented by the red and blue lines, respectively.
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opposed. When the loop integrals of these neighboring areas are
added together, the two integrals cancel out within ab. Hence, the
common segment of adjacent areas does not contribute to the sum
of the integrals. Because the internal segments are all common seg-
ments between adjacent areas, their contributions to the total sum
are zero. When the loop integrals of the small areas are added
together, only the integrals along the boundary path of the large
area contribute to the final result. Moreover, if both the inner and
outer boundary paths proceed counterclockwise, then we have the
following equation:

X
i

qi ¼ 1
2π

þ
l�out

~B � d~l � 1
2π

Xþ
l�in

~B � d~l, (14)

where d~l is an infinitesimal vector tangent to the loop path l � in
or l � out, where l � in and l � out represent the inside and
outside boundaries, respectively. In Fig. 1(a), ~lu is a unit vector
tangent to l. Because the director field is continuous, the terms on
the right side of Eq. (14) are either integers or half-integers.

In a simply connected domain, that is, if there is no inside
boundary (l � in), Eq. (14) can be simplified as follows:

X
i

qi ¼ 1
2π

þ
l�out

~B � d~l, (15)

where

þ
l�out

~B � d~l ¼ 2π
X
i

qi, (16)

þ
l�out

~B � d~l ¼ μ0
X
i

Ii, (17)

where ~B is the magnetic field at a closed loop. l � out is an
Ampèrian loop, and Ii is the stationary electric current enclosed by
the loop. Equations (16) and (17) have similar forms. We newly
defined field “B” which is similar to the magnetic field B in the
Ampere’s circuital law. On the right side of Eq. (16), coefficient 2π

FIG. 4. Directors and defect charge distributions in NLC systems. (a)–(c) are the
director distributions at t ¼ (75k, 120k, 141k)Δt. (g) is a magnified region of (c),
showing a pair of defects with charges of q ¼ þ 1/2 and q ¼ �1/2, repre-
sented by red and blue markers, respectively. (d)–(f ) are polarizing optical micros-
copy (POM) images calculated from (a)–(c), respectively. The gradient color
indicates the extent to which the liquid crystal director is tilted out of the plane.

FIG. 5. Director distributions of NLCs of
different shapes or under different boun-
dary conditions. (a)–(g) show the simula-
tion results from the L–dG model. Red
and blue markers represent +1/2 defects
and −1/2 defects, respectively. The
number at the bottom right corner of each
image is Vout . The number of genera in
each image is Vin. (e–g) have the same
numbers of genera and the same Euler–
Poincaré characteristics. Black boundary
lines indicate that the direction of the
directors at the boundary is parallel to the
boundary line. Red boundary lines indi-
cate that directors at the boundary are
not parallel to the boundary line. (h)
shows a magnified section of (b).
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corresponds to the magnetic permeability μ0, and the charge of
topological defects qi corresponds to the current Ii. Because the
general proof of Eq. (14) is unrelated to NLCs, this is a very general
result and may be extended to topological systems other than
rod-like NLCs.

To validate Eq. (14), we performed phase-field simulations of
NLCs with different genus numbers using a system containing
128 × 128 × 4 mesh points, with a grid size of 10 μm. Figure 5
shows the director distributions from the phase-field simulations.
Each distribution corresponds to a different row in Table I. In
Figs. 5(a)–5(e), the orientations of the NLC molecules are parallel to
the inner and outer boundary lines. In Fig. 5(f), the orientations of
the molecules at the boundary of the two lower genera are horizontal
and are not parallel to the boundary of the genus. We numerically
calculated the integral of the field ~B along the loop around the
outer boundary of the studied area and the inner boundaries of
the genera. Hence, we observed that Vout ¼ 1

2π

Þ
l�out

~B � d~l and
Vin ¼ � 1

2π

PÞ
l�in

~B � d~l were determined by the outer and inner
boundary conditions, respectively.

The boundary conditions are summarized in Table I. Within
each row, the sum of the numbers in columns 3 and 4 is equal to the
value in column 7 (same as column 8). Thus, Vout þ Vin ¼

P
i qi.

This demonstrates that the evolution of topological defects charge
obeys charge conservation and that the sum of topological defects
charge is determined by the loop integrals along the loop boundaries.
The topological theory defines the following relationship: χ ¼ 1� g,
where χ is the Euler characteristic and g is the genus. In the first four
cases shown in Table I, the values in columns 2 and 7 are equal, andP

i q ¼ χ ¼ 1� g holds true. However,
P

i q ¼ 1� g does not hold
in all cases. For example, the systems shown in Figs. 5(e)–5(g) have
the same genus and Euler characteristics but have different

P
i q

values. However, Eq. (14) is unconditionally valid for all of the cases
described herein.

CONCLUSIONS

In summary, the total topological defects charge number
within an arbitrarily selected enclosed loop obeys a 2D topological
circuital charge law described by the following equation:P

i qi ¼ 1
2π

Þ
l�out

~B � d~l � 1
2π

PÞ
l�in

~B � d~l. This law is analogous to
the Ampère’s circuital law. In a planar NLC system, the plane
boundary has no defects, and the value of the topological defects
charge within the plane is determined by the loop integrals along

the boundary paths. If the loop integral is well confined, the defects
charge in the loop is conserved. These conclusions may be
extended to other 2D systems that contain topological defects
charge, such as ferroelectric systems,32,33 topological insulators,34

topological superconductors,35 and Majorana fermions.36
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