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ABSTRACT 

This paper is concerned with the acoustic bandgap formation in a duct with periodically flush-

mounted flexible walls, subject to a stream-wise temperature variation. A numerical model, based 

on a piecewise treatment of the arbitrary temperature gradient, is proposed for the accurate 

prediction of sound propagation in a complex thermal environment. Effects of the system quasi-

periodicity due to the temperature change on the bandgap formation, as well as possible mitigation 

measures through parameter tuning, are revealed. It is shown that, on the top of the resonance 

bandgap, Bragg reflection bandgap can still be created despite the system quasi-periodicity. In 

addition to an alteration to the bandgap central frequency due to the temperature-induced acoustic 

wavelength changes inside the duct, the bandwidths of the bandgaps are also adversely affected, 

especially when the temperature gradient is large. Numerical analyses show the possibility of 

tuning and customizing the bandgap formation through a proper selection of the lattice distance 

and the structural parameters. A combined tuning strategy would warrant a merging of the bandgaps, 

adjustment of their central frequencies as well as an enlargement of the bandwidth for a given 

temperature variation range through creating a favorable coupling between the Bragg reflections 

and the local resonances of the flexible walls. 
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1. Introduction 

By analogy with photonic crystals, artificially designed periodic structures have been extensively 

studied, which offer the potential of tailoring and manipulating acoustic wave propagation [1]. 

When elastic waves propagate in a periodic elastic medium, bandgaps similar to photonic bandgaps 

can be generated, leading to the concept of phononic crystals. These structures possess the Bragg-

reflection-based bandgap (BBG), within which the acoustic wave propagation is forbidden [2-3], 

provided the lattice constant is in the same order as the wavelength. Meanwhile, locally resonant 

structures can also generate bandgap (RBG) with much smaller lattice constant compared to the 

corresponding wavelength [4]. These phononic crystals may exhibit exotic negative properties such 

as negative effective bulk modulus [5-8].  

The appealing physical properties of periodic structures have also been explored for various 

acoustic applications such as noise attenuation in ducts. A typical example is the study of 

periodically arranged Helmholtz resonators (HRs) in a piping/duct system to obtain low frequency 

bandgaps [5, 9]. In such an arrangement, wave propagation characteristics can be analyzed by the 

Bloch wave theory and transfer matrix method. The whole system can then be regarded as a 

homogeneous medium with negative effective properties (mass density or modulus) around the 

resonant frequency of HRs [10,11]. Besides the HRs, other acoustic devices such as side-branch 

tubes [12] or micro-perforated tubes [13] have also been studied for the exploration of bandgap 

features. More relevant to the present work, the use of vibro-acoustic resonant elements on a duct 

wall has also shown promise for generating effective noise reflection and absorption upon a proper 

design. For example, replacing a segment of a duct wall by a flexible structure (membrane/plate) 

would create an effective reflection of the incident acoustic waves towards the upstream of the duct 

through the vibration of the structure, thus entailing effective sound reduction downstream [14-17]. 

Subsequently, these vibro-acoustic locally resonant cells have been periodically arranged inside 

ducts to achieve low frequency resonant/Bragg bandgaps, thus avoiding the drawbacks of 

conventional duct devices in terms of pressure loss or size limit for low frequency applications [18-

20]. 

More recently, studies on the sound propagation in a duct with temperature variation have 

attracted increasing research interest due to the frequent occurrence of thermal loading in systems 

such as gas turbine combustion chambers and exhaust systems [21, 22]. For example, an analytical 
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solution using an adapted Wentzel-Kramers-Brillouin (WKB) approximation was derived and 

validated for high frequency noise generation and transmission inside a duct with temperature 

gradient [23]. A general four-pole matrix based on the continuity, momentum and state equation 

were established for the general case of standing plane waves in a moving medium with a linear 

temperature variation [24]. Using suitable transformations, the derived acoustic wave equation can 

be reduced to solvable Bessel’s differential equation for a duct with an arbitrary axial temperature 

profile [25]. That method was then extended to derive the exact analytical solutions for quadratic 

[26] and polynomial mean temperature profiles [27]. A unified analytical approach was proposed 

based on the conservation equations and adapted WKB approximation which allows accurate 

prediction of the sound propagation with the consideration of arbitrary mean temperature gradient, 

for both low and moderate-to-high sub-sonic Mach numbers [28]. Meanwhile, studies on the sound 

attenuation inside duct silencer with temperature gradient have also been reported in the literature. 

For example, a theoretical prediction scheme was formulated for the four-pole parameters of an 

expansion chamber in a straight pipe with mean flow and linear temperature gradient [29]. Using 

similar approach, a quarter-wave tube (QWT) inside a duct with anechoic termination and linear 

temperature gradient along each duct segment was investigated [30]. 

Existing studies suggest that moderate temperature variations can sometimes be neglected for 

the prediction of acoustic performance of mufflers [31], mostly used as stand-alone noise control 

unit. However, considering the fact that temperature exhibits much significant influence on acoustic 

wavelength and pressure distribution [28], it is surmised that its effects on periodically arranged 

noise control units could be different, since the structural periodicity would not perfectly match 

with the temperature-induced aperiodicity of the acoustic medium inside the duct. In a sense, such 

a structure can be loosely regarded as quasi-periodic. To the best of our knowledge, the problem of 

the temperature effect on the bandgap formation inside an acoustic duct has not been fully 

addressed in the literature, not to mention the exploration of possibilities of exploiting the 

phenomena to tune the band structure towards a better design of noise control devices. 

The above analyses motivated the present research. A theoretical model is proposed for the duct-

membrane coupling system in the presence of an ideal temperature distribution. More specifically, 

a two-fold objective is pursued: a). to propose a numerical model to simulate the acoustic wave 

propagation inside a duct with flush-mounted periodic flexible membrane units and subject to an 

arbitrary stream-wise temperature variation and to examine the formation of the bandgap in views 
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of effective noise attenuation; and b). to explore the possibility of tuning and customizing bandgap 

properties through a proper tuning of the system parameters. The used temperature field framework 

and distribution scale were also employed in other literatures [28-30], showing the reasonable 

assumption and simulation. The rest of the paper is organized as follows. The theoretical 

formulation on the problem under investigation is first presented. A piecewise treatment of the 

temperature variation is proposed to allow the handling of arbitrary temperature variation inside 

the acoustic duct. The proposed modelling approach is then applied to a few benchmark cases and 

validated through comparisons with existing results and the finite element analyses. In the results 

and discussion section, Bragg reflection and local resonant bandgap properties are examined under 

various temperature gradients. Possibilities of customizing bandgap positions as well as their width 

through adjusting main system parameters, such as the lattice distance and the membrane tension, 

are discussed under various temperature distributions. Finally, conclusions are drawn. 

 

2. Theoretical formulation 

 

2.1 Model description 

 

Fig.1. Schematic representation of the model. (a) Duct with periodically arranged flexible walls; (b) the 

nth unit cell. 
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Figure 1 illustrates the system under investigation, which consists of a two-dimensional (2-D) 

duct (height h) with periodically flush-mounted flexible walls (tensioned membranes by default 

with a length L). pin is the incident sound pressure; and pout-i, pout-r the sound pressures of the 

transmitted and reflected sound waves, respectively. The acoustic medium inside the duct bears a 

temperature gradient T(x) along its length, with inlet and outlet temperatures being denoted as T1 

and T2, respectively. Actually, arbitrary temperature gradient can be handled in current model, while 

for simplified analysis, linear distribution function is taken in the followed studies. If one focus on 

the experimental design, the temperature gradient can be achieved via heating wire with designed 

twining pattern, and setting proper heating power. A unit cell in the duct is defined as the 

combination of a membrane and a segment of the rigid duct wall with D denoting the lattice 

distance between the two adjacent cells. Incident and reflected acoustic waves for each cell can be 

seen as planar waves when the frequency is lower than the cut-on frequency of the duct. For the 

nth cell as presented in Fig.1(b), we assume that the temperature over the membrane part is 

approximated by an averaged temperature 𝑇̅𝑛   (𝑇up
𝑛   𝑇down

𝑛  )/2, the validity of which will be 

verified in the subsequent analyses. Over the rigid portion of the cell, the gas in the duct is sliced 

into a series of infinitesimally thin gas layers with width dx, each bearing a different constant 

temperature. As a result, the sound propagation from one layer to the other is accompanied by wave 

transmission and refection, which govern the wave structure in the duct.  

 

2.2 Sound propagation in a rigid duct segment with temperature gradient. 

Firstly, considering the sound propagation in the rigid part of the nth cell, which is uniformly 

meshed along its length with a step size dx (D-L)/m. The nodes are labelled by 𝑥1
𝑛, 𝑥2

𝑛, …, 𝑥𝑚
𝑛 , 

𝑥𝑚+1
𝑛 , with 𝑥1

𝑛 and 𝑥𝑚+1
𝑛  indicating the inlet and outlet of the segment, respectively. In this part, 

the superscript “n” corresponding to the nth cell will be omitted in the following formulation for 

simplicity. Crossing from the layer s-1 to s as shown in Fig.1(b), there is a jump in the mean 

temperature from Ts-1 to Ts, thus causing a corresponding jump in both the mean mass density from 

ρs-1 to ρs and the sound speed from cs-1 to cs. The pressure and velocity continuity across the cross-

section xs yields 

1 1j j j j-1 -1

i r i r+s s s s s s s sk x k x k x k xs s s sp e p e p e p e− −− −
+ =                        (1) 

1 1j j j j-1 -1

i r i r

1 1 1 1 1

s s s s s s s sk x k x k x k xs s s s

s s s s s s s s

p e p e p e p e

c c c c   

− −− −

− − − − −

− = −                       (2) 
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in which pi and pr denote the incident and reflective pressure, j is the imaginary unit and c (γRgT)
1/2, 

ρ p/RgT, k ω/c, γ is the ratio of specific heat, Rg is the universal gas constant and p is the static 

pressure. Corresponding notations s and s-1 indicate these parameters in different layers. 

Combining Eq. (1) and (2) gives 
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    (3) 

With the plane wave assumption, Eq. (3), can be transcended to the next layer, as 

1
1 +1i i

1
+1 1r r

=
s s

s s

s s
s s
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c dp p

+
+

+
+
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    
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                            (4) 

The incident and reflected waves in the layer adjacent to the membrane can be expressed as 

1

i down-i=p p                                      (5) 

1

r down-r=p p                                    (6) 

Based on Eqs. (3) and (4), a whole set of linear equations in terms of the amplitudes of propagating 

wave components can be expressed as 
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Combining Eqs. (5), (6) and (7), the sound propagation in the rigid part of the nth cell can be 

characterized with the corresponding transmission matrix denoted by Rn. 

 

2.3 Modelling of the duct portion with flexible wall 
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Consider the sound propagation in the flexible portion of the nth cell as shown in Fig.1(b), 

ranging from 𝑥up
𝑛  to 𝑥down

𝑛   with an averaged sound speed 𝑐̅ = (𝛾Rg𝑇̅)
1/2 , wave number 𝑘̅ =

𝜔/𝑐̅ and density𝜌̅ = 𝑝Rg𝑇̅. Similarly, the superscript “n” denoting the nth cell will also be omitted 

for simplicity. The pressure amplitude transfer matrix between the two cross-sections of the 

segment is to be established. The transverse displacement of the flexible membrane with fixed 

boundaries can be expanded as  

1
( ) sin( ) ( )

S

qq
u x a q x L x

=
= = Ψ A

                         
(8) 

in which S is the truncation number of Fourier series. The membrane vibration is modelled 

following standard approach [19] and its response is obtained by solving the following standard 

matrix equation 

( )2

i&rj − + =K M G A P                          (9) 

where K and M are the stiffness and mass matrices of the membrane with their items {K}qq′= 

qq′δqq′Fπ2/2L, {M}qq′= msδqq′L/2, in which δqq′ is Kronecker delta function and the sub-index qqʹ is 

used to describe the element position in matrix, taking q, qʹ  1, 2, 3, …, S. F is the tension force in 

the membrane and ms is its mass density. G is the matrix accounting for the sound radiated by the 

membrane into the duct, expressed as [19] 

 
3j2 2

0

2 2 2 2 2 2 2 2 2 2 2 2
0

(2 ) j[cos( ) ][cos( ) cos( )]

2 ( )( )

md d

d d d
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− 

 − − −  
G = (10) 

where Md is the series truncation number, and 

( )
2

j / / 1
dm dc c m kh= −                         (11) 

  /
d dm mk c=                               (12) 

For far filed, plane travelling waves are assumed in this model, while for the near filed around 

the membrane, cross acoustic modes should be considered. As presented in above equations, md is 

the modal order number of the duct. When md is equal to 0, it is then 0 order plane wave; for the 

case of md>1, it will be higher order wave. In Eq. (9), Pi&r represents the work done by the incident 

and reflecting sound waves, which can be expressed as  

up-i 1 down-ri&r 2p p+=P P P                               (13) 

in which, 
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   upj j

1
0

Lkx kx

qq
e e dx
− −= P ψ                            (14) 

     downj j

2
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L
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Eq. (9) can be rewritten as 

( )
1

2

i&r i&rj 
−

= − + =A K M G P ΠP                    (16) 

The inverse matrix (K-ω2M jωG)-1 can be written as П for simplification. Based on the 

continuity of the sound pressure at the cross-sections xup and xdown, one has 

down downj j

down-i up-i rad= +
kx kx

p e p e p
− − +                         (17) 

up upj j

up-r down-r rad

kx kx
p e p e p−= +                              (18) 

in which 𝑝rad
+   and 𝑝rad

−   are the radiated sound pressure by the membrane in x-positive and 

negative directions, respectively, which can be expressed as 

i&
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Eqs. (17) and (18) can be rewritten in the following form 
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where 
j

2 2
upkx

Q e−= +P ΠP , 
j+

1 1
downkx

Q e
−

= +P ΠP . 

Combining Eqs. (5)-(7) and (23), the sound propagation in the nth cell including both the flexible 

and the rigid portions can be determined by solving these linear equations. 

 

2.4 Sound attenuation bandgaps prediction 

Consider a duct of Ld long, exposed to an arbitrary temperature variation T(x)(0≤x≤Ld) with 
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N membranes on the duct sidewall. Lf denotes the distance from the duct inlet to the first membrane. 

Then the mean temperature for the nth membrane can be given by 𝑇̅𝑛  {T (Lf   nD－D)   T (Lf  

nD L－D)}/2. Considering a plane incident wave at the duct inlet x xin 0, one has  

in inj

in 0= k xp p e−                                  (24) 

In light of Eq. (6), for the cell near the duct outlet, one has 

r out-r

mp p=                                    (25) 

i out-i

mp p=                                     (26) 

The anechoic outlet condition at the extreme end of the duct writes 

out-r =0p                                       (27) 

Utilizing the respective sound wave transmission functions for the flexible and rigid portions 

of the duct (Eqs. (7) and (23)) in conjunction with the boundary conditions (Eqs. (24) and (27)), a 

series of linear equations for the entire system can be obtained as 
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where R0 is the transmission function corresponding to the rigid part from duct inlet to the first 

membrane, and each pair of Fn and Rn denotes the transmission matrix of that cell. The out-pressure 

pout-i in the duct with periodic membranes and temperature gradient can be determined by solving 

the above linear equations simultaneously. The insertion loss IL is defined as  

10 out-i out-i 10IL=20log ( / )=20log (1/ )p p                         (29) 

in which out-ip is the transmitted sound pressure without flexible membranes and α is the transmitted 

coefficient. It should be mentioned that, the existence of the temperature variation alters the 

periodicity of the system within the duct portion occupied by the unit cells. Therefore, a dispersion 
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analysis, leading to the classically defined bandgaps cannot be carried out for such a quasi-periodic 

system. As an alternative, the terminology bandgap will be loosely used in the subsequent analyses 

to designate a frequency band in which significant sound attenuation is observed.  

 

3. Results and discussions 

3.1 Model verification 

A rigid wall duct with a temperature gradient is first used as a benchmark for validating the 

proposed simulation model. The duct is meshed and divided into thin gas layers, each having its 

different constant temperature. Consider first a two-layer case, each measuring 0.2 m long with 

different temperatures, 400 K, ρ1, c1(hot) and 298 K, ρ2, c2 (cold), with an anechoic outlet. Figs.2(a) 

and 2(b) show the calculated propagation of a unit incident sound wave at f 800 Hz, from two 

different directions respectively, alongside the results from finite element (FE) simulations. The 

COMSOL Multiphysics® modeling software is implemented to obtain the FEA results. In the 

modelling, Pressure Acoustics and Truss modular are used to simulate the sound field and 1-D 

membrane structure. Normal Acceleration and Edge Load options are applied to solve the coupling 

between membrane and duct field. The sound speed and density of the sound filed are defined as 

the functions of temperature gradient. It can be seen that predicted results agree well with FE 

simulations. Results indicate that the sound pressure amplitude in the cold segment of the duct is 

always greater than or equal to the pressure in hot part. Similar comparisons using a three-layer 

configuration (600 K, 400 K and 298 K), shown in Fig.2(c), also show the generally reducing sound 

pressure amplitude when entering into the hotter part of the duct. The observed oscillating 

amplitude is obviously due to the wave reflections at the interfaces separating different temperature 

zones.    

To further validate the proposed model, the configuration used by Morgans [28] is revisited. The 

case considers a linear mean temperature profile T(x) (T1 (T2-T1)x/Ld), which is illustrated in 

Fig.2(d), for which T1 1600 K is the inlet temperature with a unit incident wave, and T2 800 K is 

the outlet temperature with an anechoic boundary condition. Other parameters used in the 

simulation are: duct length Ld 1 m, universal gas constant Rg 287 K
-1kg-1, ratio of specific heats 

γ 1.4, layer size dx Ld/100. When using the present model, 100 layers are used. It can be seen that 

the predictions from the present model show excellent agreement with both the FEM results and 

Morgans' solutions. It indicates that when the element is small enough, current piecewise method 
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is effective to handle the continuous physical process for such duct with temperature gradient field. 

 

(a)                                     (b) 

  

(c)                                      (d) 

Fig.2. Sound propagation predictions and comparisons with FE results. (a) Two temperature 

layers, incident wave from hot side. (b) Two temperature layers, incident wave from cold side. (c) 

Three temperature layers. (d) Linear mean temperature gradient with result from Morgans [28].  
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(a)                                       (b) 

 

(c) 

Fig.3. Sound propagation for the duct-membrane system with a linear temperature gradient 

(LTG). (a) Schematic representation; (b) Transmission out sound pressure. (c) Insertion loss.  

 

The model is further validated when flexible membranes are included into a duct. The considered 

case includes a duct of Ld  1 m long, embedded with two segments (one on each side of the duct 

wall) of tensioned membranes L 0.1 m located at xup 0.4 m, as shown in Fig.3(a). A linear 

temperature gradient (LTG) with T1 700 K and T2 298 K is assumed. In the present model, an 

averaged constant temperature {T(xup) T(xdown)}/2 519 K is taken for the gas over the membrane 

portion of the duct, while the rigid duct portion is segmented into 100 layers. Other parameters 

used in the simulation are: duct height h L, membrane tension force F 1416 N/m and mass surface 

density 0.12 kg/m2. Fig.3(b) shows the outlet pressure of the system with a uniform temperature of 

T 298 K (green solid curve) and LTG (red dashed curve). In the non-resonant region, obvious 

increase in the sound pressure is observed with LTG. A shift in the resonant peak is also observed 

due to the changes in the average temperature {T(xup) T(xdown)}/2 519 K instead of a constant 

temperature T 298 K. The insertion loss (IL) is used to evaluate the sound attenuation in Fig. 3(c), 

along with FE results. It can be seen that they agree very well with each other. The above 

comparisons validate the established formulation as well as its numerical implementations.   

 

3.2 Bandgap analyses 
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distance D   0.31 m. Other membrane parameters remain the same as before. A linear mean 

temperature profile T(x) (T1 (T2-T1)x/Ld) is also used in this section with T1 600 K at the inlet and 

T2 298 K at the outlet. The duct length is Ld 0.1 m 5D, where 0.1m is the distance from the duct 

inlet to the first unit-cell. As mentioned before, the temperature variation results in the quasi-

periodicity of the system, thus preventing the use of Bloch wave theory for dispersion analyses. 

Alternatively, Eq. (6) is solved in conjunction with the transmission function in Eq. (19). 

Transmitted sound pressure spectra are then used to identify the high sound attenuation (low 

transmitted sound pressure) bands. Predictions of the transmitted sound pressure at the outlet from 

the FEM and from the current model are depicted in Fig.4. As a reference, the case with a single 

membrane is also plotted in the figure. Plateaus, corresponding to low transmitted sound pressure, 

are loosely referred to as bandgaps here. Obviously, two kinds of bandgaps can be obtained for the 

five cells case, namely resonant bandgap (RBG) and Bragg reflection bandgap (BBG), as evidenced 

by the representative acoustic wave distributions, also shown in this figure. At 510 Hz and 1000 

Hz in the RBG region, local resonance effects are evidenced by basically the same resonance 

behavior of the membrane cells. At 810 Hz within the BBG region, however, sound propagates as 

a plane wave and decreases rapidly along the cells.  

Varying the inlet T1 and keeping the outlet T2 as a constant, wave propagations for three LTGs, 

e.g. 500-298 K, 600-298 K and 700-298 K, are presented in Fig.5. While only a slight reduction in 

the bandwidth of the first RBG can be observed as the inlet temperature increases, the BBG is 

significantly affected. The plausible reason is that an increase in the temperature-induced sound 

speed c (γRgT)
1/2 would enlarge the acoustic wavelength, thus generating a shift of the BBG to 

higher frequencies, as shown in Fig.5.  
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Fig.4. Bandgaps and wave propagation pattern of a duct with five unit-cells with a linear mean 

temperature gradient. 

 

Fig.5. Temperature gradient effect on the bandgap characteristics for three different temperature 

variations. 

 

To further reveal the effect of the inlet temperature T1 (by keeping the outlet temperature constant) 

on the bandgap characteristics, BBG central frequencies are extracted and plotted in Fig.6(a). Two 

different periodic distances D 0.31 m (red curve) and 0.41 m (blue curve) are examined in the 

figure. Similarly, a clear shift to high frequency of the Bragg bandgaps in both cases can be 

observed as T1 increases. To further illustrate the possible coupling of the BBGs with RBGs, the 
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first two resonant frequencies of the membrane are marked by the black dashed lines in the figure. 

It can be seen that, when the central frequency of the BBGs gets closer to one of the local resonant 

frequencies, exemplified by the three windows denoted by A, B and C, the BBG is coupled with 

its local resonant counterparts. This also explains the sudden increase in the central frequency of 

the BBG for the case with D 0.41 m at around 600 K-700 K (Window C in Fig.6(a)). The resulting 

effect of the bandgap coupling between the BBG and the RBG is shown in Fig.6(b), in which three 

temperatures, e.g. 300 K, 1100 K and 650 K, correspond to windows A, B and C. Meanwhile, 

corresponding bandwidth variation with the inlet temperature is also depicted in Fig.6(c), in which 

the red and grey bars denote the BBG and RBG bandwidths, respectively. Black dashed lines denote 

the approximate location of the central frequencies which are similar to the trend observed in 

Fig.6(a). It can be seen that, with D 0.31 m, both BBG and RBG shrink and separate apart from 

each other when the inlet temperature is getting higher. For the case of D 0.41 m, the BBG bandgap 

is visibly enhanced from 300 K to 500 K, before reaching a strong coupling with the RBG close to 

600K up to roughly 900 K. The above analyses suggest that, in addition to the conventional RBGs, 

the temperature-induced system quasi-periodicity would not completely jeopardize the formation 

of the BBGs. In addition, results point at the possibility of enlarging the bandwidth of the latter 

through a proper tuning of the periodic distance to create a favorable coupling with the local 

resonances of the membranes. 
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(b) 

 

(c) 

Fig.6. Bragg reflection and resonant bandgaps analysis. (a) Variation of BBG central frequencies 

with inlet temperature. (b) Transmission sound pressure for the case of (D 0.31 m, T1 300K), 

(D 0.31 m, T1 1100 K) and (D 0.41 m, T1 650 K). (c) Bandgap width variation for different T1. 

 

The idea of possible tuning as well as the achievable benefit are further tested below. Since the 

temperature gradient alters the periodic characteristics of the acoustic medium and further influence 

the bandgaps, it is essential to redesign the structural parameters with a due consideration of the 

thermal effects. As shown in Fig.6(c), changing the cell periodic distance may be an effective way 

to alleviate the drawback brought by the applied temperature filed. Considering a duct, 2.5 m long 

and 0.1 m high, carrying a mean axial temperature gradient with a varying inlet temperature T1 and 
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a fixed outlet temperature T2 298 K. The embedded membranes have the same parameters as those 

used in Fig.3. An optimal lattice length D is given in Fig.7 to create a strong coupling between 

Bragg reflection and resonant bandgaps, for different inlet temperatures. Taking two representative 

temperatures at 400 K and 700 K as an example, the corresponding transmitted sound pressure 

coefficient α are given in sub-figures. It can be seen that the BBG and the 1st RBG are coupled 

together to generate a much wider bandgap. Taking the optimal lattice length D, the resulting 

coupled bandgap at different inlet temperatures is also shown in the figure by green bars. It can be 

seen that although the obtained bandwidth generally decreases when the inlet frequency is getter 

significantly higher than the outlet temperature (meaning a large temperature gradient inside the 

duct), the bandgap that can be achieved through the tuning of D is still appreciable.   

 

Fig.7. Optimal lattice length D for different inlet temperatures.  

 

Local resonant bandgaps are controlled by the stiffness and the mass of the unit-cells, while the 

Bragg reflection mainly depends on the spatial lattice distance. Then the frequency of the coupled 

bandgap (BBG RBG) can be adjusted via the tuning of the structural stiffness (membrane tension 

in the present case) and the periodic distance, as demonstrated in our previous work [20], in which 

a constant temperature field was assumed. The issue is revisited here with a linear temperature 

gradient. For different inlet temperature T1 and membrane dimensionless tension F* F/ρc2h (ρ and 

c are the air density and sound speed in uniform temperature T 298 K), optimal periodic distance 

D can be determined to achieve the strong coupling condition between the BBG and RBG. Four 

temperature cases with T1 298 K, 500 K, 800 K, 1100 K, and a constant outlet T2 298 K are 
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considered here. The relationship between the optimal distance D and the membrane dimensionless 

tension F* is shown in Fig. 8(a). It can be observed that, when the membrane tension decreases, 

the local resonant bandgap will shift to a lower frequency, thus calling for a corresponding increase 

in the periodic distance D to cope with this change in order to assure an enlarged BBG. Obviously, 

if the structure dimension is limited, the applicable range of the membrane tension also reduces for 

higher temperatures. To provide more details, the central frequency and the bandwidth for T1 298 

K and 800 K are shown in Fig.8(b). It can be observed that the central frequency mainly depends 

on the membrane tension rather than the applied temperature field. Again, the achievable bandwidth 

reduces when the temperature distribution inside the duct becomes highly non-uniform (large 

difference of T1 and T2).  
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Fig.8. Coupled bandgap analysis. (a) Matching of membrane tension and periodic distance for 

different temperatures to create effective coupling. (b) Central frequency and bandwidth of 

bandgaps for T1 298 K and 800 K, respectively. 

 

4. Conclusions 

Sound propagation inside a duct, with periodically flush-mounted flexible membranes and 

exposed to a temperature gradient, is studied in this paper. A unified theoretical formulation, 

capable of dealing with an arbitrary temperature variation, is proposed and validated against finite 

element results and simulation data reported in the open literature. The model aims at providing a 

convenient and effective tool for the study and design of duct noise control devices in various 

temperature environments. 

With the embodiment of flexible membrane units on the duct wall, significant sound attenuation 

bands, loosely referred to as bandgaps, are shown to exist. In addition to the expected resonance 

bandgaps (RBG), Bragg reflection bandgaps (BBG) can also be created despite the system quasi-

periodicity induced by the temperature variations. As the inlet and outlet temperature difference 

increases, the BBGs are generally shifted to higher frequencies. In general, both BBG and RBG 

bandwidths are adversely affected when the temperature difference inside the duct becomes larger. 

Numerical analyses show the possibility of tuning and customizing the bandgap formation 

through proper parameter tuning with a due consideration of the temperature effects. In particular, 

for a given temperature region, a proper tuning of the periodic distance would create favorable 

coupling between the BBGs and RBGs so that the resulting bandgaps can be greatly enlarged. As 

such, the drawbacks brought by the applied temperature filed can be alleviated. Further adjusting 

membrane tension offers additional tunability on the central frequency of the bandgaps. The 

combined tuning strategy would warrant a merging of the bandgaps, an adjustment of their central 

frequencies as well as an enlargement of their bandwidths, especially for small temperature 

differences. 
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