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A B S T R A C T 

A theoretical model is presented for the prediction of sound radiation from a semi-infinite unbaffled long 

enclosure with the ground effect. This geometrical arrangement forms an idealized representation of traffic 

facilities such as tunnels and railway stations where noise propagates along the long enclosures and 

radiates to the outside through the openings. Despite the fact that the model described here applies only 

to idealized situations, it contains essential elements of realistic configurations, which is conducive to 

understanding the physics of the sound radiation phenomenon and significant for the proposal of 

appropriate noise control strategies. First of all, by expressing the sound field in terms of the superposition 

of propagating modes inside the long enclosure and adopting the Fourier transform technique in other 

regions, the unsolvable boundary value problem in the natural domain is reduced to a scalar modified 

Wiener-Hopf (W-H) equation of the second kind in the spectral domain. Then, its solution is obtained 

using the standard factorization and decomposition procedures, and the radiated sound field is attained 

through the inverse Fourier transform technique, which involves a contour integral that can be evaluated 

approximately via the saddle point method. After that, the model is validated by the finite element method 

(FEM), and the far-field directivity patterns of the radiated sound fields are presented. Finally, the 

properties of the sound fields both inside and outside three enclosures with different boundary conditions 

are analyzed, based on which potential noise reduction methods by using acoustic liners are discussed. 

 

Keywords: Sound radiation, Unbaffled long enclosure, Wiener-Hopf technique. 

 

 



3 

 

1. Introduction 

Long enclosures [1, 2], with lengths that are much greater than their widths and heights, can be commonly 

observed in traffic facilities such as tunnels, railway and underground stations. Such enclosures provide 

people with great convenience but also cause a lot of acoustical problems. It is quite difficult for the sound 

energy inside a long enclosure to dissipate, which will result in a high sound pressure level (SPL) and a 

long reverberation time. Such an acoustical environment will produce negative impacts on drivers and 

passengers and simultaneously impair speech intelligibility. In addition, as noise cannot be transmitted to 

the outside directly through the wall, it will concentrate at both ends of the enclosure and radiate to the 

outside through the openings. Taking tunnel for instance, if there are residents near the portals, their living 

and working conditions will be severely deteriorated [3]. Thus, it is of great significance to understand the 

formation mechanisms of sound fields both inside and outside a long enclosure so that suitable methods 

can be applied to control them.  

Due to the geometrical similarity between a long enclosure and a duct, sound field inside a long enclosure 

can be predicted by the classical wave theory and the image source method (ISM), which are frequently 

used in the duct acoustics [4, 5]. Whereas, a disadvantage of the usual energy-based ISM is that it excludes 

the interferences between multiple reflections and the phase information of each image. To optimize the 

model, a coherent ISM [6, 7] was proposed and developed, which can take the phase change of each 

reflection on the boundary into consideration. Nevertheless, all the models mentioned above can only be 

applied to calculate the sound field inside an infinite long enclosure because they cannot include the 

reflected sound wave produced by the radiation impedance at the opening. 

Sound radiation from a long enclosure has been an important subject both in the diffraction theory and the 

mathematics. The characteristics of a radiated sound field depend not only on the properties of the acoustic 

source but also on the geometry of the long enclosure and the way it is terminated, which is normally 



4 

 

either baffled or unbaffled. For sound radiation from a baffled long enclosure, the Rayleigh integral can 

be applied [8], which is reasonably straightforward and thoroughly introduced in the book written by 

Pierce [9]. However, this method cannot predict the sound field at the backside of the enclosure, which 

limits its application in practice. For sound radiation from an unbaffled long enclosure, Levine and 

Schwinger [9] proposed a rigorous model to predict the radiation of plane wave from an unflanged pipe 

based on the Wiener-Hopf (W-H) technique. Subsequently, the model was extended to include the 

radiation of higher-order modes [11]. The directivity pattern of the radiated sound field was analyzed, and 

practical strategies were proposed to predict the lobes, zeros and sidelines [12]. These solutions, however, 

are not convenient for numerical calculations because they are generally expressed in terms of complex 

integrals. To simplify the problem, several approximation methods were also proposed, among which the 

most widely used one is Hocter’s method [13, 14]. It is based on the ray structures of duct modes 

propagating inside a semi-infinite cylindrical duct [15]. Then, in conjunction with Keller’s geometrical 

theory of diffraction (GTD) [16], the radiation patterns of modes can be easily expressed. However, the 

model is mainly applicable to cylindrical ducts, and the radiated field is assumed to be free. Besides, only 

plane-wave and single-mode incidences were considered in the models mentioned above. Consequently, 

these models are commonly applied in the prediction of noise radiated from heating, ventilation and air-

conditioning (HVAC) systems, exhaust stacks in industrial power plants and turbofan aero engines.  

Apart from analytical models, numerical methods were also proposed to calculate the sound level radiated 

from long enclosures. By introducing a perfectly matched layer (PML) outside an enclosure, the 

unbounded radiation problem was converted into a waveguide problem that can be solved by the finite 

element method (FEM) [17]. However, to obtain an accurate solution, the PML parameters need to be 

optimized during numerical calculations, which rely greatly on personal experience. To avoid the use of 

PML, a hybrid method was developed [18] to couple the inside and outside regions, where the inside 
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region was treated by a normal mode expansion and the outside region was discretized by finite elements. 

Such hybrid methods perform well in general configurations. For a large-size model, however, the 

calculation efficiency declines rapidly due to the sharp growth in the number of elements, limiting the 

application of these models to real traffic facilities. 

A large difference between the problem at hand and the existing radiation models is that, the ground effect 

is taken into account. As a result, the acoustic domain outside the enclosure becomes a semi-infinite region 

rather than a free region. For such a geometrical configuration, it is difficult to obtain an analytical solution 

to the sound radiation problem, and the aforementioned prediction models cannot be applied directly. For 

engineering applications, the Research Committee on Road Traffic Noise of the Acoustical Society of 

Japan published the ASJ model [19] to predict the noise radiated from traffic tunnels in which correction 

terms for the diffraction at the sharp edge and the ground effect were included. However, these terms were 

either from the experimental data published by Maekawa [20] or empirical coefficients, which will lead 

to a low accuracy. Moreover, the ASJ model is an energy-based method, and the results do not contain 

the phase information. Enlightened by the ASJ model, Heutschi and Bayer [3] proposed a similar model 

for the prediction of tunnel noise in which the radiated sound field was expressed in terms of the directivity 

pattern and the damping effects. However, the details on how to obtain these expressions were not 

mentioned. For this kind of radiation problem, in brief, research is still in the exploration stage. 

The W-H technique has been frequently used in solving certain kinds of radiation problems. It was initially 

proposed to solve electromagnetic problems regarding wave radiation from an impedance-loaded parallel 

plate waveguide and a horn radiator [21, 22]. Several years later, the technique was extended to tackle 

acoustical problems [23-26]. Sound radiation from an unbaffled annular jet pipe was formulated by the 

technique [23]. Then, the model was further developed to include lined boundary conditions [24]. These 

models are important for acoustical aircraft-engine engineering applications and for understanding the 
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physics behind the sound radiation phenomenon. Additionally, the transmission loss (TL) of a cylindrical 

duct with an acoustically lined muffler [25] and a circular silencer with a locally reacting lining [26] were 

analyzed based on this method. From these research findings, certain types of linear partial differential 

equations subjected to impedance boundary conditions on semi-infinite geometries can be solved by using 

the W-H technique. Accordingly, for sound radiation from a long enclosure with the ground effect and 

impedance conditions, the method will also be applicable. 

Instead of predicting and analyzing the sound fields inside and outside a long enclosure separately, as in 

most of the literature, we try to establish an analytical model based on the W-H technique that can predict 

the interior and the exterior sound fields simultaneously. Another important aspect addressed in this paper 

but not addressed in previous studies is the use of a monopole point source rather than a plane-wave or 

single-mode incidence to simulate the sound excitation. In summary, the objectives of this study are: 1). 

to propose a theoretical model for the prediction of the sound fields both inside and outside an unbaffled 

long enclosure in which the ground effect, semi-infinite boundary conditions and a monopole point source 

are taken into consideration; 2). to validate the correctness and accuracy of the proposed model through 

the FEM and examine its calculation efficiency for a large-size geometry; 3). to thoroughly analyze the 

properties of the sound fields when imposing different boundary conditions, understand their formation 

mechanisms and accordingly introduce potential strategies for the mitigation of noise. 

The remainder of this paper is organized as follows. In section 2, a theoretical model is established to 

predict the sound fields both inside and outside an unbaffled long enclosure with the ground effect based 

on the W-H technique. In section 3, the model is validated, detailed discussions are presented, and based 

on which potential noise control strategies are introduced. Conclusions are drawn in section 4. 
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2. Theoretical modeling 

2.1 Description of the problem in the natural domain 

Consider the radiation of sound that is produced by a monopole point source of harmonic time dependence 

from a two-dimensional semi-infinite long enclosure with the ground effect. The height of the long 

enclosure is Ly, and the thickness of the wall is assumed to be zero for simplicity. The long enclosure 

extends to minus infinity, and the ground extends to plus infinity as shown in Fig. 1. The ground and the 

wall surfaces are characterized by acoustic impedances Zz, where z=1, 2, 3, 4. The origin of the coordinate 

system is located at the intersection of the opening and the ground. The source is placed at (x0, y0) near 

the ground. Imaginary interfaces I and II are depicted for the convenience of analysis. They divide the 

whole acoustic domain into three sub-regions A, B and C, which will be analyzed separately later.  

 

Fig. 1. Schematic diagram of sound radiation from an unbaffled long enclosure with the ground effect. 

According to the partition of the acoustic domain in Fig. 1, it is convenient to express the total sound 

pressure field by the following piecewise function as 

 ( )

( ) ( ) )

( ) ( ) ( 

( )  )

, , ,

, , , ,0 0,

, 0, 0,

A y

inc

total B B y

C y

p x y x y L

p x y p x y p x y x y L

p x y x y L

  − +  +



 = +  −   


  +   

, (1) 
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where ( ),inc

Bp x y  and ( ),Bp x y  are the incident and reflected sound pressure fields of region B , 

respectively. ( ),Ap x y  and ( ),Cp x y  are the scattered sound pressure fields of regions  A  and  C , 

respectively. The total sound pressure field satisfies the homogeneous Helmholtz equation: 

 ( )
2 2

2

2 2
, 0totalk p x y

x y

  
+ + = 

  
, (2) 

where k represents the wavenumber in free space. Notably, in any physical medium, loss is inevitable. 

Therefore, an ideal lossless medium, which is often used in theoretical analysis, can be regarded as a 

limiting case with a vanishingly small loss. For mathematical convenience, we assume that 

 1 2 1 2, 0k k ik k k= −  , (3) 

where k1 and -k2 denote the real and imaginary parts of k, respectively. The boundary condition at each 

surface can be expressed as 

 
( ) ( )

( 0

1

,0 ,0
0, ,0

B Bp x i kc p x
x

y Z


− =  −


,  (4) 

 
( ) ( )

 )0

2

,0 ,0
0, 0,

C Cp x i kc p x
x

y Z


− =  +


, (5) 

 
( ) ( )

( 
0

3

, ,
0, ,0

B y B yp x L i kc p x L
x

y Z


+ =  −


, (6) 

 
( ) ( )

( 
0

4

, ,
0, ,0

A y A yp x L i kc p x L
x

y Z


− =  −


, (7) 

where c0  is the speed of sound, and ρ is the density of air. At the imaginary interfaces I and  II, the 

continuity relations of the sound pressure and the normal particle velocity should be satisfied as 

 ( ) ( )  ), , , 0,A y C yp x L p x L x=  + , (8) 
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( ) ( )

 )
, ,

, 0,
A y C yp x L p x L

x
y y

 
=  +

 
, (9) 

 ( ) ( ) ( )0, 0, 0, , 0,inc

B B C yp y p y p y y L + =   , (10) 

 
( ) ( ) ( )0, 0, 0,

, 0,

inc

B B C

y

p y p y p y
y L

x x x

  
 + =    

. (11) 

When boundaries at infinity and geometrical singularities are involved, several mathematically acceptable 

solutions of the acoustic field of interest might be obtained. However, only one of them is completely 

consistent with the anticipated physical phenomenon. Therefore, in order to ensure the uniqueness of the 

solution to the problem at hand, we have to consider the Sommerfeld radiation condition [27] at infinity 

 
( )

( ) 2 2
,

lim , 0,
total

total
r

p r
r ikp r r x y

r




→

 
− = = + 

 
, (12) 

and the edge condition, which requires that the acoustical energy stored in any finite neighborhood of the 

sharp edge should be finite [28], namely, 

 ( ) ( )
( )

( )1 2 1 2,
, , , 0

total y

total y

p x L
p x L O x O x x

y

−
= = →


. (13) 

The definitions of distance r and observation angle θ can be seen in Fig. 1. The incident sound pressure 

field of region B, which is produced by a monopole point source of harmonic time dependence, satisfies 

the following inhomogeneous partial differential equation [4]: 

 ( ) ( ) ( ) ( ) ( )
2

2

0 0 02 2

0

1
, ,inc i t inc i t i t

B Bp x y e p x y e Q e x x y y
c t t

    
 

    − = − − −    
, (14) 

where ∇2 is the two-dimensional Laplace operator, Q
0
 denotes the volume velocity strength and δ is the 

Dirac delta function. The time-dependent factor eiωt, where ω is angular frequency and t is time, is well 

known and will be suppressed throughout. Based on Eqs. (4) and (6), the solution of Eq. (14) can be 

obtained: 
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 ( )
( ) ( )

000 0

0

,
2

n

B BN
i x xn ninc

B B
n n n

Y y Y ykc Q
p x y e

N





− −

=

=  , (15) 

where N is the maximum number of truncated mode series. The transversal modal function of region B is 

given by 

 ( ) ( )
( )0

1

sin
cos

nB

n n

n

i kc y
Y y y

Z

 



= + . (16) 

The transversal wavenumbers satisfy the following characteristic equation: 

 ( ) ( )
( )2 2 2

2 0
0

1 3 1 3

sin1 1
cos 0

n y

n n y n

n

Lk c
L i kc L

Z Z Z Z


   



   
= + − + =   

   
. (17) 

The normalized coefficient of the transversal modal function can be obtained as 

 ( ) ( ) ( )
( )

0

lim
2

y

n

L

nB B B B

n n n y

n

dL
N Y y Y y dy Y L

 



→
= = . (18) 

The propagating wavenumber along the horizontal direction is given by 

 2 2

n nk = − . (19) 

Similarly, the reflected sound pressure field of region B can be expressed in terms of normal modes as 

 ( ) ( )
0

, j

J
i xB

B j j

j

p x y b Y y e


=

= , (20) 

where bj denotes the modal response, and J is the maximum number of truncated mode series. At this 

point, the boundary value problem is well defined in the natural domain. However, it is impossible to find 

a solution through conventional methods due to the complex geometry. Enlightened by the infinite limits 

in the Fourier integral, which can be applied to describe the semi-infinite acoustic domain outside a long 

enclosure, we aim to transform the problem into the spectral domain by using the Fourier transform 

technique and obtain the solution by the W-H technique, which is designed to solve problems with mixed 

and semi-infinite boundary conditions.  



11 

 

2.2 W-H equation in the spectral domain 

The Helmholtz equation for region A can be converted into the complex α-plane through the full-range 

Fourier transform in terms of x as 

 
( ) ( )

( )
2 2

2

2 2

, ,
, 0

A A i x

A

p x y p x y
k p x y e dx

x y



+

−

−

  
+ + = 

  
  (21) 

where α=σ+iτ denotes the Fourier transform variable. The first term in the bracket of Eq. (21) can be 

integrated by parts as 

 

( ) ( )

( ) ( ) ( )

2

2

2 2

, ,

, , ,

A Ai x i x

i x i x

A A A

p x y p x y
e dx e

x x

i p x y e p x y e dx P y

 

    

++

− −

− −

+
+

− −

−
−

  
=  

  

 + − = − 





, (22) 

where 

 ( ) ( ), , i x

A AP y p x y e dx
+

−

−

=   (23) 

is the transformed sound pressure field of region A in the complex α-plane. The contributions from the 

bracketed terms of Eq. (22) at positive and negative infinity tend to be zero. This is due to the Sommerfeld 

radiation condition, which states that the outgoing wave disappears at infinity. The transformed Helmholtz 

equation for region A can be expressed as 

 ( ) ( )
2

2

2
, 0AK P y

y
 

 
+ = 

 
, (24) 

where 𝐾(𝛼) = √𝑘2 − 𝛼2, which is called the square root function, is defined in the complex 𝛼-plane with 

branch points ±𝑘 and branch cuts C± along 𝛼 = 𝑘 to 𝛼 = 𝑘 − 𝑖∞ and 𝛼 = −𝑘 to 𝛼 = −𝑘 + 𝑖∞ such that 

we have 𝐾(0) = 𝑘 as shown in Fig. 2. This is a compulsory choice due to the physical existence of the 

Green’s function. Besides, it can be observed that the imaginary parts of the numbers in the cut plane are 
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all negative, which implies that, in this configuration, the cut plane is a proper sheet. For the convenience 

of the description later, we define that the region τ > −𝑘2 is the upper half complex 𝛼-plane and the 

region τ < 𝑘2 is the lower half complex 𝛼-plane. 

 

Fig. 2. Schematic diagram of branch points ±𝑘 (purple circles), branch cuts C± (red solid line) and the 

integration path Γ for inverse Fourier transform (blue solid arrow line) in the complex 𝛼-plane.  

 

The transformed sound pressure field of region A in the complex 𝛼-plane can be divided into two parts 

according to the definition of the half-range Fourier transform as 

 ( ) ( ) ( ) ( ) ( )
0

0

, , , , ,i x i x

A A A A AP y P y P y p x y e dx p x y e dx   
+

− + − −

−

= + = +  . (25) 

Based on the following asymptotic behavior: 

 ( ) ( ), ,
ik x

Ap x y O e x
−

= → , (26) 

it can be easily observed that ( ),AP y+
 and ( ),AP y−

 are regular functions in the upper and lower half 

complex 𝛼-planes, respectively. The general solution of Eq. (24) satisfying the Sommerfeld radiation 

condition can be expressed as 
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 ( ) ( ) ( ) ( )
( )( )

, , , yiK y L

A A AP y P y P y A e


   
− −− += + = , (27) 

where ( )A   is an unknown spectral coefficient. Combining the transformed form of Eq. (7), Eq. (27) and 

its derivative with respect to y, the following identity can be obtained: 

 ( ) ( ) ( ) ( )0 0

4 4

,A y

i kc kc
P L R i K A

y Z Z

 
   + +   

− = = − +   
   

. (28) 

Here, ( )R +
 is an important intermediate-term. Once this term is determined, the transformed sound 

pressure field of region A can be obtained. Using the inverse Fourier transform, the sound pressure field 

of region A in the natural domain can be attained. 

On the other hand, the Helmholtz equation for region C can also be converted into the complex 𝛼-plane 

by using the half-range Fourier transform with respect to 𝑥 as 

 ( ) ( ) ( ) ( )
2

2

2
,CK P y f y i g y

y
  + 

+ = + 
 

, (29) 

where the following definitions are used: 

 ( )
( )

( ) ( )
0,

, 0,
C

C

p y
f y g y p y

x


= =


 (30) 

and 

 ( ) ( )
0

, , i x

C CP y p x y e dx
+

+ −=   (31) 

The general solution of Eq. (29), which is a second-order inhomogeneous linear differential equation, can 

be obtained by using the method of constant variation as 

 

( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

0

, cos sin

1
sin

C

y

P y B K y C K y

f i g K y d
K

    

     


+ = +      

+ + −      
, (32) 
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where ( )B   and ( )C   are unknown coefficients. Based on the transformed form of Eq. (5), Eq. (32) 

can be simplified into the following form: 

 

( ) ( ) ( )
( )

( )

( )
( ) ( ) ( )( )

0

2

0

sin
, cos

1
sin

C

y

i kc K y
P y B K y

Z K

f i g K y d
K

 
  



     


+
    = +   
  

+ + −      

. (33) 

Combining the transformed pressure and particle velocity continuity relations at interface I and Eq. (28), 

we have 

 ( ) ( ) ( )0

4

, ,C y C y

i kc
R P L P L

y Z


  + + +

= −


. (34) 

Substituting Eq. (33) into Eq. (34) leads to 

 ( ) ( ) ( ) ( ) ( ) ( )( )
( )( )
( )

0

40

sin
cos

yL
y

y

i kc K L
B W R f i g K L d

Z K

  
        



+

  −   = − + − −      
  

 , (35) 

where 

 ( ) ( ) ( )
( )

( )

2 2 2
2 0

0

2 4 2 4

sin1 1
cos

y

y

K Lk c
W i kc K L K

Z Z Z Z K


   



       = − − −    
   

. (36) 

Substituting Eq. (35) into Eq. (33), we finally have the transformed sound pressure field of region C: 
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( )( )
( )

( )
( ) ( ) ( )( )

0

2

0
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1
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y

C

L
y

y

y

i kc K y
K y

Z K
P y

W

i kc K L
R f i g K L d

Z K

f i g K y d
K

 







  
      



     


+

+

  +  

=

   −     − + − −         

+ + −      





. (37) 
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Obviously, the term on the left-hand side (LHS) of Eq. (37) is a regular function in the upper half complex 

𝛼-plane. The regularity of the right-hand side (RHS) terms, however, is violated by the presence of the 

simple poles occurring at the zeros of the denominator lying in the upper half complex 𝛼-plane satisfying 

 ( ) 0, 0,1, 2,...mW m = = . (38) 

These poles can be eliminated by imposing that their residues are zero, namely, the terms in the curly 

brace of Eq. (37) should be zero for each pole which gives 

 ( ) ( ) ( ) ( )( )
( )( )
( )

0

40

sin
cos

yL
m y

m m m y

m

i kc K L
R f i g K L d

Z K

  
      



+

  −   = + − −      
  

 . (39) 

Simplifying the terms in the curly brace of Eq. (39) by expanding the trigonometric functions and using 

Eq. (38), we have 

 

( ) ( )
( )

( )

( ) ( ) ( )
( )

( )

0

4

0

20

sin
cos

sin
cos

y

m y

m m y

m

L

m

m m

m

i kc K L
R K L

Z K

i kc K
f i g K d

Z K

 
 



  
     



+
     = −  
  

     + +       
  



. (40) 

According to the form of the terms in the integrand of Eq. (40), we define two coefficients as 

 
( )

( )
( )

( )

( )
0

20

sin1
cos

yL

mm

mC

m m m

i kc K yf f y
K y dy

g g yN Z K

 




       = +      
     

 . (41) 

Actually, the terms in the curly brace of Eq. (41) is the transversal modal function of region C: 

 ( ) ( )
( )

( )
0

2

sin
cos

mC

m m

m

i kc K y
Y y K y

Z K

 




  = +   . (42) 

The normalized coefficient of the series expansion in Eq. (41) can be obtained by 

 ( ) ( ) ( )
( )

0

lim
2

y

m

L

mC C C C

m m m y

m

dW
N Y y Y y dy Y L

 



→
= = . (43) 
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Based on Eqs. (40) to (43), we have 

 ( ) ( )
( )

( )
 

0

4

sin
cos

m y C

m m y m m m m

m

i kc K L
R K L N f i g

Z K

 
  



+
     = − +  
  

. (44) 

Considering the transformed sound pressure continuity relation at the imaginary interface I and combining 

Eqs. (27) to (28), we have the following identity 

 ( ) ( )
( )

( ) 0 4

, ,C y A y

iR
P L P L

K kc Z


 

 

+

+ −+ =
+

. (45) 

Substitute Eq. (37) into Eq. (45) and collect the like terms. Using the characteristics of the trigonometric 

functions, we have 

 

( )

( ) ( ) ( )
( )

( )
( ) ( ) ( )

( )

( )

0 2

0 4

0

20

,

sin1
cos

y

y

A yiK L

L

m

m

m

K kc Z
P L

W e K kc Z

i kc K
f i g K d

W Z K



 


  

  
     

 

−

−

+
+

+  

    = + +       
  



. (46) 

Due to Eq. (41), we can express the defined functions in the form of series expansion as 

 
( )

( )
( )

0

M
m C

m

m m

f y f
Y y

g y g=

   
=   

  
 , (47) 

where M denotes the maximum number of truncated mode series. Substituting Eq. (47) into Eq. (46) and 

evaluating the resulting integral, we obtain a modified W-H equation of the second kind, which is valid in 

the shaded strip illustrated in Fig. 1, as 

 
( ) ( )

( ) ( )
( ) ( )4 4

2 2
02 2

,
,

,

M
Cm m

A y m y

m m

Z R f i g
P L Y L

Z N

    


     

+

−

=

+
+ =

−
 , (48) 

where 

 ( )
( )

0, , , 2,4
( )

z z z

z

K
Z c z

K k


    

 
= = =

+
, (49) 
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and 

 ( ) ( ) ( ) yiK L
N W e


 

−
= . (50) 

Apparently, there are two unknowns ( )R +
 and ( ),A yP L−  in Eq. (48). It seems that additional 

conditions are required in order to obtain the solutions. However, the impressive mathematical literature 

[21-26] proves that we can obtain the two unknowns at the same time by using the standard W-H 

procedures. 

2.3 Solution of the W-H equation 

To get the solutions of Eq. (48), split all the kernel functions into positive (+) and negative (-) parts which 

are regular and free of zeros in the upper and lower half complex α-plane, respectively as 

 

( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( )
( )

4 4 4

2 2 2

0

, ,
,

, ,

2 2

A y

M
Cm m m m m m

m y

m m m m m

Z R
P L

Z N N

f i g f i g
Y L

      


       

 

     

+ − +

−

+ − + −

=

+

 + −
= − 

− + 


. (51) 

The explicit expression of the split function ( )N +
 can be obtained according to the method described 

by Mittra [29] as 

 

( ) ( ) ( )

( ) ( )

2 2

0
0

2 4 2 4

1

1 1
cos 1 sin

2
exp ln 1 ln 1

2

y

y y

i L
L

my y

my m

c
N i kc kL k kL

Z Z Z Z

K L i LiK i
C e

k kL






 

     

  

+

− 
  
 

=

   
= − − −   

   

   −    
 − − + − +        

        


, (52) 

where C is the Euler-Mascheroni constant, which is given by C=0.5772… and L is the maximum split 

number. Similarly, the factorization of ( ),z    can be written in terms of Maluizhinets function as  
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( )
2

4

, cos

3
4 sin

2 2 2
, 2,4

3 2 2 2 2
1 2 cos 1 2 cos

2 4 4

z

z

k

M M

z

M

 



  

  
   

      


− =

      
− − − +      

       =
   − −   − +      

+ +          
          

. (53) 

The Maluizhinets function is defined as 

 ( )
0

1 1
exp sin 2 2 sin 2

8 cos 2

v
u

M v u u du
u

  


   
= − − −   

   
 , (54) 

with 

 
1

sin , 2,4
z

z


= = . (55) 

The split functions have the following characteristics: 

 ( ) ( )N N + −= − , (56) 

 ( ) ( ), cos , cos , 2, 4z zk k z     + −= − = . (57) 

Collecting the terms which are regular in the upper half complex 𝛼-plane at the LHS and those regular in 

the lower half complex 𝛼-plane at the RHS, then we have 

 

( ) ( )

( ) ( )
( )

( )

( ) ( )

( )

( )
( )

( ) ( )

( )
( )

( ) ( )

( )

4 4 2

02 2 4

2 2

0 4 4

, ,

, 2 ,

, ,
,

2 , ,

M
C m m m

m y

m m m

M
C m m m

m y A y

m m m

Z R Nf i g
Y L

Z N

N Nf i g
Y L P L

       

         

       


        

+ + − −

+ + −
=

− − − −

−

− −
=

−
+

+

+
= −

−





. (58) 

The second term on the LHS of Eq. (58) has singularities at the zeros of the denominator which can be 

decomposed and then isolated with the help of Cauchy formula in the following manner 
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( ) ( )

( ) ( )
( )

( )

( ) ( )

( )

( )
( )

( ) ( )

( )

( ) ( )

( )

( )
( )

( ) ( )

( )
( )

( ) ( )

4 4 2

02 2 4

2 2

0 4 4

2 2

0 4

, ,

, 2 ,

, ,

2 , ,

, ,
,

2 ,

M
m mC m m m

m y

m m m m

M
m mC m m m

m y

m m m m

M
C m m m

m y A y

m m m

Z R Nf i g
Y L

Z N

N Nf i g
Y L

N Nf i g
Y L P L

       

         

       

        

       


      

+ + − −

+ + −
=

− − − −

− −
=

− − − −

−

− −
=

− −−
+

+ −

 − −−
+ − 

+ −  

+
= −

−






( )4 , 

. (59) 

Making full use of the properties of split functions listed in Eq. (56) and Eq. (57) and taking into 

consideration the analytical continuation principle obeying the Liouville’s theorem, the solution of Eq. 

(59) can be obtained: 

 ( )
( ) ( )

( )
( )

( )

( ) ( )

( )
2 2 2

04 4 4

, ,

, 2 ,

M
m mC m m m

m y

m m m m

Z N Nf i g
R Y L

Z

       


        

+ + + +

+

+ +
=

−
= −

+
 . (60) 

2.4 Sound fields in the natural domain 

As can be observed, Eq. (60) contains an infinite number of unknown coefficients. To determine these 

coefficients, we apply the well-known mode-matching technique, which has been extensively applied to 

analyze the sound field in waveguide structures. Combining Eqs. (8), (10) and (30), we have  

 

( ) ( )
( )

( )

( ) ( ) ( ) ( )

0,
0,

0, 0, 0, 0,

C

C

inc inc

B B B B

p y
f y i g y i p y

x

p y p y i p y p y
x

 




 = 




   = +  +   

. (61) 

Substituting Eqs. (47), (15) and (20) into Eq. (61), we have the following identity 

 

( ) ( )

( ) ( ) ( )
( ) ( )

0

0

00 0

0 02

n

M
C

m m m

m

i xB BN J
n n n B

j j jB
n jn n

f i g Y y

Y y Y y ei kc Q
ib Y y

N





 
 



=

= =



= − + 



 
. (62) 

Multiply both sides of Eq. (62) by modal function ( )C

sY y  and conduct the integration over the opening in 

terms of y from zero to Ly. Then, using the orthogonality of modal functions, one obtains 
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( ) ( ) ( )0

00 0

0 02

ni xBN J
j j jsn n ns

s s C B C
n js n n s

ibY y ei kc Q
f i g

N N N

   


= =

 
 = − +  , (63) 

where  

 
( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
00

3 41 2

2 2 2 2

1 11 1

B C

y s yj n s j n

s sj n j n

i kci kc
Z ZZ Z

Y L Y L
K K



   

  
+−   

    = +
− −

. (64) 

Combining the W-H solution ( )R +
 and the residue solution ( )mR +

, they should be equal at a specific 

value s . Then we have the following equation 

 

( )
( )

( )
( )

( ) ( )

( )
( )

( )

( ) ( )

( )

0

4

2 2 2

04 4 4

sin
cos

, ,

, 2 ,

s y C

s y s s s s

s

M
s s m mC m m m

m y

ms m s m m

i kc K L
K L N f i g

Z K

Z N Nf i g
Y L

Z

 
 



       

        

+ + + +

+ +
=

      − +  
  

−
= −

+


. (65) 

Substituting Eqs. (63) and (64) into Eq. (65), finally, we have 

 ( ) ( )
0

J

j s j s

j

A b 
=

= , (66) 

where 

 

( ) ( ) ( )
( )

( )

( ) ( )

( )
( )

( )
( )

( ) ( )

( )

0

4

2 22

04 4 4

sin
cos

, ,

, 2 ,

s y

j s j s js s y

s

M
j m jms s m mC

m y C
ms m m s m m

i kc K L
A K L

Z K

N NZ
Y L

Z N

 
   



        

        

+ + + +

+ +
=

     = +  −  
  

− 
+

+


, (67) 

and 

 

( ) ( )
( )

( )
( )

( )

( ) ( )

( )
( )

( ) ( )

( )

( ) ( )

( )

0

0

000 0

0 4

0

2 0 20 0 2

04 4 4

sin
cos

2

, ,

4 , ,

n

n

i xBN
s yn ns

s n s s yB
n n n s

i xBN
n m n nm

BM
s s n m mC n n

m y C
ms m m s m m

i kc K LY y ekc Q
K L

N Z K

Y y e

N Nkc Q Z N
Y L

Z N





 
   

 

 

        

        

=

+ + + +

=

+ +
=

       = − −  
  

+ 

+
+






. (68) 
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Rewrite Eq. (66) in matrix form 

 ΦAb = , (69) 

where 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 0 1 0 0

0 1 1 1 1

0 1 ...

A =

J

J

s s J s

A A A

A A A

A A A

  

  

  

 
 
 
 
 
  

,     

0

1
b =

J

b

b

b

 
 
 
 
 
 

,     

( )

( )

( )

0

1
=

s







 
 
 
 
 
  

Φ . (70) 

The modal response coefficients b can be obtained by solving Eq. (69) numerically. Then, the sound field 

inside a long enclosure can be determined. The radiated sound pressure field of region A in the natural 

domain can be obtained by taking the inverse Fourier transform of Eq. (27) as 

 ( )
( )

( )
( )( )

0 4

1
,

2

yiK y L i x

A

iR
p x y e d

K kc Z

 


  

+
− − +



=
+ . (71) 

Here, the integration path Γ is a straight line along the real axis lying in the common strip of the upper and 

lower complex α-planes as shown in Fig. 2. To perform an asymptotic evaluation of Eq. (71) through the 

saddle point method, we perform a change of variables into cylindrical coordinates as 

 cos , cos , sink w x r y r  = − = = . (72) 

Then, Eq. (71) becomes 

 ( )
( ) ( )

sin

0 4

cos sin1
,

2 sin

y

w

ik wL

krg w

A

iR k w k we
p r e dw

kc Z k w


 

−+



−
=

− , (73) 

with 

 ( ) ( )cosg w i w = − + , (74) 

where the new integration contour Γw in the complex w-plane is illustrated by the solid blue arrow line in 

Fig. 3. Next, we deform the path into a new path Γs known as the steepest descent path (SDP) which passes 
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through the saddle point w = −θ. The criteria for the selection of Γs are that the imaginary part of g(w) 

is constant and its real part reaches the maximum value at the saddle point. 

 

Fig. 3. Sketch of mapping 𝛼 = −kcosw from the complex 𝛼-plane to the complex w-plane. Integration 

path Γw (solid blue arrow line), the steepest descent path Γs (SDP, solid red line), the steepest ascent path 

(SAP, dashed red line), the four quadrants of the proper sheet (red numbers with purple circles) and the 

branch cuts C±w (dark solid arrow lines) are presented. 

 

As kr → ∞, the major contribution to the integral of Eq. (73) along Γs comes from a small segment around 

the saddle point due to the exponentially decaying factor in the integrand. Making full use of the error 

integral, the asymptotic evaluation of Eq. (73) along the SDP through the saddle point method gives 
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
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+
. (75) 

To obtain an accurate result, sufficient truncation number should be determined first. Detailed information 

will be given in section 3. 
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3. Results and discussions 

In this section, numerical simulations are carried out to examine the correctness and accuracy of the 

proposed model. In theory, the size of the acoustical domain, boundary conditions and targeted frequency 

range can be arbitrary. For the sake of calculation efficiency, we start with a relatively small enclosure 

whose height is 1 m and length is 5 m. The boundary conditions applied to the wall and ground surfaces 

come from different kinds of liners which have been thoroughly introduced in [30]. Their acoustic 

impedances are Z1=202+13i, Z2=1840+370i, Z3=458+517i and Z4=630-651i. In addition, a monopole 

point source with its volume velocity strength being Q
0
=0.01 m2/s is located at (-2, 0.2) m. In this paper, 

the sound speed and the density of air are 343 m/s and 1.225 kg/m3, respectively.  

3.1 Targeted frequency range  

Before conducting the calculations, a preliminary experiment was performed to determine the basic 

properties of traffic noise outside a tunnel in Hong Kong. According to the measurement method described 

in the environmental quality standard for noise (GB 3096-2008), day-time equivalent A-weighted SPLs 

at different locations were obtained by a sound level meter (Larson Davis Model 831). Their average value 

reached 78 dB (A) and exceeded the threshold specified in the standard which is 70 dB (A) for urban 

arterial roads. Also, the measured SPL spectra of the average noise radiated from the tunnel with stable 

traffic flow, from buses and heavy trucks traveling at approximately 70 km/h are presented in Fig. 4. Apart 

from the fluctuating results under around 200 Hz which may due to the random vibration or the limitation 

of our equipment, the noise energy is concentrated mainly in the frequency range of 200 Hz to 2000 Hz. 

For the higher-frequency intervals, however, the SPLs decrease continuously and dissipate quite easily in 

the open space with increasing distance. According to our main purpose of predicting the far-field 

http://cn.bing.com/dict/search?q=continuously&FORM=BDVSP6&mkt=zh-cn
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directivity pattern of the radiated sound field, we focus on the frequency range of 200 Hz to 2000 Hz in 

the following research.  

 

Fig. 4. Measurement SPL spectra of the average noise radiated from a tunnel with stable traffic flow, from 

buses and heavy trucks traveling at about 70 km/h. 

3.2 Calculation of the wavenumbers 

As the representation of sound field inside the enclosure is based on mode theory, a correct solution to the 

problem requires a successful determination of the wavenumbers both in regions B and C, which are 

defined by Eqs. (17) and (38), respectively. To find the roots of these characteristic equations, the classical 

Newton-Raphson method can be applied, but care should be taken in selecting the proper initial values 

and step length to implement the iteration scheme. Fortunately, the roots are symmetric about the origin 

with certain periodicity due to the nature of trigonometric functions, which can reduce the time cost during 

the calculation. However, one thing that should be bear in mind is that the period does not start from the 

first root and it exists only in either the real or the imaginary parts of the roots. Knowing this, we start the 

iteration from zero and define a step length that is slightly smaller than the period, which can be determined 

by a pilot calculation. Taking 1000 Hz as an example, a small fraction of wavenumbers along horizontal 

and transversal directions in regions B and C are listed in Fig. 5. As can be seen in Fig. 5 (a), the first root 

of Eq. (38) is 17.68-0.13i. It is quite close to the free space wavenumber which is 18.32 but has a certain 

http://cn.bing.com/dict/search?q=pilot&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=calculation&FORM=BDVSP6&mkt=zh-cn
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deviation and imaginary part due to the impedance boundary conditions. In addition, the imaginary parts 

of these roots stably decrease over 2π and finally tend to -∞. The real parts decrease as well but eventually 

converge to zero. In Fig. 5 (b), on the contrary, the real parts of the roots have a period of 2π and finally 

tend to +∞, however, the imaginary parts decrease steadily and ultimately converge to zero. Similar 

patterns can be observed in Fig. 5 (c) and Fig. 5 (d), but the rates of change are different due to different 

boundary conditions. These principles apply to other frequencies as well and will not be elaborated. 

 

Fig. 5. The horizontal (a, c) and the transversal (b, d) wavenumbers of regions C and B at 1000 Hz obtained 

by the classical Newton-Raphson method. 

 

The wavenumbers of region B are used for the superposition of normal modes. For the size of the geometry 

and frequency range at hand, 100 modes are obtained. However, the wavenumbers of region C are mainly 

for the calculation of the split function in Eq. (52). To guarantee the convergence of this calculation, 5000 

pairs of roots are prepared. With these preparations, the sound fields inside and outside the long enclosure 

can be determined immediately. We highlight that an advantage of the proposed method is that, for long 
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enclosures with the same size and boundary conditions, the obtained wavenumbers can be reused to 

explore the properties of sound fields in other situations, including different source locations and different 

kinds of incident waves. Therefore, the time spent on similar calculations by numerical methods can be 

reduced by the W-H technique. 

3.3 Model validation through the FEM 

As the incident and reflected sound fields inside the long enclosure share the same modal function, the 

number of modes used in the calculations should be determined first. A convergence check is carried out 

to find out the maximum mode number based on a trade-off between computation cost and accuracy. The 

criterion of convergence is defined that the relative error of pressure values between two successive mode 

numbers at arbitrary location is less than 1%. Because the maximum mode number would increase as the 

increase of dimension and frequency. The maximum mode number could be obtained by examining the 

convergence of the total sound pressure of arbitrarily picked point (-1, 0.7) m at 2000 Hz. As presented in 

Fig. 6, the real and imaginary parts of sound pressure become stable after about 12 modes with the split 

number being 500. 

 

Fig. 6. Convergence analysis of the total sound pressure field of receiver point (-1, 0.7) m at 2000 Hz. 
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Then, a comparison of the total sound pressure fields in region B obtained by the FEM and the W-H 

technique at 2000 Hz is conducted. The commercial software COMSOL Multiphysics is applied for the 

FEM. In the proposed method, the size of the enclosure and outside region can be infinite. However, this 

is impossible for the FEM. To solve this problem, the calculation domain is bounded by a PML, which is 

an artificial absorption layer that allows sound wave to propagate out without any reflections [31]. To 

ensure the accuracy of the FEM and to satisfy the basic requirement for the acoustic mesh which states 

that the maximum side-length of acoustic element should be less than 1/6 of the minimum wavelength in 

targeted frequency range, the acoustic domain is discretized into more than 6.5×105  elements with 

dimensions below 0.01 m. In addition, both the curvature parameter and scaling factor of the PML are set 

to be 1 in the current analysis according to the findings by Hein, Hohage and Koch [32]. As presented in 

Fig. 7, good agreement can be found. Despite the fact that discrepancies exist, they differ from each other 

with a relative error much less than 1%, which might be caused by mathematical issues.  
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Fig. 7. A comparison of real (a) and imaginary (b) parts of the total sound pressure field in region B 

calculated by the FEM (first row) and the W-H technique (second row). 

 

After several tentative calculations, finally, a split number of 500 is used in Eq. (52), and 15 modes are 

taken into account in Eqs. (15) and (20) for this configuration to ensure the accuracy. The results indicate 

that the split and modal number are sufficient as a further increase in these numbers does not produce a 

significant difference in this study. Comparisons between the SPLs obtained by the W-H technique and 

the FEM in the targeted frequency range at randomly picked receiver points are illustrated in Fig. 8. Good 

agreement can be observed, which validates the correctness and accuracy of the proposed prediction model 

in the calculation of sound field inside an enclosure.  

 

Fig. 8. SPL spectra in the targeted frequency range obtained by the W-H technique and the FEM at 

different receivers inside the long enclosure: (a) receiver (-1, 0.7) m, (b) receiver (-5, 0.3) m.  
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The directivity patterns of the radiated sound fields outside the long enclosure at different frequencies 

obtained by the W-H technique and the FEM are presented in a polar coordinate system as shown in Fig. 

9. The results coincide well with each other even though there are some discrepancies, which may result 

from the far-field approximation. In front of the opening, the lobes can be clearly seen, and the number of 

lobes increases with increasing frequency. This part of sound field is formed by the superposition of direct, 

diffracted and reflected sound waves. These waves propagate to the receiver over different distance and 

with different phases, which results in the directivity pattern. At the backside of the enclosure, the sound 

field is the result of diffraction at the opening edge which, according to the GTD, is mainly determined by 

the incident and diffracted angles and the distance between the source and the receiver. This part of sound 

field is quite stable and standing at a relatively low SPL. Based on these features, we can smooth and 

manipulate the angle of the lobes in front of the opening and attenuate the diffracted sound at the backside 

of the enclosure to control the radiated noise. 

 

Fig. 9. Directivity patterns of the radiated SPLs (dB) obtained by the W-H technique and the FEM when 

distance r = 3 m at specific frequencies: (a) 200 Hz, (b) 900 Hz, (c) 1600 Hz, (d) 2000 Hz. 
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From the results presented in the preceding content, the W-H technique is capable of predicting the sound 

fields both inside and outside a long enclosure with a certain accuracy. To verify the capability of the 

proposed method to handle a large-size geometry, larger enclosures are considered sequentially. The 

results obtained using the W-H technique and the FEM are consistent and are not presented here. The 

main difference is the calculation time.  

 

Tab. 1. Comparison of calculation time between W-H technique and the FEM in different configurations. 

Configuration [m]  W-H technique  FEM 

Height Length Radius  Modes Time [h]  Elements Time [h] 

0.5 2.5 3  10 1.13  1.6×105 1.07 

1 5 6  15 3.61  6.5×105 5.32 

2 7 8  20 6.82  1.7×106 13.2 

5 10 12  30 23.3  3.7×106 28.7 

 

As shown in Tab. 1, for small acoustic domain, the calculation time required by the W-H technique and 

the FEM are roughly the same. With an increase in the size of the geometry, more modes and split numbers 

should be taken into consideration in order to obtain an accurate result when using the W-H technique. 

Accordingly, its calculation efficiency will reduce to some extent. Fortunately, it is easy for computers to 

perform summations so that the calculation efficiency in big size condition is still acceptable. Furthermore, 

the calculation efficiency of the radiated field is not constrained by the size of the outside domain because 

it is an explicit expression in terms of distance. However, for the FEM, the element number grows rapidly 

with an increase in the size of the geometry. This will lead to low efficiency, particularly in the case of 

real traffic facilities. Thus, under such big size condition, the W-H technique performs better than the 

FEM, especially when far-field results are required in engineering applications. 
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3.4 Potential noise control strategies by using acoustic liners 

Acoustic liners [33-35] are widely used to attenuate noise in ducted systems. Combining Eqs. (60), (63) 

and (75), we notice that the radiated sound field is determined by the incident and reflected sound inside 

the long enclosure. Hence, the radiated noise can be reduced through the control of the sound field inside 

the enclosure. To verify this conjecture and provide some data to support the proposal of noise control 

strategies, three cases with different boundary conditions (liners introduced in [30]), namely, totally rigid, 

only an impedance 𝑍3 on the inner wall, and all the surfaces having impedances Z1~Z4, are analyzed 

thoroughly. In these cases, the monopole point source is located at (-2, 0.5) m, and the height of the long 

enclosure is 2 m. The SPL spectra for a receiver (-1, 1) m inside the enclosure are presented in Fig. 10. 

Several peaks occur at the resonance frequencies [27] of the enclosure in the totally rigid case, which 

indicates that the sound field inside the enclosure strongly depends on the height. Taking the rigid case as 

the basis, the introduction of liners on the boundaries can significantly reduce the SPL over most of the 

frequency range, which is determined by the resistance and reactance provided by the acoustic impedance. 

However, the effects of the impedance values and the number of liners cannot be clearly reflected in this 

figure and will be considered in the future. 

  

Fig. 10. SPL spectra under different boundary conditions for a receiver (-1, 1) m inside a long enclosure 

with its height being 2 m. 
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Furthermore, the directivity patterns of the radiated sound fields at specific frequencies are presented in 

Fig. 11. Compared to the rigid case, the introduction of liners on the boundaries can reduce the SPL of the 

radiated sound field between the observation angles of 60~150 degrees, and in general, the case in which 

all surfaces have impedances reduces the SPL more than the case with only 𝑍3. However, between 0~60 

degrees, the reduction becomes blurred as the SPLs vary irregularly. Besides, some dips in the rigid case 

disappear after introducing the impedance. Despite this, the lobes in the rigid case are more or less 

smoothed in the impedance cases, which is significant for controlling noise. Another phenomenon in the 

rigid case that deserves attention is that, between the observation angles of 60~90 degrees, there will 

always be one or more lobes with SPLs standing at relatively high levels. These lobes are the so-called 

principal lobes and will be our focus of consideration in proposing noise control strategies. 

 

Fig. 11. Directivity patterns of the radiated sound fields under different boundary conditions and at specific 

frequencies: (a) 500 Hz, (b) 1000 Hz, (c) 1500 Hz, (d) 2000 Hz.  
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According to the foregoing analysis, it is practicable to control the noise both inside and outside the long 

enclosure by using acoustic liners. In practical applications, however, the ground is not convenient for the 

introduction of noise reduction structures and is usually considered to be totally rigid [36]. Besides, the 

length of these linings should be finite which is less costly and more realistic. From the result of case with 

only Z3 presented above, the noise reduction is not as good as expected. Therefore, the design of the 

location, length and optimized value of the impedance on the wall of the enclosure will be studied in the 

future. On the other hand, in this paper, liners with constant impedances are used mainly to validate the 

proposed model and examine their potential to attenuate noise inside and outside a long enclosure. 

Currently, with the development of acoustic metamaterials, new types of liners [37] that can provide 

inhomogeneous impedances [31, 38] are widely used for reflection wave manipulation and noise 

attenuation purposes. These structures have great potential for the control of noise inside and outside long 

enclosures. 
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4. Conclusions 

In this paper, a rigorous and explicit model is established for the prediction of sound radiated from a semi-

infinite long enclosure, in which an unbaffled opening, the ground effect and a point source excitation are 

taken into consideration simultaneously in order to model practical traffic facilities. The results obtained 

by the W-H technique and the FEM are compared and discussed, which indicates that the proposed method 

is capable of predicting the sound fields both inside and outside a long enclosure with high accuracy and 

efficiency.  

The advantages of the W-H technique over the FEM are summarized as follows: 1). for enclosures with 

identical configurations, the obtained wavenumbers can be reused which avoids excessive calculation time 

for similar calculations; 2). the proposed model can be applied to a broad frequency range and generalized 

to arbitrary boundary conditions. In addition, there is no size restriction for the proposed model. 

The performance of acoustic liners with constant impedances in attenuating the noise inside and outside a 

long enclosure is investigated, based on which potential noise reduction approaches are introduced. The 

proposed model will be an effective tool for conducting parameter studies, explaining the physics behind 

radiation phenomenon and proposing appropriate noise control strategies. 
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