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Abstract 

Noise insulation in buildings is an important topic in building acoustics. Existing literature 

shows a clear lack of simulation tools for the design, analysis, and assessment of the sound 

insulation performance of building structures, especially when the frequency of interest 

becomes higher. To tackle this problem, a numerical based Condensed Transfer Function (CTF) 

method, alongside a piecewise calculation scheme, is adapted to investigate a simplified 

Double Skin Façade (DSF) system. Embracing a sub-structuring philosophy, the method offers 

an appealing alternative to existing analyses ones in terms of providing enhanced 

computational efficiency and enriched physical description of the system. Numerical analyses 

reveal dominant sound transmission paths into a typical receiving room. Meanwhile, as sound 

reduction devices, microperforated panels are investigated in two arrangements, triggering 

different sound absorption behaviors and design principles. The proposed model allows 

extensions to other building structures.  
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1. Introduction 

Noise insulation in buildings greatly affects the quality of living comfort, thus motivating 

persistent effort in developing innovative solutions. The history of building acoustics begins 

with the famous reverberation formula proposed by Sabine in the late 1890s. Since then, 

various prediction tools were developed, exemplified by methods based on geometrical 

acoustics, diffusion equation and wave propagation [1]. Geometrical methods and diffusion 

equation methods are highly descriptive and therefore frequently applied in a much-simplified 

form to increase the modeling efficiency in the high-frequency range [2, 3]. The former one, 

which is also referred to as ray acoustic methods, considers the fact that the sound travels along 

straight lines while the latter is energy-based which allows efficient prediction of the acoustic 

properties of a room such as reverberation time. By comparison, wave methods are developed 

based on the solutions of the wave equation, which are inevitably more computationally 

intensive. However, wave based methods generally offer better and more detailed physical 

descriptions of the system, more conducive to system design and optimization [4, 5].  

To solve the wave equation, numerical tools used in traditional vibro-acoustics are generally 

applied, such as the Boundary Element Method (BEM) and Finite Element Method (FEM). For 

example, Arjunan et al developed a 2D FEM to predict the Sound Reduction Index (SRI) of a 

stud-based double leaf wall of finite size [6]. Despite the insightful analyses, it was recognized 

that the extension of the method to 3D analyses would be difficult due to the large number of 

elements needed. In fact, as a rule of thumb,  at least 8 elements per wavelength are usually 

required to obtain converged and reliable results [6]. Transfer Matrix Method (TMM) is an 

efficient modeling tool to deal with the prediction of sound transmission in multilayer systems. 

Santoni et al [7] developed a numerical model based on the TMM to calculate the ratio of 

average velocity between two layers 𝑆1  and 𝑆2 . The model shows good agreement with 

experimental data in the low-frequency range. Nevertheless, despite its effectiveness in dealing 



 

 

with sound transmission problems, TMM method needs further improvement in terms of 

acoustic field prediction within the inner layer. Using a double leaf partition configuration, the 

Finite Layer Method (FLM) [8] shows improved computational efficiency. The FLM uses the 

modal decomposition technique to model the partition in the in-plane direction and the FEM 

in the perpendicular direction. However, when an opening is present in the partition, as in the 

case of a Double Skin Façade (DSF) system, the method fails. The so-called DSF design 

represents a new type of building structure, which gains increasing popularity due to the 

immense economic benefit it offers. A typical DSF consists of two parallel skins/panels 

arranged in such a way that the air can flow within the intermediate cavity, which enables a 

reduced energy consumption while allowing for natural ventilation. For the obvious thermal 

and energy benefit, the use of DSF in building design has been attracting increasing attention 

in the last two decades. While the thermal aspect has been adequately considered owing to the 

available analysis and design tools, it is not quite the case for noise consideration. A typical 

example among some useful attempts is the work of Urban et al. in which a simple model was 

established for the acoustic prediction of a naturally ventilated DSF structure with openings 

[9]. It is well accepted that one of the major problems of the DSF system is the increasing noise 

transmission into the building. However, most existing evaluations on the acoustic 

performances of façades and windows are based on relatively simple empirical formulae [10-

13], which, despite their simplicity and usefulness, can hardly address the issue of parameter 

tuning and sophisticated optimization at the early design stage. Indeed, the noise insulation 

properties of a DSF system are highly dependent on numerous system parameters (material 

properties of skins, dimensions of cavities, size of apertures, possible uses of acoustic control 

devices, etc.). Meanwhile, the large size of the system and the wide frequency range to be 

considered both increase the modal density of the system, thus posing even harsher demand on 

the numerical tools.  



 

 

Another challenge roots in the integration and the performance prediction of various noise 

mitigation measures into the modelling framework, exemplified by sound absorbing devices. 

Typical examples include porous materials [14-16] or Micro-Perforated Panels (MPP) 

targeting high frequencies and wide bandwidth [17-19] and Helmholtz Resonators targeting 

low frequencies and tonal noise [20-22]. Although extensive research on the acoustic properties 

of an individual device has been available, their inclusions in complex vibroacoustic systems, 

such as a DSF system, pose additional challenges. The unknowns are mainly in two aspects: 1) 

the need to model the coupling between the physical environment and the sound absorption 

devices; 2) the characterization of the in-situ performance of different sound absorption 

arrangements and the understanding of their physical mechanisms. While several experimental 

investigations on the noise insulation performance of building façades were conducted, existing 

numerical models are either time consuming or lack required finesse in terms of accuracy or 

the information provided. An ideal tool should be the one that can balance the required 

simulation accuracy and efficiency and provide flexibility as well as the wealth of information 

for a large DSF system over a broad frequency range. 

 The above analyses motivated the present research, which intends to offer its novelty 

through targeting a twofold-objective: 1) adapting a so-called Condensed Transfer Function 

(CTF) method and dealing with the aforementioned modelling challenges, mainly in the mid 

frequency range, in a typical DSF system, with MPP-based sound absorption devices integrated 

as a coupled component; and 2) analyzing noise transmission paths through the system and the 

in-situ sound absorption mechanisms of different sound absorption arrangements to explore 

possible ways to improve the noise insulation of a typical DSF design.  

The CTF method has been developed for the modelling of complex vibroacoustic systems 

under a sub-structuring philosophy. The method embraces the principle of sub-structuring to 

push the computational limit through obtaining transfer functions of sub-system models before 



 

 

system assembly. Transfer functions of uncoupled sub-systems can be calculated using 

different methods (analytical, numerical or even experimental). The method has been 

employed to study a wide range of mechanical problems [23-25]. Compared with FEM, the 

CTF method incurs a lower computational cost owing to its less demanding meshing criteria. 

As an important step of improvement, recent research proposed a piecewise calculation scheme 

for the mid-to-high frequency modelling [26]. It was shown that the computational efficiency 

could be further improved in weakly coupled systems when the interface functions can match 

the structure wave motions. The scheme was later extended to strongly coupled systems and 

experimentally validated [27]. 

This paper aims at adapting the CTF method and the piecewise scheme to accommodate the 

vibro-acoustic simulation of a typical DSF system and investigate the possible noise mitigation 

measures by using MPP-based acoustic treatment. After establishing the general modelling 

framework, numerical analyses are performed on a typical acoustic room coupled with a DSF 

system in terms of frequency responses, sound insulation performance, energy transmission 

path, as well as the physical mechanism of the MPPs. It is shown that the flexibility and the 

modularity of the proposed method suit particularly well the analysis and design needs of DSF 

systems, especially at the early design stage. For DSFs which fail to provide adequate acoustic 

insulation, integrating MPP absorptions, either in the form of wall treatment or a suspended 

curtain/screen, provides an efficient solution for noise mitigation, though with different 

absorption behavior and design principles. Numerical examples demonstrate that the proposed 

modeling methodology allows a fine and detailed description of the system with a relatively 

complex configuration and a large dimension in the mid frequency range. 

2. Theoretical Model and Formulation 



 

 

Consider a DSF system, comprising mainly a double glass glazing and an acoustic room, as 

shown in Fig. 1. Incident sound waves impinge upon the outer glass, which radiates sound into 

a space between the outer glass and the inner glass. This space is referred to as DSF cavity. 

The inner class contains a ventilation opening connecting the DSF cavity and a receiving room. 

Both glass panels are considered to be flexible. Therefore, acoustic energy can be transmitted 

into the room via both the inner glass and the ventilation opening. To increase the sound 

absorption inside the room, MPPs are installed in two different ways. As shown by the dotted 

lines in Fig. 1, option 1 is to use an MPP as a screen/curtain inside the DSF cavity, whilst option 

2 has an MPP absorber (MPPA) installed as a sidewall on the room ceiling. For the latter, the 

MPPA comprises a sheet of MPP with a backing cavity, which is partitioned into small volumes 

to avoid the interactions among different holes [18]. Therefore, the MPPA is considered as 

locally reacting. All other walls of the room, as well as the sidewalls of the DSF cavity, are all 

assumed to be acoustically rigid. As a special case, when the MPPA is absent, the room ceiling 

becomes a rigid wall.  

 

Figure 1 Configuration of the DSF system under investigation. 



 

 

Several notations are annotated in Fig. 1, to be used in the formulation. The MPP screen 

divides the DSF cavity into two sub-cavities: C1 and C2. When the MPP is absent, the DSF 

cavity is denoted as C1 only. The acoustic room is denoted as C3. The outer glass, inner glass, 

and the ventilation opening are represented as interfaces 1, 2, and 3, respectively. The MPP 

screen and the locally reacting MPP wall are denoted as interfaces 4 and 5, respectively. 

It can be seen that the entire DSF system involves the interactions among different sub-

domains in different combinations, namely acoustic-structure, acoustic-acoustic, and acoustic-

MPP/MPPA. To explain the modelling procedure and the underlying methodology, an 

illustration is firstly presented for two neighboring sub-domains. Then, the same procedure is 

generalized and applied to all sub-systems, which result in an assembled set of system 

equations for the entire DSF system. In the end, the piecewise calculation scheme is presented 

to show how the computational burden can be reduced. 

2.1 Modelling of Neighboring Sub-systems 

Firstly, we consider the interaction between two representative sub-systems coupled over 

an interface Γ, as shown in Fig. 2, in which the left one is either a structural or an acoustical 

component whilst the right one is an acoustic component. 

 

Figure 2 Two sub-systems coupled through an interface. 



 

 

The physical quantities over Γ are assumed to be coordinately separable. A set of 

orthonormal functions 𝜑𝑟𝑠(𝑥, 𝑦), referred to as Condensation Functions (CFs), is employed to 

approximate the velocities and the forces over Γ, as 

{
𝑈𝛼(𝑥, 𝑦) = ∑ 𝑢𝑟𝑠

𝛼 𝜑𝑟(𝑥)𝜑𝑠(𝑦)𝑟,𝑠

𝑃𝛼(𝑥, 𝑦) = ∑ 𝑝𝑟𝑠
𝛼 𝜑𝑟(𝑥)𝜑𝑠(𝑦)𝑟,𝑠

,                                             (1) 

where 𝑢𝑟𝑠
𝛼  and 𝑝𝑟𝑠

𝛼  are the amplitudes of the velocity and the sound pressure for each sub-

system, denoted by 𝛼=1 and 𝛼=2, respectively. The acoustic impedance over Γ can be obtained 

by imposing a prescribed velocity distribution on it. For example, the condensed acoustic 

impedance between 𝜑𝑟𝑠 and 𝜑𝑘𝑙 can be written as 

𝑍𝑘𝑙,𝑟𝑠 =
<�̅�𝑟𝑠,𝜑𝑘𝑙>

<𝑈,𝜑𝑟𝑠>
=< �̅�𝑟𝑠, 𝜑𝑘𝑙 >,                                             (2) 

where �̅�𝑟𝑠 is the blocked pressure on Γ when the subsystem is subjected to velocity excitation 

𝑈(𝑥, 𝑦) = 𝜑𝑟(𝑥)𝜑𝑠(𝑦), and <𝑓, 𝑔> is a scalar product defined as ∫ 𝑓(𝑥, 𝑦)𝑔∗(𝑥, 𝑦)𝑑𝑆
Ω

 with 

𝑔∗ being the complex conjugate of 𝑔. Similarly, the condensed mobility between 𝜑𝑘𝑙 and 𝜑𝑟𝑠 

can be written as 

𝑌𝑟𝑠,𝑘𝑙 =
<�̅�𝑘𝑙,𝜑𝑟𝑠>

<𝑃,𝜑𝑘𝑙>
=< �̅�𝑘𝑙, 𝜑𝑟𝑠 >.                                            (3) 

The velocity continuity and force equilibrium over Γ between the two sub-systems give 

{ 𝑈1 = 𝑈2

   𝑃1 = −𝑃2.                                                             (4) 

Then multiplying both sides of Eq. 4 by 𝜑𝑟𝑠, and integrating over Γ, the orthogonality of the 

CFs alongside Eq. 3 gives: 

{
𝑢𝑟𝑠

1 = 𝑢𝑟𝑠
2

   𝑝𝑟𝑠
1 = −𝑝𝑟𝑠

2 .                                                           (5) 



 

 

Following the procedure as detailed in Ref. [26], the coupled velocity on Γ can be finally 

expressed as 

𝐔𝐜 = −[𝐙𝐂
1 + 𝐙𝐂

2]−1𝐏𝐞,                                                      (6) 

between the two acoustical sub-systems, or 

𝐔𝐜 = −[(𝐘𝐂
1)−1 + 𝐙𝐂

2]−1𝐏𝐞,                                                 (7) 

between a structural sub-system and an acoustic sub-system, where 𝐙𝐂 is a matrix containing 

the condensed impedance of the acoustic sub-system over the interface, 𝐘𝐂  is a matrix 

containing the condensed mobility of the structural sub-system over the interface, 𝐔𝐜 and 𝐏𝐞 

are the velocity and the blocked pressure induced by the sound source. 

The presence of MPP deserves particular attention in terms of modelling. The acoustic 

impedance of an MPP can be written as, 

𝑧𝑀𝑃𝑃 = 𝑟 + 𝑗𝜔𝑚,                                                       (8) 

where 𝜔 is the angular frequency and the detailed expressions of r and m can be found in the 

work of Maa [18]. When the MPP is subject to a grazing flow (for instance, due to the 

ventilation system), the impedance formula in Eq. 8 could be replaced by the one proposed by 

Zhang and Cheng [28]. Then, the velocity over the surface of the MPP shall be determined by 

the acoustic pressure difference across the MPP [29], as 

𝑢𝑀𝑃𝑃 =
𝑝1−𝑝2

𝜌0𝑐𝑧𝑀𝑃𝑃
,                                                        (9) 

where 𝜌0 is the air density; c the sound velocity; and 𝑝1 and 𝑝2 the acoustic pressure over the 

MPP surface in cavity C1 and C2, respectively. For the MPPA wall, a backing cavity with a 

depth D is considered. The backing cavity contributes no additional acoustic resistance to the 



 

 

MPPA but a relative acoustic reactance −cot (𝜔𝐷/𝑐). As a result, the resulting acoustic 

impedance of the MPPA over its front surface is given by 

𝑧𝑀𝑃𝑃𝐴 = 𝑟 + 𝑗[𝜔𝑚 − cot (
𝜔𝐷

𝑐
)].                                         (10) 

The velocity over the MPPA wall is then determined by the sound pressure p over its surface 

as, 

𝑢 =
𝑝

𝜌0𝑐𝑧𝑀𝑃𝑃𝐴
.                                                        (11) 

Applying the CTF modelling procedure, the acoustic pressure and particle velocity relationship 

in Eqs. 9 and 11 should be implemented to the corresponding CF coordinate as in Eq. 2 for the 

MPP modelling. 

2.2 Sub-system Assembling and the Piecewise Calculation Scheme 

The above modelling procedure is implemented in the entire DSF system depicted in Fig.1. 

The required condensed impedance or mobility can be separately obtained for the DSF cavity, 

acoustic room, and the two glasses, respectively. Note all these quantities can be calculated 

before they are coupled together. In what follows, 𝐘1 and 𝐘2 denote the condensed mobility of 

the outer and inner glasses, respectively. For the condensed impedance, taking 𝐙23
𝐶3  as an 

example, the superscript C3 represents the room and the subscript 23 represents the prescribed 

velocity at interface 2 and the resulting pressure response at interface 3. The condensed 

impedance matrices of the MPP screen and the MPPA wall are termed as 𝐙𝑀𝑃𝑃 and 𝐙𝑀𝑃𝑃𝐴, 

respectively. 

Finally, the governing equations of the whole DSF system can be cast into the following 

form, 

(𝐘1
−1 − 𝐙11

𝐶1)𝐔1 + 𝐙41
𝐶1𝐔4 = 𝐏𝑒, 

(12) 



 

 

(−𝐙22
𝐶2 − 𝐙22

𝐶3 + 𝐘2
−1)𝐔2 + (𝐙32

𝐶2 + 𝐙32
𝐶3)𝐔3 + 𝐙42

𝐶2𝐔4 + 𝐙52
𝐶3𝐔5 = 𝟎, 

(𝐙23
𝐶2 + 𝐙23

𝐶3)𝐔2 − (𝐙33
𝐶2 + 𝐙33

𝐶3)𝐔3 + 𝐙43
𝐶2𝐔4 + 𝐙53

𝐶3𝐔5 = 𝟎, 

𝐙14
𝐶1𝐔1 + 𝐙24

𝐶2𝐔2 + 𝐙34
𝐶2𝐔3 − (𝐙44

𝐶1 + 𝐙44
𝐶2 + 𝐙𝑀𝑃𝑃)𝐔4 = 𝟎, 

𝐙25
𝐶3𝐔2 + 𝐙35

𝐶3𝐔3 − (𝐙55
𝐶3 + 𝐙𝑀𝑃𝑃𝐴)𝐔5 = 𝟎, 

The condensed velocity of the system with MPP can then be solved as 

[
 
 
 
 
 
 
𝐔1

𝐔2

𝐔3

𝐔4

𝐔5]
 
 
 
 
 
 

= 𝐈𝑀𝑃𝑃
−1  

[
 
 
 
 
 
 
𝐏𝑒

𝟎

𝟎

𝟎

𝟎 ]
 
 
 
 
 
 

,                                                      (13) 

where 𝐈𝑀𝑃𝑃 is written as 

[
 
 
 
 
 
 
 
 
𝐘1

−1 − 𝐙11
𝐶1 𝟎 𝟎 𝐙41

𝐶1 𝟎

𝟎 𝐘2
−1 − 𝐙22

𝐶2 − 𝐙22
𝐶3 𝐙32

𝐶2 + 𝐙32
𝐶3 𝐙42

𝐶2 𝐙52
𝐶3

𝟎 𝐙23
𝐶1 + 𝐙23

𝐶2 −𝐙33
𝐶1 − 𝐙33

𝐶2 𝐙43
𝐶2 𝐙53

𝐶3

𝐙14
𝐶1 𝐙24

𝐶2 𝐙34
𝐶2 −𝐙44

𝐶1 − 𝐙44
𝐶2 − 𝐙𝑀𝑃𝑃 𝟎

𝟎 𝐙25
𝐶3 𝐙35

𝐶3 𝟎 −𝐙55
𝐶3 − 𝐙𝑀𝑃𝑃𝐴]

 
 
 
 
 
 
 
 

. 

If either of the two MPP interfaces is absent, the corresponding  𝐔4 or 𝐔5 becomes zero.  

To warrant the convergence of the calculation, the number of CFs used in Eq. 2 should be 

properly selected and large enough to ensure the convergence of the calculation for the 

maximum frequency of interest. For the mid-to-high frequency range, the computational time 

would significantly increase as the matrix size becomes larger. Previous research shows that 

the number of CFs used can be reduced if the CFs match the wave feature over the coupling 

interface in the mid-to-high frequency range, which is defined as where the modal overlap 

factor becomes larger than one [26]. One representative example of the CFs is the complex 

exponential functions 



 

 

 𝜑𝑟𝑠(𝑥, 𝑦) =
1

√𝐿𝑥𝐿𝑦
exp (𝑖

2𝑟𝜋𝑥

𝐿𝑥
)exp (𝑖

2𝑠𝜋𝑦

𝐿𝑦
),                                     (14) 

in which 𝑟 ∈[0, ±1, ±2, …, ±𝑁𝑥 ], 𝑠 ∈[0, ±1, ±2, …, ±𝑁𝑦 ]. 𝑁𝑥  and 𝑁𝑦  are two positive 

integers. The wavelength of 𝜑𝑟𝑠(𝑥, 𝑦) is defined as

𝜆𝑐,𝑟𝑠(𝑥, 𝑦) =
2𝜋

√(
2𝑟𝜋

𝐿𝑥
)2+(

2𝑠𝜋

𝐿𝑦
)2

.                                                (15) 

For a targeted frequency band [𝑓𝑙 , 𝑓ℎ] corresponding to a wavelength range [𝜆ℎ, 𝜆𝑙], it was 

shown that the condensed velocity 𝐔c would converge well by only including those dominating 

terms 𝜑𝑟𝑠 which satisfy 𝜆ℎ<𝜆𝑐,𝑟𝑠<𝛽𝜆𝑙, with 𝛽=1.5 in the calculation. The truncated series is 

also shown to dominate the condensed impedance matrix and the condensed mobility matrix. 

Such a treatment was referred to as a piecewise calculation scheme, which will also be used in 

the subsequent numerical analyses. As a result, the scheme allows a significant reduction in 

the size of 𝐈𝑀𝑃𝑃  so that the computational time can be considerably shortened, as to be 

substantiated later. 

3. Numerical Results and Analyses 

In this section, numerical results are presented and analyzed in terms of system response, 

sound insulation, energy transmission path, and MPP absorption effects. The acoustic 

properties of the system without MPP is studied first. The two glass panels are assumed to be 

simply supported, whose thicknesses are 18mm and 12mm for the outer and inner glasses, 

respectively. The modeling of other plate boundary conditions can be found in the previous 

work [26]. The outer glass is subject to a diffused incident sound pressure excitation with an 

amplitude of 0.2Pa. All other geometrical parameters of the system are given in Fig. 1. 

3.1 System Response Predictions 



 

 

The acoustic response in the system is first studied. The predicted Sound pressure level 

(SPL), calculated by the CTF model at a randomly selected point (0.6, 1.9, 2.9)m inside the 

room, is shown in Fig. 3a. Recall that the mid-frequency is considered when the modal overlap 

factor is one which is approximately 220Hz for the present room. Therefore, the calculation 

for the low-frequency range is conducted using the full CTF calculation, i.e. considering only 

𝜆ℎ<𝜆𝑐,𝑟𝑠 . After entering into the mid-frequency range starting from 220Hz, the piecewise 

calculation scheme is used. The piecewise calculation scheme is implemented within six one-

third octave bands centered at 250Hz, 315Hz, 400Hz, 500Hz, 630Hz, and 800Hz, respectively. 

Similar treatment will be followed throughout this paper.  

Comparisons are first made with the Finite Element Method (FEM) for validation purposes 

using COMSOL. In the model, a zero sound absorption coefficient is assigned to the hard walls 

of the room.  Due to the inherent limitation of the FEM in terms of frequency outreach, only 

the low-frequency results are compared. It can be seen in Fig. 3a that all the resonance peaks 

are well predicted despite some discrepancies at some anti-resonance frequencies and the level 

of some resonance peaks. While the peaks due to the resonances of glasses can be clearly 

identified in Fig. 3a, those acoustically resonant peaks cannot be simply attributed to the room 

modes alone. Due to the ventilation opening, the acoustic field in the system is a result of the 

coupling between the room and the DSF cavity. Generally, the agreement between the two sets 

of results is more than acceptable.  

Figure 3b plots the SPL distribution over a cross-surface at x = 0.6m at 329Hz, which is 

arbitrarily selected. It can be seen that the detailed acoustic field, as well as the sound pressure 

contour lines, can be obtained. The established CTF method provides a fine and informative 

description of the sound pressure distribution over the acoustic room, which allows further 

analyses and eventually sound field optimizations. It is worth noticing that, in Figs. 3a and 3b, 

the wealth of information largely exceeds what can be obtained by most commonly used 



 

 

simulation methods in mid-to-high frequency building acoustics, such as the Statistical Energy 

Analysis (SEA). 

 

(a) 

 

(b) 



 

 

Figure 3 Acoustic response within the room: (a) SPL at a randomly selected receiving point 

(0.6, 1.7, 2.4) m, compared with the FEM results in the low-frequency range up to 220Hz; (b) 

SPL field map at a cut surface x = 0.6 m, at 329Hz. 

The mean quadratic velocity (MQV) 〈𝑈𝛼〉2  is commonly used as an indicator for the 

analyses of vibrating panels, defined as: 

〈𝑈𝛼〉2 =
1

2𝑆
∬ 𝑢𝛼(𝑥, 𝑦)𝑢𝛼

∗ (𝑥, 𝑦)𝑑𝑆𝑥,𝑦𝑆
,                                       (16) 

where S is the area of the panel, 𝑢 is the its velocity, and 𝛼 is the index of the glass as shown 

in Fig. 2. However, thanks to the orthogonality of the complex exponential functions, the MQV 

of the two glass panels can be simply obtained by substituting the velocity vectors in Eq. 13 

into Eq. 16, as: 

〈𝑈𝛼〉2 =
1

2𝑆
∑ |𝑢𝑟𝑠

𝛼 |2𝑟,𝑠  .                                                   (17) 

The MQVs of the two glasses are shown in Fig. 4. It can be seen that the velocity difference 

between the two glasses is relatively small in the very-low-frequency range where the acoustic 

wavelength is much larger than the depth of the DSF cavity. Particularly for the first few panel 

resonances, the peak values of the two glasses are almost the same. This can be explained by 

the double leaf partition model by Fahy [30], in the sense that the two glasses will act as a 

single one and vibrate in phase when the separation between them is small compared with the 

acoustic wavelength. For the present depth between the two glasses, this frequency should have 

been 425Hz where the acoustic pressure within the DSF cavity can be assumed to be uniform. 

However, the effective depth of the DSF cavity is extensively enlarged due to the ventilation 

opening and the large dimensions of the room in the back. Therefore, this frequency is lowered 

to approximately 100Hz as observed in Fig. 4. In the mid-to-high frequency range, the velocity 



 

 

amplitude of the outer glass becomes significantly larger than that of the inner glass, typically 

of a few orders of magnitude higher than that of the inner glass.  

 

Figure 4 CTF prediction results: mean quadratic velocities of the two glasses. 

To show the efficiency improvement by the piecewise calculation scheme, a size reduction 

ratio R of matrix 𝐈𝑀𝑃𝑃 in Eq. 13 is defined as 

𝑅 =
𝑁𝑓−𝑁𝑝

𝑁𝑓
× 100%                                                   (18) 

where 𝑁𝑓 and 𝑁𝑝 are the number of elements in 𝐈𝑀𝑃𝑃 in full and piecewise calculation schemes, 

respectively. R is tabulated in Table 1 for different configurations and frequency bands. It can 

be seen the piecewise calculation scheme leads to a significant reduction in the size of the 

matrix to be maneuvered, especially for the mid-to-high frequency range. Additionally, the 

improvement is more evident when the number of involved coupling interfaces increases. 

 

 



 

 

Table 1 Matrix size reduction ratio by the piecewise calculation scheme compared with the full 

CTF calculation 

Size Reduction Ratio (%) 
One-third Octave Centre Frequency (Hz) 

400 500 630 800 1000 

Empty Room 27.4 38.5 41.3 43.0 39.1 

MPPA Wall 30.3 42.2 42.5 43.9 42.4 

MPP Screen 32.5 42.3 42.9 44.1 43.4 

Wall and Screen 34.5 43.1 43.6 45.8 45.3 

 

3.2 Analyses on the sound transmission paths 

For the general noise control purposes, it is vital to identify the dominant energy 

transmission path in a complex system. In the present case, to further understand how the sound 

energy is transmitted into the room, the sound power transmitted through two possible paths, 

i.e. ventilation opening and the inner glass, are compared. The transmitted sound power level 

𝐿𝑤 is obtained by integrating the sound intensity over the ventilation opening and the inner 

glass, respectively as 

𝐿𝑤 = 10 log10 (
∫ 𝐼𝑧𝑑𝑆
𝑆

10−12 ),                                                  (19) 

where 𝐼𝑧 is the z-direction component of the sound intensity and S is the area of either the inner 

glass or the ventilation opening. Because 𝐿𝑤 is generally positive, we use 𝐿𝑤 to represent the 

power going into the room (positive 𝐼𝑧) and −𝐿𝑤 to represent the power going out of the room 

(negative 𝐼𝑧). Figure 5a shows the power transmitted via the inner glass. The upper half of the 

figure (y>0) shows the power flows into the room while the lower half (y<0) presents that out 

of the room. While acoustic energy is mostly generated by the inner glass vibration, thus 

injecting positive power into the room, it can also be noticed that at some frequencies, the 

acoustic power can flow out of the room into the inner glass. On the contrary, the sound energy 



 

 

generally flows into the room via the ventilation opening in a very predominant way, except 

for a few very narrow bands at low frequencies, as shown in Fig. 5b.  

 

(a) 

 

(b) 

Figure 5 Transmitted acoustic power into the room via: (a) Inner glass; (b) Ventilation 

opening. 



 

 

Due to its dominant role in sound energy transmission, the transmissibility of the ventilation 

opening is further analyzed with respect to its opening size in the y-direction. For 

quantifications, in this paper the sound reduction index (SRI) is defined as 

SRI = 𝐿𝑤𝑜−𝐿𝑤𝑖 − 𝐿𝑤𝑣,                                                   (20) 

where 𝐿𝑤𝑜, 𝐿𝑤𝑖, and 𝐿𝑤𝑣 are the sound power transmitted through the outer glass, inner glass, 

and ventilation opening, respectively. In the analyses, the total height of the inner glass and the 

opening is kept constant, i.e. the height of the inner glass reduces as the size of the opening 

increases. Other dimensions and boundary conditions remain the same as before. Figures 6a 

and 6b present the SRI with respect to different opening sizes at two arbitrarily selected 

frequencies, i.e. 500 and 600Hz, respectively. It can be observed that the SRI firstly fluctuates 

while taking a slightly increasing trend as long as the opening size is larger than the half 

wavelength of the acoustic waves, as shown by the vertical dash line. This can be attributed to 

the complex modal interaction between the DSF cavity and the room, which was identified as 

a “strong coupling” case in our previous work [27]. The sound transmission is dominated by 

the opening in this region. When the opening size approaches or becomes smaller than the half 

acoustic wavelength, the SRI sharply increases due to the vanishing of higher order waves 

along the y-direction. Presumably, the increasing trend of SRI will continue until the sound 

transmission is taken over by the vibration of the inner glass if the latter is significant enough, 

which depends on the glass configurations. Therefore, to prevent noise from transmitting 

through the ventilation opening at a given frequency, its opening size should be kept below the 

corresponding half acoustic wavelength.  



 

 

 

(a) 

 

(b) 

Figure 6 The influence of the opening size on the SRI at: (a) 500Hz; (b) 630Hz. 

 



 

 

3.3 Applications of MPPs  

The noise control performance of using MPPs in two different settings and the 

corresponding in-situ sound absorption behaviors are investigated in this section. According to 

the above analyses, efforts are put on the frequencies where the half acoustic wavelength is 

smaller than the size of ventilation opening, which is 212Hz in the present case. The parameters 

of the MPP used are listed in Table 2. For the MPPA wall, the sound absorption coefficient can 

be estimated by the formula obtained by Maa [18], which is shown in Fig. 7. It can be seen the 

effective sound absorption band properly covers the concerned frequency range up to 1000Hz. 

Table 2 Parameters of the Micro-perforated Panel and the backing cavity for MPPA 

Hole diameter Panel thickness Perforation ratio 
Depth of backing cavity 

for MPPA 

0.1mm 0.1mm 0.1% 0.1m 

 

 

Figure 7 Absorption coefficient of the MPP. 



 

 

Figure 8 shows the SPLs inside the room, at the same point as the one used in Fig. 3, 

corresponding to three cases: without MPP, with MPPA wall only and with both MPPA wall 

and MPP screen. The dotted line represents the SPL without MPP. Comparison with the case 

of the MPPA wall shows a significant reduction of the SPL inside the room, especially in terms 

of suppressing the peaks, amounting to an average of 10 dB reduction. Note these peaks are 

predominantly due to the resonances of the acoustic room, and those of the inner glass to a 

much less extent. Interestingly enough, it can be noticed that MPPA fails at some particular 

peaks, for example, the one at 220Hz. These peaks are identified as the resonance frequencies 

of the inner glass. Such deficiencies can be alleviated by adding an MPP screen inside the DSF 

cavity, as evidenced by the real line in Fig. 8. It can be observed that the MPP screen can further 

reduce the SPL on the basis of the existing MPPA wall, both at resonance and non-resonance 

frequencies, including where the MPPA wall is ineffective. Obviously, using simultaneously 

the MPPA wall and the MPP screen lead to the best noise reduction performance among the 

three cases.  

 

Figure 8 SPL obtained from different MPP arrangements at (0.6, 1.9, 2.9)m. 



 

 

The volume averaged SPL within one-third octave bands are shown in Fig. 9. Besides the 

three cases considered in Fig. 8, the SPL prediction with only MPP screen is also included for 

a more comprehensive comparison. It can be observed that generally, the MPPA wall 

outperforms the MPP screen by offering approximately 5-10 dB more sound reduction when 

they are separately used. It is also worth noticing that, for example within the 125Hz band, no 

or little SPL reduction is observed when the MPP screen or the MPPA wall is separately used. 

However, if the two arrangements are used together, an extra sound reduction can be achieved. 

This implies that the performance of the MPP sound absorption cannot be predicted by simply 

superposing the results from individual elements. It also alludes to the fact that the deployment 

of multiple sound absorption measures, exemplified by MPPs in the present context, would 

alter the acoustic field so that the individual performance could be affected. Meanwhile, this 

shows there is a considerable room for properly designing and optimizing the settings of the 

MPPs and their coupling with the rest of the vibroacoustic system to maximize the noise 

reduction, which inevitably needs to be conducted case by case with the help of an effective 

simulation tool.  

 

Figure 9 Volume averaged SPL within the room, in one-third octave bands. 



 

 

Analyses are conducted to further demonstrate the underlying sound absorption mechanisms 

of the MPPA wall and MPP screen, as well as to understand their mutual interaction in such a 

complex acoustic environment. Figure 10a shows the SPL distribution over a cutting surface 

inside the acoustic room, located at x = 0.6m, only with the MPPA wall at 329Hz. To better 

compare the differences in SPL, all cloud pictures in Fig. 10 use the same color scale. 

Comparing Fig. 10a with Fig. 3b shows that the deployment of the MPPA wall will not only 

reduce the SPL within the room but also change the sound pressure distribution within the 

system including the DSF cavity. With an MPP screen added inside the DSF cavity (Fig. 10b), 

it can be seen that different from the MPPA wall, the MPP screen interacts more effectively 

with its surrounding acoustic environment and provides effective sound absorption when a 

pressure difference exists across the MPP. In the present case, this effect can be evidenced by 

the pressure difference across the MPP in the middle portion of the screen, roughly ranging 

from y = 1m to y = 2m. Therefore, even without the backing cavity, the MPP screen can still 

provide appreciable sound absorption based on this non-locally reacting and fully coupled 

working mechanism. To further assess this, Fig. 10c shows the sound intensity distribution 

over the cutting surface. It can be seen that the sound power indeed flows into the MPP screen, 

which illustrates the occurrence of sound absorption through the MPP screen. 

 

(a) 



 

 

 

(b) 

 

(c) 

Figure 10 Sound field distribution at the cutting surface x = 0.6m, 329Hz: (a) SPL mapping 

with MPPA; (b) SPL mapping with MPPA and MPP screen; (c) Sound intensity with MPPA 

and MPP screen. 

To further quantify the sound absorption performance of the MPP screen, an equivalent 

absorption coefficient is defined as 



 

 

𝛼𝑒𝑞 = ∫
𝐼𝑧1−𝐼𝑧2

𝐼𝑧1
𝑑𝑆

𝑆
,                                                      (21) 

where 𝐼𝑧1 and 𝐼𝑧2 are the z-component of the sound intensity on both sides of the MPP screen, 

respectively. 𝛼𝑒𝑞, with and without the MPPA wall are plotted in Fig. 11. It can be observed 

that 𝛼𝑒𝑞  is generally slightly larger when the MPPA wall exists, consistent with the 

observations from Fig. 8. On the other hand, regardless of the existence of the MPPA wall, the 

frequency variations of 𝛼𝑒𝑞 exhibits complex patterns. An interesting question is whether 𝛼𝑒𝑞 

can be approximately predicted by Eq. 10. Considering the DSF cavity as a backing cavity, an 

approximated absorption coefficient curve can be calculated using Eq. 10 and plotted in Fig. 11. 

It can be observed that, if omitting details, the general variation trend of 𝛼𝑒𝑞 vaguely shows a 

certain degree of resemblance with the classical sound absorption curve of an MPPA in terms 

of amplitude envelop, but slightly shifted towards lower frequencies. This can be attributed to 

the reduction in the equivalent stiffness of the cavity, as a result of an increase in the effective 

depth of the DSF cavity due to the ventilation opening and its connection with the acoustic 

cavity behind. By scrutinizing the detailed variation of 𝛼𝑒𝑞 ,  it can be concluded that the 

complex acoustic field, to which the MPP screen is exposed, creates a complex yet favorable 

working environment for MPP, thus promoting its in-situ sound absorption, which cannot be 

exactly predicted by conventional sound absorption formula. Although a rough estimation is 

possible based on the common understanding of the working principle of the MPP sound 

absorption, meticulous design and optimization are needed to cater for a particular application 

with the aid of an effective simulation tool like the one developed in this paper. 



 

 

 

Figure 11 Equivalent absorption coefficient of the MPP screen and comparison of an MPPA. 

4. Conclusions 

In this paper, a Condensed Transfer Function method is adapted and proposed to deal with 

the acoustic prediction of a simplified DSF system. Through integrating typical MPP-based 

sound absorption treatments, dominant noise transmission paths through the system, as well as 

the in-situ sound absorption behaviors of different sound absorption arrangements, are explored.  

The proposed modeling methodology has been shown to allow efficient and flexible 

handling of a typical DSF acoustic system by providing a fine and detailed description of major 

vibro-acoustic metrics of this complex vibro-acoustic system with a relatively large dimension. 

With the adoption of a piecewise calculation scheme, numerical prediction can reach the so-

called mid frequency range where the system exhibits rich dynamics and a high modal density.  

It is shown that noise can be transmitted into the acoustic room in a typical DSF system 

through both air-borne (through the ventilation opening of the inner glass panel) and structure-

borne (through the vibration of the inner galls panel) paths.  Their relative dominance level, 



 

 

however, depends on the system configuration.  In general, the sound insulation of the DSF 

system is highly dependent on the size of the ventilation opening. The SRI can be significantly 

compromised when the size of the ventilation opening of the inner glass exceeds half acoustic 

wavelength at sufficiently high frequencies. The use of MPPs, either as an absorbing wall or a 

screen inside the DSF cavity, is proved to be an efficient way to reduce the SPL within the 

room. While an MPPA provides efficient sound energy absorption based on the well-known 

locally reacting behavior, the MPP screen also offers appreciable sound absorption by 

benefiting from its non-locally reacting interaction with the surrounding acoustic environment 

inside the DSF cavity, provided a favorable sound pressure difference can be generated across 

the MPP screen. This can be achieved through proper design of the system configuration, for 

example through the use of MPPA to alter the sound distribution inside the DSF cavity. As a 

result, extra sound reduction inside the acoustic room can be achieved. This, of course, would 

need an efficient, flexible and versatile numerical model such as the one presented in the 

present work to guide the design. 
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