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Abstract 
Purpose –  The purpose of this study is to investigate the aerosol dynamics of the particle 
coagulation process using a newly developed weighted fraction Monte Carlo (WFMC) method. 

Design/methodology/approach –  The weighted numerical particles are adopted in a similar 
manner to the multi-Monte Carlo (MMC) method, with the addition of a new fraction function, 
α. Probabilistic removal is also introduced to maintain a constant number scheme.  

Findings–  Three typical cases with constant kernel, free-molecular coagulation kernel and 
different initial distributions for particle coagulation are simulated and validated. The results 
show an excellent agreement between the Monte Carlo method and the corresponding 
analytical solutions or sectional method results. Further numerical results show that the critical 
stochastic error in the newly proposed WFMC method is significantly reduced when compared 
with the traditional MMC method for higher-order moments with only a slight increase in 
computational cost. The particle size distribution (PSD) is also found to extend for the larger 
size regime with the WFMC method, which is traditionally insufficient in the classical direct 
simulation Monte Carlo (DSMC) and MMC methods. The effects of different fraction 
functions on the weight function are also investigated. 

Originality/value–  Stochastic error is inevitable in Monte Carlo simulations of aerosol 
dynamics. To minimize this critical stochastic error, many algorithms, such as MMC method, 
have been proposed. However, the weight of the numerical particles is not adjustable. This 
newly developed algorithm with an adjustable weight of the numerical particles can provide 
improved stochastic error reduction.  

Keywords: General dynamic equation; Multi-Monte Carlo method; Fraction function; 
Weighted fraction Monte-Carlo method; Particle coagulation 

Paper type Research paper 

1. Introduction
Aerosol dynamics covers a wide variety of scientific fields (Friendlander, 2000,
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Ramkrishna, 2000, Knopf et al., 2018) such as atmospheric physics (aerosol particles), 
combustion science (polycyclic aromatic hydrocarbons and soot), and chemical engineering 
(gelation and crystallization). Aerosol dynamic processes include nucleation, surface growth 
(condensation), and coagulation (Zhang et al., 1999). The coagulation process plays an 
important role in the time evolution of the particle size distribution (PSD) (Meng et al., 1998). 
The evolution of the PSD is always described using the population balance equation (PBE) 
(Ramkrishna, 2000). The PBE is a convection-diffusion equation with source terms including 
nucleation, condensation, and coagulation.  

 
The PBE is a partial integral-differential equation; analytical solutions of the PBE are 

available for only a few ideal cases (Von Smoluchowski, 1916). In general, approximate 
solutions can be obtained using various numerical methods such as the sectional method (SM) 
(Gelbard et al., 1980, Prakash et al., 2003), method of moments (MOM) (Frenklach, 2002, Yu 
et al., 2008, Yu et al., 2016, Chan et al., 2018), and Monte Carlo (MC) method (Zhao et al., 
2009, Zhou and He, 2014, Zhou et al., 2014, Liu and Chan, 2017b, Liu and Chan, 2017a, Liu 
and Chan, 2018a). However, there are two disadvantages to MC methods, i.e., stochastic error 
and a high computational cost (Xu et al., 2015). Because only a finite number of numerical 
particles can be used, uncertainty in PSD function is inevitable. This stochasticity can be 
determined by repeating a sufficient number of numerical simulations with different random 
seeds (e.g., system time) to restrict the stochastic error (e.g., variance, standard deviation) 
(Zhou et al., 2020). However, the tails of the particle size spectrum always contain only a small 
number of numerical particles, which are poorly represented in the numerical simulation. This 
problem becomes especially severe when the PSD is in a logarithmic form (Zhao et al., 2009). 
 

In recent years, some modified numerical algorithms have been developed to improve the 
numerical efficiency and accuracy of stochastic methods. The constant-number method (Smith 
and Matsoukas, 1998, Lee and Matsoukas, 2000, Lin et al., 2002) continuously changes the 
numerical simulation volume, while the number of numerical particles is maintained constant. 
The stepwise constant-volume method (Kruis et al., 2000, Maisels et al., 2004) doubles the 
numerical simulation volume while the number of numerical particles become halves, to reset 
it to the initial values. Although these numerical algorithms can constrain the total number of 
numerical particles within appropriate ranges, the numerical particles at the tails of the particle 
size spectrum are always poorly represented, resulting in stochastic error. To avoid this problem, 
the mass flow algorithm (MFA) (Eibeck and Wagner, 2001) was proposed, in which numerical 
particles with different weights were adopted for coagulation dynamics. The MFA was shown 
to provide significant improvement in numerical efficiency and variance reduction. More 
generally, the weighted flow algorithm (WFA) proposed by DeVille et al. (2011) can work with 
arbitrary weighting functions, especially in the power law functions of particle size. The new 
stochastically and differentially weighted operator splitting Monte Carlo (i.e., SWOSMC and 
DWOSMC) methods were first developed by the research group (Liu and Chan, 2017b, Liu 
and Chan, 2018b, Liu and Chan, 2019, Liu et al., 2019). Another stochastic error reduction 
technique is the multi-Monte Carlo (MMC) method proposed by the research group (Zhao et 
al., 2005, Zhao et al., 2009), which leads the concept of ‘fictitious particles’ where the number 
of fictitious particles and the simulation volume are both maintained constant. The MMC 
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method shows high numerical efficiency and low stochastic error, which makes this method 
applicable for many problems in population balance modeling. Kotalczyk and Kruis (2017) 
introduced ‘stochastic resolution’ to construct a constant-number coagulation scheme, which 
was very similar to the MMC method but with an asymmetric coagulation kernel function. 

 
Although the MMC method can maintain the number of numerical particles, the variation 

in the weight of numerical particles in the size interval is not adjustable. However, the number 
of large numerical particles is still insufficient for some situations. To simulate large particles 
more accurately, the weighted fraction Monte Carlo (WFMC) method is newly proposed and 
developed in the present study. The novelty of the WFMC method is the adjustable weight 
function of the numerical particles, which can ensure that the number of numerical particles  
in different particle size intervals is in the appropriate range by introducing a fraction function,
  . Furthermore, the simulation volume and number of numerical particles are maintained 
constant in the WFMC method by implementing probabilistic removal. The remainder of this 
paper is organized as follows. The WFMC method is first proposed and described in detail. The 
numerical efficiency and precision of the WFMC method are then verified through the 
numerical simulations with different coagulation kernel functions and initial distributions. A 
comparison of stochastic errors for different algorithms is also performed. Furthermore, the 
effects of different fraction functions on the weight function and computational efficiency of 
this algorithm are analyzed. Finally, some major conclusions are drawn. 
 
 
2. Description of the Weighted Fraction Monte Carlo Method 
2.1. Smoluchowski Equation and the Monte Carlo Method 

The Smoluchowski equation describes the time evolution of the PSD during the 
coagulation process (Von Smoluchowski, 1916): 

 
0 0

( , ) 1 ( , ) ( , ) ( , ) ( , ) ( , ) ( , )
2

vn v t u v u n u t n v u t du v u n v t n u t du
t

 


= − − −
           (1) 

where n(v, t) is the particle number density of volume v at time t, and β(u, v) is the coagulation 
kernel function which describes the coagulation rate for two particles with volumes u and v.  
 

Gillespie (1975) developed a stochastic algorithm to solve Equation (1), which is the 
corner-stone of many subsequent developments. The basics of the algorithm are sketched as 
follows.   

 
A coagulation event will occur at a random time, τ, which satisfies a Poisson distribution: 

 0 0 0( )=exp(- )P C     (2) 

where  
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where i and j are the indices of the numerical particles, N; vi and vj are the volumes of the 
corresponding particles, respectively; τ0 is the reference coagulation time; Cij depicts the 
coagulation rate in the simulation volume, V, between particles i and j; and C0 represents the 
total coagulation rate between any two particles, which determines how quickly a coagulation 
event can occur. The coagulation pair is selected according to the probability as follows: 

 
0

( , )= ijC
P i j

C
 (5) 

Then, both particles i and j are removed and a particle of volume vi +vj is added. The details of 
the actual implementation can be found in the original work (Gillespie, 1975). 
 
2.2. Derivation of the Coagulation Rate  

In the classical direct simulation Monte Carlo (DSMC) method, numerical particles are 
assigned the same weight. The number of numerical particles in different particle size intervals 
is proportional to the particle number density. As a result, there is always an insufficient number 
of numerical particles at the tails of the PSD. This introduces stochastic error and a narrower 
PSD in stochastic simulations, which has constrained the application of the classical DSMC 
method (Zhao et al., 2009). These limitations can be overcome by introducing different particle 
weights. This approach considers that each numerical particle is related to a certain number of 
physical particles, and the action (e.g., add/remove/change) is implemented on the numerical 
particle with certain probabilities instead of directly implemented on a real physical particle.  
 

For the coagulation process of numerical particles with different weights, the new 
coagulation rates between numerical particles need to be determined. Specifically, the 
coagulation rate depends on how the coagulation event between a coagulation pair is 
implemented, and then the jump Markov process is constructed based on this new coagulation 
rate. 
 

A numerical particle, i, represents a number of physical particles, wi, with size vi; thus, i 
represents a group of physical particles with number concentration, wi/V. This analysis is the 
same for numerical particle j. From the definition of the collision kernel function (Friendlander, 
2000), the number of real coagulation events occurring among ith-group particles and jth-group 
particles per unit time and volume is given as: 

 ji
ij ij

ww
V V

 =    (6) 

where βij is the collision kernel function for particles i and j, and Фij is the coagulation rate for 
the group of physical particles, i and j. 
 

However, if the probabilistic coagulation rule from Zhao et al. (Zhao et al., 2009) is 
applied, the coagulation event is related to two numerical particles, but not every real particle 
from the numerical particles is considered to participate in the coagulation event. For example, 
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the mean number of real coagulation events per real particle from i or j are considered in the 
MMC method as: 

 = min( , )i jw w  (7) 

If fewer coagulation events between real particles are considered, only a fraction, ij  , of 
coagulation events takes place among numerical particles i and j, and the mean number of real 
coagulation events is then considered as: 

 = min( , ),      1ij i j ijw w    (8) 

It should be noted that the fraction function, ij , cannot have a value greater than 1 because the 
maximum number of coagulation pairs between i and j is equal to min( , )i jw w . In addition, 
the fraction function is not restricted to be constant; it can be a function of any specific 
properties (e.g., particle weight or particle volume) of the numerical particles, i and j, 
considered for coagulation. 
 

Irrespective of the coagulation rule adopted, the coagulation rate of a physical particle 
from the same numerical particle in the simulation volume, V, should always be the same and 
is expressed as follows:  

 ij ij ijC C V  = =   (9) 
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 (10) 

where ijC  is the new coagulation rate of numerical particle pair i and j with numerical 

simulation volume V; 1/ max( , )ij ij i j ijw w   =  is the normalized coagulation kernel, in which

ij   is related not only to the size of the particles but also could be related to their other specific 
properties. Then, the new jump Markov model for the WFMC method is constructed based on 

ij  . 
 

The waiting time between two successive coagulation events of the numerical particles 
obeys an exponential distribution as follows: 

 0 0( )= exp(- )P C C    (11) 

where 

 0
1

N

ij
i j i

C C
= 

 =  (12) 
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For the time-driven Monte Carlo scheme, the occurrence probability, coag ( )P t   , of a 
coagulation event for numerical particles within t   and V is an exponentially distributed 
random variable (Garcia et al., 1987):   

 coag 0( ) 1 exp( )P t tC  = − −  (13) 

Coagulation particle pairs can be randomly selected by the cumulative probability method 
(Liffman, 1992) or the acceptance-rejection method (Lin et al., 2002). However, the 
acceptance-rejection method adopts a simpler and more straightforward criterion for selecting 
the particle pairs compared with the cumulative probability method (Wei, 2013). Hence, the 
acceptance-rejection method is used in the present study. A possible particle pair, i, j, is first 
selected randomly. Then, if the following condition is satisfied, numerical particles i and j are 
accepted as a coagulation particle pair: 

 
,

/ max( )ij kmk m
r  

 
   (14) 

where r is a random number, r~ U [0,1]. 
 
2.3. Treatment of a Coagulation Event  

Once the coagulation particle pair, i and j, is selected, numerical particle i will coagulate 
with its coagulation particle partner, j. As a result, some number of physical particles from 
numerical particle i will also coagulate with those from numerical particle j. However, if 
numerical particles i and j have different weights (e.g., i jw w ), that means there will not be 
enough physical particles in numerical particle j to form particle pairs with those from 
numerical particle i. Therefore, after coagulation events between particle pairs with different 
weights, the physical particles can be separated into “coagulated” physical particles and “non-
coagulated” physical particles. 
   

For a coagulated numerical particle, a new weight, coag min( , )ij i jw w w = , is obtained with 
a new volume equal to the summed volume of the two coagulation particle partners, while the 
other two numerical particles are assigned a new weight equal to the number of non-coagulated 
real particles. The weights for these two numerical particles are min( , )i i ij i jw w w w= −  and

min( , )j j ij i jw w w w = −  . If a coagulation particle pair has equal weight and all physical 
particles will coagulate, then these physical particles can be separated into two groups. With 
an equal weight of two numerical particles, the operations for a coagulation event are similar 
to those of Kotalczyk and Kruis  (2017). Then, the consequences of a coagulation event can 
be denoted as follows: 

 

coag coag

min( , );    
if , min( , );    

min( , );    

i i ij i j i i

i j j j ij i j j j

ij i j i j

w w w w v v
w w w w w w v v

w w w v v v
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


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where w'' and v''  represent the new weight and volume after the coagulation event, 
respectively. In Equations (15) and (16), mass is conserved during coagulation. It should be 
noted that the number of numerical particles remains constant when 1ij   ; under this 
condition, the WFMC method coincides with the MMC method (Zhao et al., 2009). Although 
the WFMC method can assimilate certain traditional differential weight method schemes under 
some specific conditions, this also demonstrates that the WFMC method is a new scheme 
without such specific conditions. Compared with the traditional MMC method, the weight 
distribution in WFMC is adjustable. For other weighted particle schemes, e.g., the mass-flow 
algorithm (MFA) (Babovsky, 1999, Eibeck and Wagner, 2001) and weighted flow algorithm 
(WFA) (DeVille et al., 2011), the weight of numerical particles is not explicitly given in the 
WFMC method, which coincides with the MMC method. 
  
2.4. Probabilistic Removal  

For two coagulated numerical particles with different weights when 1ij  , additional 
new numerical particles need to be created as a result of the coagulation event, which will lead 
to non-constant-number schemes (Kotalczyk and Kruis, 2017). The statistical accuracy and 
numerical efficiency vary as the total number of numerical particles changes.  
 

To maintain the number of numerical particles, a new coagulation rule for the coagulation 
event must be constructed. A common method is the removal of one selected numerical particle 
partner after the coagulation event, followed by adjusting weight of the other particle partner 
is to ensure that the particle properties are statistically unchanged (e.g., the particle 
number/mass). Such a method is always adopted in Monte-Carlo simulations. For the constant-
number method (Lee and Matsoukas, 2000), the additional numerical particles are randomly 
removed after fragmentation events to force the number of numerical particles in the simulation 
to remain constant. For the algorithms of stochastic weighted particle method schemes (Eibeck 
and Wagner, 2001, Patterson et al., 2011, DeVille et al., 2011), to solve the Smoluchowski 
coagulation equation for weighted particles, particle creation and destruction processes are also 
introduced with probabilities of pbirth and pdeath, respectively. Therefore, a new probabilistic 
removal scheme is proposed and developed in the WFMC based on previous studies. The 
probabilistic removal scheme can not only maintain a constant number of numerical particles, 
but also guarantees that the statistics of the particle properties remain on average intact before 
and after the probabilistic removal. The probability of random removal and the weight of 
particles should be first determined. The schematic implementation of this probabilistic 
removal is shown in Figure 1. 
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Figure 1  Treatment of a coagulation event with the probabilistic removal. 
 
When numerical particle i coagulates with its coagulation pair, j, this means that some real 
particles from numerical particle i coagulate with those from numerical particle j. After a 
coagulation event, these particles can be divided into three groups: “coagulated” real particles 
and “non-coagulated” real particles from the ith and jth numerical particles. These are then 
subjected to probabilistic removal to ensure that the number of numerical particles remains 
constant. The “coagulated” particles are always added and maintain their weight in the next 
stage. One of the “non-coagulated” particles is removed, and the other numerical particle 
survives based on the probabilities of birth

iP  and birth
jP . For example, with a probability of 

birth
iP , the ith particle remains and the jth particle is removed; otherwise, the jth particle remains 

and the ith particle is removed. w''' means numerical weight after probabilistic removal, which 
should be adjusted simultaneously to ensure the conservation of particle properties. 

 
To ensure that only one numerical particle will be removed, the probability of survival for 

numerical particles i and j, birth
iP and birth

jP , should satisfy the following:  

 birth birth 1i jP P+ =  (17) 
 

To satisfy the conservation of some particle properties (e.g., particle number/mass) during 

the random removal, the new weight after the random removal particles, iwand jw , should 

satisfy the following: 

 i i i i j j

j j i i j j

w w w
w w w
  

  

  = +


  = +

 (18) 

where i  and j  represent the expected conserved scalar of particles i and j, respectively. 

For 1i  , the number of represented real particles does not change during the random removal; 
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this is called the conserved number removal scheme in the present numerical model 
development. For i iv   , where iv  is the volume of numerical particle i, the total 
mass/volume of the represented real particles does not change during the random removal; this 
is called the conserved volume removal scheme in the present numerical model development.  
 

Combining Equations (15) and (18), yields the following: 

 
min( , ) [ min( , )]

min( , ) [ min( , )]

j
i i ij i j j ij i j

i

i
j j ij i j i ij i j

j

w w w w w w w

w w w w w w w


 




 




= − + −



 = − + −



 (19) 

 
    In order to maintain the arbitrary particle properties, i , they are statistically unchanged 
before and after the random removal. The expectation of these particle properties after random 
removal must be equal to those before random removal; therefore, birth

iP and birth
jP  should also 

satisfy the following: 

 birth birth
i i i j j j i i j jw P w P w w   + =  +  (20) 

By combining Equations (15), (17), (19), and (20), the probabilities of coagulation 
particles, i and j remaining, birth

iP and birth
jP , can then be obtained as follows: 

 

birth

birth
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min( , ) [ min( , )]

min( , )

min( , ) [ min( , )]

i ij i j
i

j
i ij i j j ij i j

i

j ij i j
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i
j ij i j i ij i j

j

w w w
P

w w w w w w

w w w
P

w w w w w w




 






 



−
=

 − + −

 − =


− + −


 (21) 

The above method is called probabilistic removal. After implementing probabilistic removal, 
the constant number scheme remained without loss of its inherent computational accuracy.  
 

The values of the total coagulation rate, 0C  , for all numerical particles must be re-
evaluated after a coagulation event because the size and weight of the coagulation particle pair 
change during the coagulation event. In the present study, the smart bookkeeping method 
(Kruis et al., 2000) is used to evaluate the value of 0C  in order to avoid a large number of 
recalculations of the coagulation rates for particles not participating in coagulation events. The 
details of the newly proposed WFMC method are summarized in Numerical Algorithm I. 
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Numerical Algorithm I: Weighted fraction Monte-Carlo (WFMC) method for particle coagulation  

Step 1.  Initialize time t = 0. Set the initial particle size matrix, X1, X2, . . . , XN of N particles. 

Step 2.  Calculate the fraction function, αij, and coalescence kernels, Cij
' , for N(N−1)/2 as unique 

particle pairs. 

Step 3.  Specify the stopping time, tstop, and the time step, t . 

Step 4.  Randomly choose r from a uniform particle distribution in [0, 1].  If 
coag 0( ) 1 exp( )r P t tC   = − − , then go to Step 5; else, go to Step 9.  

Step 5.  Generate a random numerical particle pair, i, j, and random number, r1, from a uniform 
distribution in [0, 1] using the Monte Carlo method. 

Step 6.  If 1 ,
/ max( )ij kmk m

r  
 

  , go to Step 7; else, return to Step 5. 

Step 7.  Generate a random number, r2, from a uniform distribution in [0, 1]. If birth
2 ir P , particle 

Xj is removed and the weight of iw  is assigned to the particle Xi; else, the particle Xi is removed 
and the weight of jw  is assigned to particle Xj.. 

Step 8.   Add a new particle with size Xi+ Xj and weight min( , )ij i jw w . 

Step 9.   Advance the time, t, by time step, t . 

Step 10. If t > tstop, the calculation is terminated; else, go to Step 11. 

Step 11. Update the coagulation rate, ijC  , for new particle pairs. 

Step 12. Return to Step 4. 

 
2.5. Choice of Fraction Functions 
The general algorithm for the WFMC method with an arbitrary fraction function,  , is 
described in Numerical Algorithm I. However, from the expression of probabilistic removal, if 
there is a large size discrepancy between particle pairs i and j, fluctuations in the total number 
of real particles (for the conserved volume removal scheme) or total mass of real particles (for 
the conserved number removal scheme) will be introduced, resulting in additional stochastic 
error. To minimize this type of stochastic error, an appropriate fraction function must be derived. 
For the probabilistic removal of numerical particle pairs with large size discrepancies, the 
fraction function should be close to or equal to 1; thus, the stochasticity of the probabilistic 
removal can be ignored. This can be formulated as follows:  

 
max( , )/min( , )

lim 1
i j i j

ij
v v v v


→

=  (22) 

where iv  is the volume of numerical particle i. For numerical simulations in Section 3, the 
fraction functions are focused on three forms in Equations (23) - (25). 

 critical

critical

,    if    max( , ) / min( , )  
1,    if    max( , ) / min( , )

i j i j
ij

i j i j

C v v v v p
v v v v p


= 


     (23) 
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where C< 1 is the fraction constant and critical 1p   is the critical ratio. The form of the function 
in Equation (23) is called the stepwise constant fraction function. The other two forms are also 
introduced as follows: 

 1
1 min( , ) / max( , )ij

i j i jv v v v
 =

+
 (24) 

 max( , )/min( , )1 2 i j i jv v v v
ij

−= −  (25) 

The hyperbolic fraction function (HFF) is given in Equation (24), and the exponential fraction 
function (EFF) is given in Equation (25). 
 
2.6. Connection to the Mass-Flow Algorithm 

The mass-flow algorithm (MFA) was proposed by Babovsky (1999) and Eibeck and 
Wagner (2001). In the MFA, a numerical particle of size vi represents a number, 1/vi, of real 
particles of the same size, where the weight function w(vi) is 1/vi. The MFA algorithm is given 
as follows: 
 

The coagulation pair, i and j, is chosen with the coagulation rate: 

 MFA 1 1( )ij ij
i jv v

 = +  (26) 

The algorithm always adds particle vi + vj to the population, and then one of vi or vj is removed. 
With probability vi /(vi + vj), particle vi is removed; otherwise, particle vj is removed. 
 

To compare the MFA and WFMC algorithms, the HFF is chosen, with the conserved 
volume removal scheme and an initial weight of w(vi)=1/vi. In Equations (19) and (21), and the 
coagulation kernel is then expressed as follows: 

 WFMC 1 1( )ij ij
i jv v

 = +  (27) 

 

WFMC WFMC

WFMC WFMC

WFMC WFMC
coag coag

1

1

1 ;    

i i i
i

j j j
j

i j
i j

w v v
v

w v v
v

w v v v
v v


= =


 = =


 = = +

+
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where Equations (27) to (29) in the WFMC method exactly follow the coagulation rule in the 
MFA method. Therefore, the WFMC method can assimilate the MFA method only if all of the 
above conditions are satisfied. It should be noted that the initial particle weight is not forced to 
satisfy w(vi) = 1/vi in the present numerical simulation case. Hence, the HFF method used in 
the present study is a newly proposed scheme compared with the MFA method. 
 
 
3. Numerical Simulations 

Different orders of moments and PSDs are considered as references for evaluating the 
numerical simulation results. The kth order moment is defined as: 

 
0

( )k
kM v n v dv



=   (30) 

Low-order moments typically have some physical meaning, e.g., M0 is the total particle number 
density and M1 is the total particle mass/volume faction.  
 
3.1. Case 1: Constant Coagulation Kernel and Initial Monodispersed Population 

3.1.1. Numerical Validation 

A case with a constant coagulation kernel and initial monodispersed population is 
considered in which the analytical solution is well known (Friendlander, 2000). Numerical 
results of the DSMC (Gillespie, 1975), MMC (Zhao et al., 2009) and newly developed WFMC 
methods for different fraction functions, are compared with the analytical solutions. For the 
initial conditions of this numerical case, the initial particle size distribution is monodispersed 
as follows: 

 
610 ,    if    1 

( ,0)
0,    if    1

u
n u

u
 =

= 


 (31) 

The constant coagulation kernel is expressed as: 

 -5( , ) 10 ,            , =1,2,3,...,i j i j =  (32) 

where the exact solutions of the PSD and kth moment are available in Friedlander (2000). 
 

Figure 2 shows the four orders of moments (M0, M1, M2, M3) simulated by different Monte 
Carlo method schemes and a comparison to the analytical solutions. In the present study, 2000 
numerical particles are used in all of the numerical simulations with 400 repetitions because 
this provided highly accurate numerical results and stable variances, respectively. Other 
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numerical results are simulated using the newly proposed WFMC method for different fraction 
functions, α (i.e., stepwise constant fraction functions, C = 0.5, 0.7, and 0.9 with critical 2.0p = , 
HFF and EFF). In the present study, two different conservation schemes are defined and studied 
in Section 2.4. The conserved number removal scheme, CN is used, otherwise the conserved 
volume removal scheme, CV is chosen.   

 
 (a)                                  (b) 

 
                   (c)                                  (d) 

Figure 2  Comparison of four orders of moments obtained with different Monte Carlo 
methods (DSMC, MMC and WFMC) and the analytical solutions. 

 
Figure 2 shows an excellent agreement between the analytical solutions and numerical 

results for the four orders of moments obtained with different Monte Carlo methods (DSMC, 
MMC and the newly proposed WFMC methods) with stepwise constant fraction functions, C, 
and hyperbolic and exponential fraction functions (HFF and EFF). However, it should be noted 
that the conserved number removal scheme (i.e., 0.5CN) may result in an extremely small 
deviation within a relative error of 0.2% in the total particle volume (M1), as shown in     
Figure 2(b). 
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3.1.2. Stochastic Error of the Moments 
The relative standard deviation (RSD) is used to quantify the stochastic error as follows:  

 

2

1

1 ( )
1RSD

P

ki k
i

k

M M
P

M
=

−
−

=


 (33) 

In Figure 3(a), the RSDs of M0 obtained with the DSMC, MMC and newly developed 
WFMC method with a stepwise constant fraction function exhibit similar trends and lower 
RSDs compared with the WFMC method with the HFF and EFF. However, the RSDs of M1 
are maintained at zero for all of the MC method schemes except for the WFMC method with 
the conserved number removal scheme (0.5CN), as shown in Figure 3(b). Generally speaking, 
all of the MC method schemes can keep the perfect mass balance expect for the newly 
developed WFMC method with the conserved volume removal scheme.  

 

 
 (a)                                  (b) 

 
                   (c)                                  (d) 

Figure 3  Comparison of RSDs for four orders of moments obtained with different MC 
method schemes. 

 
For the RSDs of the M2 and M3 moments in Figures 3(c) and (d), the DSMC method has 

the highest RSD. The WFMC method shows a great capability for reduction of the stochastic 
error, especially with the HFF, EFF and stepwise constant fraction function with C = 0.5. In 
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addition, lower RSDs for higher-order moments (i.e., M2 and M3) are observed for the stepwise 
constant fraction function with a decrease in the fraction constant, C.  
 

Figures 4(a) shows the PSDs at the end of the simulation time, t = 1 s, where the PSD is 
fully developed. An excellent agreement between the numerical results and analytical solutions 
is obtained. The results of different MC method schemes are found to have almost the same 
trends and values. 

 
 (a)                                  (b) 

Figure 4  Comparison of PSDs from the analytical solutions and the number of numerical 
particles in each particle size interval for different MC method schemes at t = 1.0 s.  
 

Figure 4(b) shows the number of numerical particles used in the particle size interval for 
different MC method schemes at t = 1.0 s. The DSMC method has the narrowest numerical 
PSD; therefore, only a few (or no) numerical particles are used to represent the large real 
particles, which results in large fluctuations in the higher-order moments (i.e., M2 and M3). The 
numerical PSD of the MMC method is slightly wider than that of the DSMC method, and more 
large numerical particles are used to represent the real large particles. On the other hand, the 
fraction functions are introduced to ‘twist’ this numerical PSD in the WFMC method. It can be 
observed that although there are fewer numerical particles used to represent the small real 
particles, a greater number of large numerical particles is taken place. These results become 
clearer with a decrease in the stepwise constant fraction function, C, from 0.9 to 0.5. 
 

Figure 5 shows the average particle weight in each size interval, w , for different MC 
method schemes at t = 1.0 s. The average particle weight is defined as: 

 1
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 (34) 

where δ is the Dirac delta function. The DSMC method has a constant average particle weight 
for different particle sizes because all of the numerical particles in the DSMC method have an 
equal particle weight. The average particle weight decreases slightly with increasing particle 
size in the MMC method. Different stepwise constant fraction functions in the WFMC method 
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can lead to different weight functions, which implies that fraction functions are adopted to 
adjust the weight functions; this is one of the most important characteristics of the newly 
proposed WFMC method. For the stepwise constant fraction function in the WFMC method, a 
similar trend is found to that obtained with the MMC method, while the WFMC method has a 
higher weight for small particles and lower weight for large particles. Another interesting 
finding is that the weight functions of the WFMC method with both the HFF and EFF are nearly 
linear in logarithmic coordinates but have different slopes. This linearity indicates that these 
types of weight functions are power-law weight functions that are similar to the weight function 
in the WFA (DeVille et al., 2011). 
 

 
Figure 5  Average particle weight distributions for different MC schemes.  

 
3.2.  Case 2: Free Molecular Coagulation Kernel and Initial Monodispersed Population 

Free molecular coagulation kernel has been widely used in aerosol science and technology 
for particles in the free molecular regime. However, there is no analytical solution for this 
coagulation kernel; thus, the numerical simulation results of the sectional method (SM) are 
used as a reference (Prakash et al., 2003). In the present study, different Monte Carlo method 
schemes are compared with the SM results. To simplify, only the HFF in the WFMC method 
is used. The initial particle size distribution is monodispersed with a typical initial total number 

density of 1710 #/m3 and initial particle size of 1.2407 nm.  

 
The coagulation kernel of particles i and j in the free molecular regime is given by the 

following (Friendlander, 2000): 

 
1 1 11 1
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where T is the local temperature, which is set to be 300K in the present study; vi is the volume 
of the ith particle; and p   is the particle density, which is defined as 1800 kg/m3. In the 
present study, all of the numerical simulations used 2000 numerical particles, and the number 
of simulation repetitions is 400.  
 

Figure 6 shows an excellent agreement for four orders of moments in the free molecular 
coagulation kernel case between the different MC method schemes and SM results. All of the 
MC method schemes show a perfect mass balance.  

 
 (a)                                  (b) 

 
                   (c)                                  (d) 

Figure 6  Comparison of four orders of moments with the free molecular coagulation kernel 
obtained with different MC method schemes and the sectional method. 

 
In Figure 7, there are similar RSD trends for each moment, Mi, for a free molecular 

coagulation kernel obtained with different MC method schemes. Moreover, it is worth noting 
that the proposed WFMC method with HFF has a higher RSD for M0, but it has lower RSDs 
for higher-order moments (i.e., M2, M3) compared with the DSMC and MMC methods. The 
proposed WFMC method shows a significant reduction in stochastic error for higher-order 
moments.  
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 (a)                                  (b) 

 
                   (c)                                  (d) 

Figure 7  Comparison of RSDs for four orders of moments with a free molecular coagulation 
kernel under different MC method schemes. 

 
3.3. Case 3: Free Molecular Coagulation Kernel and Initial Exponential Distributed 
Particle Population 

In Case 3, a free molecular coagulation kernel is adopted and the initial size distribution 
is represented by an exponential function as follows (Zhao et al., 2005): 

 0 0 0( ,0) [ exp( / )] /g gn v N v v v= −  (36) 

where 0gv  is the initial mean volume, which is defined as 22 3
0 =1 10 mgv −  (Liu and Chan, 

2018b) in the present study. The numerical results of the DSMC, MMC, and WFMC methods 
are shown in Figure 8.  
 

Figure 8 shows an excellent agreement in the four orders of moments with the free 
molecular coagulation kernel and initial exponential distribution between the different MC 
method schemes and SM results.  
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 (a)                                  (b) 

 
                   (c)                                  (d) 

Figure 8  Comparison of four orders of moments with a free molecular coagulation kernel and 
initial exponential distribution. 

 
Figure 9 shows the PSDs at different simulation times: t = 0.1 s, t = 0.5 s, and t = 1.0 s    

(t = 0 s is the initial exponential distribution). An excellent agreement between the MC methods 
and SM results is obtained. The results of different MC method schemes are also found to have 
excellent agreement. As the simulation time advances, the PSDs shift to a larger-size regime 
due to the occurrence of coagulation events. Figure 9 also shows that the widest PSD can be 
found in the WFMC results compared with the DSMC and MMC results, especially for the 
larger-size regime, which will have a higher contribution to higher-order moments. Therefore, 
this suggests that the WFMC method can predict the larger particle size distribution more 
accurately as well as the higher-order moments. 
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Figure 9  Particle size distributions obtained with different MC method schemes and the 
sectional method. 

3.4. Computational Efficiency Analysis 
To evaluate the computational efficiency of the WFMC method, the normalized 

computational time, τ, is defined as follows: 

 ref= /t t  (37) 

where tref is the reference time, and t is the amount of computational time required for the 
corresponding DSMC, MMC, and WFMC methods. In the present study, the reference value 
is the computational time for the constant coagulation case (Case 1) obtained with the DSMC 
method. The normalized computational times, τ, for the studied cases are listed in Table 1. 
 
Table 1  Normalized computational times, τ, obtained for different cases using the DSMC, 
MMC and WFMC methods. 
 

Parameter DSMC MMC C= 0.5CN C= 0.5 C= 0.7 C= 0.9 EFF HFF 
Case 1 1.0 1.4 1.5 1.8 1.5 1.5 2.8 1.6 
Case 2 4.3 7.4 - - - - - 8.1 
Case 3 4.1 7.8 - - - - - 8.3 

 
Table 1 indicates that the DSMC method generates the lowest values of τ compared with the 

other MC methods. This is because although the same initial number of numerical particles is 
used for these MC methods, the number of numerical particles will continuously decrease as 
time advances owing to the coagulation events, resulting in lower computational cost. However, 
the computational accuracy will also decrease as the number of total numerical particles 
decreases. 
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In Table 1, the numerical simulation time of the WFMC method is slightly higher than 
that of the MMC method, which is attributed to two factors. On one hand although both the 
WFMC and MMC methods can maintain a constant number of numerical particles, the WFMC 
method must deal with a more complex coagulation kernel compared with the MMC method 
(i.e., the kernel function is max( , ) /i j ij ijw w    in the WFMC method and max( , )i j ijw w  in the 
MMC method). Hence, a longer CPU time is required to calculate the coagulation kernel in the 
WFMC method. On the other hand, the coagulation kernel function in the WFMC method is 
always larger than that in the MMC method (for example, 1ij  ). The larger total coagulation 

rate, 0C , in the WFMC method leads to a shorter coagulation waiting time for event-driven 
schemes, as shown in Equation 11, or more coagulation events for time-driven schemes, as 
shown in Equation 13, thus resulting in higher computational time. This can also explain the 
varying calculation times for different types of fraction functions in the WFMC method. 

 

4. Conclusions 

A new weighted fraction Monte Carlo (WFMC) method is well developed and validated 
in the present study. In the WFMC method, a new coagulation particle rule is derived that 
allows changes in the mean number of real coagulation events between two numerical particles. 
Then, to maintain a constant number of numerical particles, the probabilistic removal method 
is also proposed. The WFMC method can reduce stochastic error by adjusting the weight 
function to ‘twist’ the numerical particle size distribution (PSD) and change the number of 
numerical particles that represent real particles in each size interval. The method for particle 
coagulation is validated through three classical cases. An excellent agreement between the 
numerical simulation results of the WFMC and analytical solutions/sectional method results is 
obtained. The WFMC method shows a significant reduction in stochastic error for higher-order 
moments with a slightly higher computational cost because there are more numerical particles 
used to represent real physical particles in larger-size regime. In addition, the proposed WFMC 
method also shows the significant advantage of tracking the PSD over the larger size regime, 
which is traditionally insufficient in the classical DSMC and MMC methods.  
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