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Abstract 

The dynamics of an elastic fiber with various initial states in a laminar channel flow is investigated using the 

immersed boundary-lattice Boltzmann method. Fiber-wall collisions are solved by adding a repulsive force in 

the model. Our simulation results demonstrate that the initial fiber state closely relates to the stability of the 

considered conveyance system. Different initial states may lead to different dynamic patterns in the 

downstream. The fiber is found to go straight forward along a horizontal path when it is horizontally and 

symmetrically placed at the channel centerline. Breaking this symmetry by varying the fiber’s initial vertical 

position or orientation will induce the instability of the system, which then causes deviations and fluctuations 

in fiber’s conveyance path. No matter how large the deviation occurs in the upstream, the fiber is always found 

to migrate to the channel central region in the downstream and would eventually settle in a vertical position 

slightly away from the channel centerline. Moreover, the off-centerline distance that a fiber settles depends on 

its dynamic pattern rather than a specific initial fiber state. For our system, there are two kinds of dynamic 

patterns observed in the downstream channel. In the first pattern, the fibers eventually reach their equilibrium 

states and are observed to do translational motions. In the second pattern, no equilibrium states are observable, 

and the fibers are found to do periodic tumbling motions. The fiber’s eventual conveyance speed depends on 

the vertical position it eventually settles and can be roughly approximated by the local flow velocity. 

Keywords: fiber dynamics, fiber conveyance, immersed boundary-lattice Boltzmann method, fluid–structure 

interaction 

1. Introduction

The conveyance of fiber-like materials can be found in a variety of applications, for instance, in textile 
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manufacturing, biological system and composites processing. Among many of those applications, the fluid not 

only works as a delivery medium, but is also utilized to orientate fibers and maintain them in desired 

configurations. Take the rotor spinning as an example, straight fibers are more desirable in the yarn-formation 

process as it increases the tensile strength of the final spun yarn [1-3]. So buckled and folded fibers should be 

avoided or straightened during the fiber conveyance process. Besides the tensile strength, many other 

properties such as elastic modulus and thermal conductivity may depend on the configurations of fiber. 

Therefore, to satisfy certain properties of the fiber-related products, it is essential to accurately predict fiber 

dynamics during the conveyance through simulation, as it may provide insights for the optimal design of the 

conveyance system with respect to economics as well as quality. 

Unlike the relatively well-studied dynamics of rigid fiber [4-6], the movement of a flexible fiber, however, 

is quite challenging to predict as it involves a complex fluid-flexible-structure interaction (FFSI). On one hand, 

the flow exerts drag forces on the fiber, forces it to move and simultaneously deforms its configuration. On the 

other hand, the fiber alters its ambient fluid motion due to the no-slip interface condition. When the flexibility 

is obvious, the fiber could present very complex dynamics, such as snake turns, “S” turns and complex coiling 

phenomena, as experimentally observed by Mason and his colleagues [7, 8]. This further gives rise to the 

complexity of modeling such a system, as the fluid-structure interface could be severely distorted, making it 

difficult to track the interface through a body-fitted grid.  

Various fiber models have been proposed to simulate fiber dynamics. Yamamoto and Matsuoka [9, 10] 

modeled the fiber as a chain of spheres that are lined up and bonded to each neighbor (sphere model). This 

model can well reproduce the stretching, bending, and twisting behaviors of the fiber under hydrodynamic 

load. However, it is very computationally costly, as for each sphere, a translational and rotational equations 

need to be solved. Ross and Klingenberg [11] proposed a different fiber model, where flexible fibers are treated 

as linked rigid prolate spheroids connected through ball-and-socket joints (prolate spheroid model). Compared 

with the sphere model, the prolate spheroid model requires fewer rigid bodies to represent a fiber, thus takes 

less computation cost. There are other fiber models known as the needle-chain [12, 13] model and rod-chain 

model [14, 15], which share similar concepts by connecting a series of rigid segments through ball-and-socket 

joints to approximate fiber.  

Apart from the above-mentioned fiber models that are dedicated to describing the fiber motion in shear 

flows, there are general FFSI frameworks exist for the modeling of thin elastic structures immersed in flows. 

One efficient framework is the slender body theory (SBT). The basic idea of SBT is to approximate the effect 



of the obstacle (with a large aspect ratio) on its surrounding flow field by a distribution of singularities, whose 

strength is dependent on the imposed boundary conditions. Goldstein et al. [16] used a local SBT to study the 

intrinsic dynamics of a twisted elastic filament in a viscous fluid. Becker and Shelley [17] used a similar local 

drag model to investigate the shear-flow-induced deformation of a high-aspect-ratio elastic filament. The local 

SBT formulates the fluid-fiber interaction in a relatively simple manner (it gives a local anisotropic relation 

between elastic and drag forces). It cannot include the nonlocal interactions that mediated via the intervening 

fluid. To account for these interactions, different nonlocal versions of SBT were developed and exploited to 

study fiber/filament dynamics, for example in [18-22]. 

Another frequently used framework to study this class of problem is the immersed boundary method (IBM). 

The IBM is originally developed by Peskin to simulate blood flow through a heart valve [23-25]. Since its 

conception 1970s, it has found a wide variety of applications in moving/elastic boundary problems. One of the 

very first studies applying the IBM to simulate fiber dynamics can be found in the research of Stockie and 

Green [26], where the suspension of a massless (or neutrally buoyant) fiber in a two-dimensional shear flow 

was investigated at a moderate Reynolds number (Re). In their study, the experimentally observed “orbit 

classes” of fiber were well reproduced by tuning the fiber flexibility. Zhu and Peskin [27] used the IBM to 

simulate the laboratory observed flapping-filament problem. They found that the mass and length of the 

filament play a significant role in determining its final states. A massless filament is unable to sustain its 

flapping motion because it cannot exchange energy with the surrounding fluid. Huang et al. [28] proposed a 

different coupling strategy for this flapping-filament problem based on a feedback-forcing IBM. They studied 

the effect of fiber length and fixed-end boundary conditions on the bistability of the system. Their study also 

included the interaction between two side-by-side filaments. The flapping-filament problem was also studied 

by Tian et al. [29] with a modified penalty IBM, by Yuan et al. [30] with a momentum-exchange IBM, and by 

Goza and Colonius [31] using a strongly-coupled IBM. Apart from the flapping-filament problem, the IBM 

was also successfully used to simulate the conveyance of fiber in a trapezoidal channel [32], the falling motion 

of an inhomogeneous flexible filament [33], the migration of multiple fibers in blood stream [34], and the 

buckling and recuperation dynamics of diatom chain in a shear flow [35]. 

There are also many other FSI frameworks developed to study the dynamics of elastic thin structures (e.g 

fiber, filament, and two-dimensional flag). Pei and Yu [36] applied an arbitrary Lagrangian–Eulerian method 

to simulate the fiber motion in a nozzle of Murata vortex spinning. Connell & Yue [37] developed a coupled 

fluid–structure direct simulation (FSDS) method to investigate the flapping stability and response of a thin 



two-dimensional flag. Alben [38] proposed a flexible body vortex sheet model to study the heaving and 

pitching motion of a slender elastic filament in high-Re flows.  

It is now generally acknowledged that in the fluid-fiber interaction system, some parameters such as the 

flow Re, the fluid-fiber density ratio, the bending rigidity and length of the fiber, could play an important role 

in determining the fiber dynamics in a fluid flow. However, what is the role of the initial fiber state in a fiber 

conveyance/migration system? Does it have a significant impact on fiber dynamics, especially in the far 

downstream? and how? These are still open questions. As an attempt to seek answers for these questions, we 

performed a numerical study on the dynamics of a flexible fiber that conveyed in a laminar channel using the 

immersed boundary-lattice Boltzmann method (IB-LBM). As will be demonstrated in this paper, our numerical 

result suggests that the initial fiber state is closely related to the stability of the conveyance system. For the 

wall-bounded conveyance system we considered, both the fiber’s initial vertical position and orientation are 

found to have a great impact on the fiber’s dynamic pattern, equilibrium state, and conveyance efficiency. 

 

2. Physical model 

A schematic view of our considered problem is given in Fig. 1. In our current study, we assume that the fiber 

moves only in the x-y plane and has no out-of-plane motions due to the symmetry of the conveyance system 

in the z-direction and the laminar flow regime considered. Under these assumptions and as an initial step, our 

simulations are performed in two-dimensional. Apart from that, some previous studies [35, 39] have already 

demonstrated that two-dimensional simulations can also bring reasonable results for filament-like structure 

immersed in a laminar flow with a regular geometry. The computational domain, as shown in Fig.1, is a two-

dimensional long rectangular channel with two open ends and two sidewalls to confine the flow. To make the 

wall effect obvious, the distance of the two sidewalls  𝐷  is set as three times the undeformed length of 

fiber 𝐿𝑓 (i.e. 𝐷 = 3𝐿𝑓, which is a typical width of the fiber transport channel of a rotor spinning machine). A 

viscous airflow with a parabolic velocity profile comes from the channel inlet in the x-direction to convey an 

elastic fiber. The fiber’s midpoint initially locates at (𝐿𝑓 , 𝐻0
∗ ) and its initial end-to-end orientation angle 

is 𝜃0  with respect to the horizontal (𝐻0
∗ =  𝑦0 𝐷⁄   is the initial vertical position, where 𝑦0  is the initial y-

coordinate of the middle point, and -90°≤ 𝜃0 ≤90°, where 𝜃0 = 0° and  𝜃0 = ±90° correspond to horizontal 

and vertical orientations, respectively). It should be noted that for all the simulation cases the unstressed state 

of the fiber is assumed intrinsically straight and the fiber is released at a zero velocity when the flow gets fully 



developed.  

 

 

Fig.1. Schematic view of the problem and boundary conditions (the arrowhead on the fiber indicates the 

leading end) 

 

The flow in our simulations is driven by a constant body force density, which is equivalent to a pressure 

gradient. To examine the long-term fiber dynamics the channel needs to be long enough so that the fiber can 

keep migrating forward. To alleviate the computational load, we assume that the conveyance system is periodic 

in the flow direction. That means a fiber conveyed out at the outlet will instantaneously, re-enter at the inlet. 

We choose a channel length of 15Lf so that the disturbance at the downstream will have a relatively small 

impact on the upstream. For the upper and lower walls, the no-slip condition is imposed. For the fiber, a free-

end boundary condition is applied to both its leading and trailing ends, which reads 

𝜕2𝑿

𝜕𝑠2
= 0,  

𝜕3𝑿

𝜕𝑠3
= 0 (1) 

where 𝑿 is the position vector of the fiber and 𝑠 its Lagrangian coordinate along the length. 

The flow Reynolds number in this study is defined as 

𝑅𝑒 =
𝑢𝑚𝐷

𝜐
 (2) 

where 𝑢𝑚 is the maximal velocity of the Poiseuille flow, and 𝜐 the kinematic viscosity of the fluid.  

In our simulations, all quantities involved are non-dimensionalized by 𝑢𝑚, 𝐿𝑓 and the density of the fluid 𝜌. 

Therefore, the non-dimensional position 𝑿∗ and time 𝑡∗ are 

𝑿∗ =
𝑿

𝐿𝑓
, 𝑡∗ =

𝑢𝑚𝑡

𝐿𝑓
 (3) 

For the fiber, its linear density  𝜌𝑓 , stretching coefficient  𝐾𝑠 , and bending rigidity  𝐾𝑏  are also non-

dimensionalized as follows. 
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2𝐿𝑓

,  𝐾𝑏
∗ =

 𝐾𝑏

𝜌𝑢𝑚
2𝐿𝑓

3 (4) 

where the quantities with ∗ denote their non-dimensional counterparts.  

In all the simulation cases in this paper, the chosen Re is 2000, indicating that the flow is laminar. The 

conveyance of fiber-like structures around such Re regime can be found in many real-life scenarios. For 

example, in human arteries where detached tissue debris or ruptured plaque fragments migrate in the blood 

stream. The fiber studied here is assumed to be light and rather compliant. Therefore, 𝜌𝑓
∗  and 𝐾𝑏

∗ are set as 0.6 

and 3 × 10−4, respectively in our simulations to give the fiber relatively small inertia and obvious elasticity 

(the dimensionless parameter that measures the relative importance of the fluid kinetic energy and fiber 

elasticity 𝜂 = √
𝜌𝑢𝑚

2 𝐷3

 2𝐾𝑏
  is about 212≫ 1). The stretching coefficient is chosen as 𝐾𝑠

∗ = 200 , a value much 

larger than 𝐾𝑏
∗ to enforce the inextensibility condition of fiber. Note that the fiber’s dynamics may also depend 

on several other parameters such as 𝜌𝑓
∗   , 𝐾𝑏

∗  and Re. However, the effect of these parameters will not be 

covered in this paper, as we will restrict ourselves only to the initial fiber state.  

 

3. Mathematical model and numerical implementation 

3.1. Structure solver for fiber dynamics 

Due to its large aspect ratio, the dynamics of fiber might be reduced to a one-dimensional description by 

averaging the underlying balance laws over its cross-sections. Based on the Cosserat rod theory, the governing 

dynamic equation for an elastic fiber is given as [37, 40] 

𝜌𝑓
𝜕2𝑿

𝜕𝑡2
=
𝜕

𝜕𝑠
[𝑇(𝑠)

∂𝑿

∂s
] − 𝐾𝑏

𝜕4𝑿

𝜕𝑠4
+ 𝑭𝒇𝒍𝒖𝒊𝒅 + 𝑭𝑐 (5) 

where the first two terms of the right-hand side represent the stretching and bending forces of fiber, respectively. 

𝐾𝑏 is the bending stiffness. 𝑭𝒇𝒍𝒖𝒊𝒅 is the hydrodynamic force exerted on the fiber, and 𝑭𝑐  is the repulsive force 

due to fiber-wall collisions. The tensile force 𝑇(𝑠) reads,  

𝑇(𝑠) = 𝐾𝑠 ((
∂𝑿

∂s
∙
∂𝑿

∂s
)

1
2
− 1) (6) 

where  𝐾𝑠  is the stretching coefficient, which is given a large number in our simulation to enforce the 

inextensibility condition of the fiber. 

  The fiber is represented by a set of isometric Lagrangian point 𝑿(s𝑖, t), 𝑖 = 0, 1,⋯ ,𝑁, and the derivatives 

in the right-hand side of Eq. (1) can be discretized in space by a central finite difference (FD) formula. 



𝜌𝑐
𝜕2𝑿

𝜕𝑡2
=

𝑇
𝑖+
1
2
[
∂𝑿
∂s
]
𝑖+
1
2

− 𝑇
𝑖−
1
2
[
∂𝑿
∂s
]
𝑖−
1
2

∆𝑠
− 𝐾𝑏

𝑿𝑖+2 − 4𝑿𝑖+1 + 6𝑿𝑖 − 4𝑿𝑖−1 + 𝑿𝑖−2
∆𝑠4

+ 𝑭𝒇𝒍𝒖𝒊𝒅 + 𝑭𝑐 
(7) 

where 
∂𝑿

∂s
  is the tangent vector which is calculated at the segment center via a first-order central FD stencil. 

[
∂𝑿

∂s
]
𝑖+
1
2

=
𝑿𝑖+1 − 𝑿𝑖

∆𝑠
, and [

∂𝑿

∂s
]
𝑖−
1
2

=
𝑿𝑖 − 𝑿𝑖−1

∆𝑠
 (8) 

with the subscript 𝑖 stands the 𝑖𝑡ℎ fiber node. Similarly, the tensile force at the segment center 𝑇 is calculated 

by assuming the fiber a neo-Hookean material. 

𝑇
𝑖+
1
2
= 𝐾𝑠 (|

𝑿𝑖+1 − 𝑿𝑖
∆𝑠

| − 1) , and 𝑇
𝑖−
1
2
= 𝐾𝑠 (|

𝑿𝑖 − 𝑿𝑖−1
∆𝑠

| − 1) (9) 

The treatment of the left-hand side of Eq. (5) (the temporal discretization) requires more care, as it is closely 

related to the stability of the explicit structure solver whose time-marching scheme should not violate the 

Courant–Friedrichs–Lewy (CFL) condition. Here the third-order Runge–Kutta method is adopted to advance 

the position and velocity of fiber from time step 𝑛 to 𝑛 + 1.  

 

3.2. Governing equations and Flow solver 

The flow in this study is assumed to be incompressible, laminar, and Newtonian. The governing equations for 

the flow are given as 

ρ (
𝜕𝒖

∂t
+ 𝒖 ∙ ∇𝒖) = −∇p + μ∆𝒖 + 𝒇𝒆 (10) 

∇ ∙ 𝒖 = 0 (11) 

where 𝒖 is the fluid velocity, ρ and μ are the density and dynamic viscosity of the fluid, respectively. p is the 

pressure and 𝒇𝒆 is the external force from the immersed structural boundary. 

In present simulations, the two-dimensional incompressible viscous flow is solved by a multi-relaxation-

time lattice Boltzmann model (MRT-LBM) with a D2Q9 lattice model. The MRT-LBM has been proved to 

have a better stability and accuracy over the traditional lattice Bhatnagar–Gross–Krook (LBGK) or single-

relaxation-time (SRT) models [41], thus is more preferable to incorporate with IBM to solve FSI problems, 

especially in relatively large Reynolds number (𝑅𝑒) flows. In the D2Q9 lattice model, the discrete velocities 

are, 

𝒆𝜶 = {

(0, 0), 𝛼 = 0
𝑐(cos[𝜋(𝛼 − 1)/2], sin[𝜋(𝛼 − 1)/2]), 𝛼 = 1, 2, 3, 4

√2𝑐(cos[𝜋(2𝛼 − 1)/4], [𝜋(2𝛼 − 1)/4]), 𝛼 = 5, 6, 7, 8

 (12) 

where 𝑐 = 1 is the lattice speed and 𝛼 the velocity index. 



In the MRT frame, the evolution equation of the lattice Boltzmann equation is rewritten in its moment form 

as 

|𝑓(𝒙 + 𝒆𝜶∆𝑡, 𝑡 + ∆𝑡)⟩ − |𝑓(𝒙, 𝑡)⟩ = −𝐌
−𝟏𝐒̂[|𝑚(𝒙, 𝑡)⟩ − |𝑚𝑒𝑞(𝒙, 𝑡)⟩] (13) 

where 𝑓(𝒙, 𝑡) is the velocity distribution function (VDF), representing the possibility of finding a particle in 

position 𝒙 and time t with velocity 𝒆𝜶. The notation |∙⟩ denotes column vector, i.e. |𝑓⟩ ≡ (𝑓0, 𝑓1,⋯ , 𝑓8)
𝑇. |𝑚⟩ 

is the moment column and |𝑚𝑒𝑞⟩ its corresponding equilibrium value, and they are defined as,  

|𝑚⟩ = (𝜌, 𝑒, 𝜀, 𝑗𝑥 , 𝑞𝑥, 𝑗𝑦, 𝑞𝑦, 𝑝𝑥𝑥 , 𝑝𝑥𝑦)
T

 (14) 

|𝑚𝑒𝑞⟩ = (0,  𝑒𝑒𝑞 , 𝜀𝑒𝑞 , 0, 𝑞𝑥
𝑒𝑞
, 0, 𝑞𝑦

𝑒𝑞
, 𝑝𝑥𝑥
𝑒𝑞
, 𝑝𝑥𝑦
𝑒𝑞
)
T

 

= (0,−2𝜌 + 3(𝑗𝑥
2 + 𝑗𝑦

2)/𝜌, 𝜌 − 3(𝑗𝑥
2 + 𝑗𝑦

2)/𝜌, 0, −𝑗𝑥, 0, −𝑗𝑦, (𝑗𝑥
2 − 𝑗𝑦

2)/𝜌, 𝑗𝑥𝑗𝑦/𝜌)
T

 

(15) 

where 𝜌 is the fluid density, 𝑒 the energy. 𝑗𝑥  and 𝑗𝑦 are the components of the moment density 𝜌𝒖. 𝑞𝑥  and 

𝑞𝑦 are the energy flux components, 𝑝𝑥𝑥  and 𝑝𝑥𝑦 relate to the viscous stress tensor.  

𝐌 is a 9×9 transformation matrix which defines the mapping between 𝑓 and 𝑚, i.e., |𝑚⟩ = 𝐌|𝑓⟩, 𝐒̂ is the 

non-negative 9×9 diagonal collision matrix, which is defined as following in the D2Q9 velocity model.  

𝐒̂ ≡ 𝑑𝑖𝑎𝑔{𝑠0, 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6, 𝑠7, 𝑠8} (16) 

where s0 = s3 = s5 = 0, 𝑠1 = 1.64, 𝑠2 = 1.54, 𝑠4 = 𝑠6 = 1.9, and 𝑠7 = 𝑠8 = 1/(3ν/∆𝑡 + 0.5). Here ν is 

the kinematic viscosity of the fluid, which is decided by the Re. 

In the current MRT frame, the effect of external force 𝒇𝒆(𝒙, 𝑡) on the fluid is included through two steps. 

Firstly, add one-half of 𝒇𝒆(𝒙, 𝑡)∆𝑡 to the moment flux 𝑗𝑥  and 𝑗𝑦 before the collision, then add another half after 

the collision. 

 

3.3. Fluid-structure interaction 

The interaction between the fiber and the flow is solved by the immersed boundary method (IBM). In the last 

several decades, the IBM has been successfully combined with the LBM and evolved into various variants 

[42]. Here, we adopt a version proposed by Niu et al. [43], which is straightforward to implement and powerful 

in handling both rigid and elastic immersed boundaries. In this version, the hydrodynamic force is evaluated 

by the momentum exchange scheme on the VDF 𝑓𝛼(𝑿, 𝑡) at the boundary. As the Lagrangian grid points may 

not coincident with the Eulerian grid points, the VDF at the boundary points needs to be interpolated [30]. 

𝑓𝛼(𝑿, 𝑡) =∑𝑓𝛼(𝒙, 𝑡)𝜎ℎ(𝒙 − 𝑿)

𝒙

ℎ2 (17) 



where ∑  𝒙 denotes the summations over all Eulerian grid points, and ℎ is the Eulerian grid spacing. 𝜎ℎ(∙) is the 

smoothed Dirac delta function which takes the following form in our simulations. 

𝜎ℎ(𝒙 − 𝑿) =
1

ℎ2
∅(
𝑥 − 𝑋

ℎ
)∅ (

𝑦 − 𝑌

ℎ
) (18) 

with the four-point ∅(𝑟) being 

∅(𝑟) =

{
 

 (3 − 2|𝑟| + √1 + 4|𝑟| − 4𝑟
2) /8, |𝑟| ≤ 1 

(5 − 2|𝑟| − √−7 + 12|𝑟| − 4𝑟2) /8, 1 ≤ |𝑟| ≤ 2

0, |𝑟| ≥ 2

 (19) 

Based on the interpolated 𝑓𝛼(𝑿, 𝑡) at the boundary, a new set of VDF is obtained by applying the bounce-

back rule, i.e., 

𝑓−𝛼(𝑿, 𝑡 + ∆𝑡) = 𝑓𝛼(𝑿, 𝑡) − 2𝜔𝛼𝜌
𝒆𝛼𝑼(𝑿, 𝑡)

𝑐𝑠
2  (20) 

where −𝛼 denotes the opposite direction of 𝛼. 𝑼(𝑿, 𝑡) is the boundary velocity, 𝑐𝑠 = √3𝑐 3⁄  the speed of 

sound in LBM, and 𝜔𝛼  is the weighting coefficient given as  𝜔0 = 4/9, 𝜔1,2,3,4 = 1/9 and 𝜔5,6,7,8 = 1/36. 

The hydrodynamic force exerted on the boundary points can be computed via momentum exchange scheme, 

𝑭𝒇𝒍𝒖𝒊𝒅(𝑿, 𝑡) = −∑𝒆𝛼 
𝛼

[ 𝑓𝛼(𝑿, 𝑡 + ∆𝑡) − 𝑓−𝛼(𝑿, 𝑡)] (21) 

and its reaction force −𝑭𝒇𝒍𝒖𝒊𝒅(𝑿, 𝑡) further be distributed to the background fluid, 

𝒇𝒆(𝒙, 𝑡) = −∑𝑭𝒇𝒍𝒖𝒊𝒅(𝑿, 𝑡)𝜎ℎ(𝒙 − 𝑿)∆𝑠

𝑿

 (22) 

where ∆𝑠 is the Lagrangian grid spacing and ∑  𝑿 denotes the summations over all the Lagrangian grid points. 

 

3.4. Fiber-wall collisions 

To prevent a fiber from penetrating the sidewalls during the simulation, the effect of fiber-wall collision must 

be included. In this study, this collision is solved by introducing a short-range repulsive force which is a result 

of fluid lubrication when two immersed objects are in close proximity. In IBM, this repulsive force can be 

calculated conveniently using the smooth Dirac delta function [28]. 

𝑭𝑐(𝑿, 𝑡) = ∫ 𝜎ℎ(𝑿 − 𝑿
′)

𝐿

0

𝑿 − 𝑿′

|𝑿 − 𝑿′|
𝑑𝑠′ (23) 

where 𝑿 is the position of the fiber node where the repulsive force is acting, and 𝑿′ is the position vectors of 

the corresponding fiber or wall nodes that are at close range to 𝑿. 

 

4. Numerical validations 



The validity of our coupled fluid-structure interaction (FSI) solver was validated against three benchmark 

problems. First, the structure solver was validated by simulating the swinging motion of a flexible rope 

pendulum under gravity. Then the boundary force evaluation scheme was verified by simulating the flow over 

a stationary circular cylinder. The third validation case simulated the flapping motion of a filament in a uniform 

flow to verify the effectiveness of our algorithm in solving FSI problem. Apart from that, grid and time-step 

independence studies were carried out to make sure that the solution is independent of the grid resolution and 

time step adopted. 

 

4.1. A flexible rope pendulum swings under gravity 

The schematic diagram is shown in Fig. 2a. A flexible pendulum is pivoted and initially hanging sideways 

(initial angle = θ) from the vertical direction where gravity 𝐠 applies. Both the length 𝐿 and linear density 𝜌𝑓 

of the pendulum are set to unit, and the value of gravity |𝐠| is chosen as 10. The dynamics of the pendulum is 

governed by Equation (5) with the hydrodynamic and repulsive forces being replaced by a gravity, and the 

equation is solved by our structure solver with a typical result demonstrated in Fig. 2b, where the swinging 

motion shows asymmetrical features due to the flexibility of the pendulum. When θ is very small, the analytical 

solution for the tip displacement of the swinging pendulum can be derived using a perturbation method [28], 

which yields (a hinged and a free-end boundary condition are considered) 

𝑥(𝑠, 𝑡) =∑
4𝜃𝐿

𝑧𝑖
2

𝐽2(𝑧𝑖)

𝐽1
2(𝑧𝑖)

∞

𝑖=1

𝐽0(𝑧𝑖√
𝐿 − 𝑠

𝐿
) cos(

𝑧𝑖
2
√
|𝐠|

𝐿
) (24) 

where 𝐽0,  𝐽1 and 𝐽2 are the Bessel function of the first kind of order zero, one and two, respectively. 𝑧𝑖 is the i-

th positive root of 𝐽0(𝑧). 

For a totally flexible pendulum (𝐾𝑏 = 0 ) with a small initial angle (θ = 0.01 ), the comparison of the 

simulated and analytically calculated tip x-displacement at successive time is shown in Fig. 2c, which shows 

a good agreement between our numerical and analytical results. 

 



 

Fig. 2. The schematic diagram of the swinging pendulum problem (a) simulated superposition of the 

pendulum in one cycle (𝐾𝑏 = 1 × 10
−3, 𝜃 = 0.15𝜋) (b) comparison of the tip 𝑥-displacement between 

numerical and analytical solutions (𝐾𝑏 = 0, 𝜃 = 0.01) (c) 

 

4.2. Flow over a circular cylinder 

A stationary cylinder with a diameter of 𝐷𝑐 is placed in the central line of a 40𝐷𝑐 × 40𝐷𝑐 domain, and the 

downstream in 24𝐷𝑐 long. The surface of the cylinder is represented by 120 uniformly distributed Lagrangian 

points while 𝐷𝑐  covers 30 Eulerian grids. The far-field boundary condition is imposed at the boundaries of the 

domain. The flow at four Reynolds numbers 𝑅𝑒 = 20, 40, 100 and 200, is simulated using our current FSI 

solver. The 𝑅𝑒 here is defined as 

𝑅𝑒 =
𝑢∞𝐷𝑐
𝜐

 (25) 

where 𝑢∞ is the velocity of the incoming flow stream, and 𝜐 the kinematic viscosity of the flow. The average 

drag coefficients  𝐶𝑑 , lift coefficients   𝐶𝑙  and Strouhal number  𝑆𝑡  are calculated for comparison with the 

literature data, and they are defined as 

𝐶𝑑 =
𝐹𝑑

0.5ρ𝑢∞
2 𝐷𝑐

, and 𝐶𝑙 =
𝐹𝑙

0.5ρ𝑢∞
2 𝐷𝑐

 (26) 

𝑆𝑡 =
𝑓𝐷𝑐
𝑢∞

 (27) 

where 𝐹𝑑 and 𝐹𝑙  are the drag force and lift force the fluid exerted on the cylinder, respectively, and 𝑓 is the 

vortex shedding frequency which is evaluated using fast Fourier transform (FFT).  

Comparisons of 𝐶𝑑, 𝐶𝑙 and 𝑆𝑡 with those in the literature are shown in Table 1, where a favorable agreement 

is obtained.  
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Table 1. Comparison of 𝐶𝑑, 𝐶𝑙  and 𝑆𝑡 with those from the literature 

References 
𝐶𝑑 𝐶𝑙/𝑆𝑡 

𝑅𝑒 = 20 𝑅𝑒 = 40 𝑅𝑒 = 100 𝑅𝑒 = 200 𝑅𝑒 = 100 𝑅𝑒 = 200 

Tian et al. [29] 2.16 1.62 1.43 1.44 −/0.166 −/0.198 

Xu et al. [44] 2.23 1.66 1.42 1.42 ±0.34/0.171 ±0.66/0.202 

Russell et al. [45] 2.22 1.63 1.43 1.45 ±0.339/0.175 ±0.75/0.202 

Yuan et al. [30] 2.069 1.559 1.397 1.397 ±0.338/0.160 ±0.672/0.190 

Present study 2.160 1.620 1.444 1.440 ±0.348/0.160 ±0.701/0.193 

 

4.3. Flapping filament in a uniform flow 

We further validated the effectiveness of our FSI algorithm by simulating a well-studied flapping-filament 

problem. The filament is placed in a uniform flow of 10𝐿 × 8𝐿 with its upstream end tethered at (3L, 4L). The 

bending rigidity of the filament is chosen as 𝐾𝑏
∗ = 1 × 10−3 and the Re is 165. The mass ratio of the filament 

is varied to examine its possible dynamics pattern. Previously studies have demonstrated that there is a critical 

mass ratio, below which the filament eventually rests in straight state aligning with the flow [27, 30, 37, 46]. 

Our simulated results are shown in Fig.3, which predicts a critical mass ratio between 0.12-0.16. This is in 

good agreement with the theoretic work of Connell & Yue [37], where the predicted critical mass ratio was 

around 0.14 at 𝐾𝑏
∗ = 1 × 10−3, and Re=165. The comparison between our results and that of Yuan et al. [30] 

is shown in Table 2, where a reasonable agreement is obtained. 

 



 

Fig. 3 Simulated superposition of the filament (left) and vorticity contour at t =130 (right) at various 𝜌𝑓
∗   

 

Table 2. The flapping amplitude, 𝐶𝑑  and St at Re=165, 𝐾𝑏
∗ = 1 × 10−3, and 𝜌𝑠

∗ = 0.3 

Sources Amplitude 𝐶𝑑 St 

Yuan et al. [30] 0.43 0.425 0.489 

Present 0.447 0.452 0.465 

 

4.4. Grid and time-step independence study 

We performed the grid and time-step independence study by simulating the conveyance of a single fiber in a 

short channel (𝐿 = 5𝐿𝑓) at various grid sizes and time steps. The fiber is initially placed at 𝐻0
∗ = 0.5, 𝜃0 = 90

°. 

The flow 𝑅𝑒 is 2000 and the Lagrangian grid spacing ∆s is set equal to the Eulerian grid spacing ∆𝑥. Starting 

from the coarsest grid, the grid size is refined by a factor of 1.5 in each simulation case that follows. The 

dimensionless conveyance time 𝑇∗ it takes to deliver the vertically placed fiber to the channel outlet and the 

conveyance speed 𝑈∗ (u-veolicty of fiber’s middle point) at that moment are tabulated and made comparison 

(a)  f =0.3

(b)  f =0.16

(c)  f =0.12



among different grid levels, as shown in Table. 3. It can be seen that this quantity is convergent as the grid gets 

refined, and in the cases when ∆𝑥∗ ≥ 1 100⁄ , a very small difference (less than 0.2%) in both 𝑇∗ and 𝑈∗ can 

be observed. Therefore, in our fiber conveyance simulations, a grid size of ∆𝑥∗ = 1 100⁄  , and time step 

of ∆𝑡∗ = 1 × 10−3 are chosen to save computational cost. 

 

Table 3. Comparison of the conveyance time 𝑇∗ and conveyance speed 𝑈∗ at the outlet among different grid 

spacing and time steps 

Grid spacing ∆𝑥∗ Time step ∆𝑡∗ Conveyance time 𝑇∗ 
Conveyance speed 

𝑈∗ at channel outlet 

1 66⁄  1 × 10−3 11.444 0.8852 

1 100⁄  1 × 10−3 11.448 0.8857 

1 150⁄  1 × 10−3 11.448 0.8858 

1 100⁄  5 × 10−4 11.461 0.8867 

 

5. Results and Discussion 

5.1. Fiber initially aligned with the flow direction released at various vertical positions 𝐻0
∗ 

We first consider the conveyance of a single fiber that initially aligned with the flow direction (i.e. horizontally 

placed,  𝜃0 = 0
° ). To investigate the effect of released positions on fiber dynamics, the initial vertical 

position 𝐻0
∗  is set as 0.1, 0.2, 0.3, 0.4 and 0.5, respectively. In our study, the fiber’s vertical position and 

conveyance (U-velocity component) speed are evaluated at its middle point. To describe fiber’s deformation, 

a bending factor γ is defined, which is the ratio of fiber’s end-to-end distance to its undeformed length 𝐿𝑓 (γ ≤

1, and γ = 1 indicates that the fiber is totally straight).  

The evolution of the fiber’s configuration at the initial stage is shown in Fig. 4, where Y  y/𝐿𝑓  is the 

dimensionalized y-coordinate. It can be seen that among all the five cases, only the fiber that placed at the 

centerline of the channel (i.e. 𝐻0
∗ = 0.5) manages to travel forward along a horizontal path without getting 

deformed or reoriented. For all the other four cases (i.e. 𝐻0
∗ ≠ 0.5), the paths deviate from the horizontal and 

deformation and reorientation of the fiber are observable in the upstream. Furthermore, when 𝐻0
∗ ≠ 0.5, the 

fiber is observed to first move towards the near sidewall (sideway drift), which later induces fiber-wall 

collisions. When the fiber is placed at the channel centerline, the top-bottom symmetry of the system is well 



maintained, and no vertical hydrodynamic load will be exerted on the fiber. Placing the fiber elsewhere will 

break this symmetry and leads to instability of the system. More specifically, it will gradually generate vertical 

hydrodynamic load at the fiber. This load, as shown in Fig. 5, is time-varying and not uniformly distributed. It 

will bend the fiber at the trailing section and cause a sideway drift motion. A similar sideway drift motion was 

also observed in Zhu [33], where the inhomogeneous properties of the filament and external disturbances work 

as sources for the instability. In Fig. 4, we can also see that after the fiber-wall collisions, there are two typical 

ways for the fiber to leave the wall. In the first way, the fiber’s trailing end will be lifted first, which then 

causes the fiber to tumble forward and the fiber is observed to leave the wall very quickly. In the second way, 

the fiber is less deformed, and its trailing end keeps contacting with the wall. In this case, the fiber leaves the 

wall slowly with an inclined configuration. Fig. 6 shows the streamlines at several selected timesteps for 

various  𝐻0
∗ . In the case of  𝐻0

∗ = 0.1  and 0.2, vortexes are generated when a fiber-wall collision occurs. 

Compared with that in the initial stage, the streamline in the far downstream appears to be less affected by the 

fiber indicating that the fiber has a low flow resistance when it gets fully settled in the flow field. The 

streamlines are also found to penetrate the fiber as we represent the fiber with only one layer of grid in our 

simulations (i.e., the fiber has a thickness of one grid spacing). 

 

 

Fig. 4. Evolution of the fiber’s configurations at the initial stage for various 𝐻0
∗  

           

           

           

           

           

  

  



 

 

Fig. 5. The distribution of the vertical component of the hydrodynamics load for 𝐻0
∗ = 0.3 at different 

moments 

 

              

              



 

Fig. 6. The streamlines at several selected timesteps for various 𝐻0
∗ (streamlines plotted based on the absolute 

flow velocity) 

 

The time evolutions of the end-to-end orientation and bending factor for various 𝐻0
∗ are shown in Fig. 7. In 

the cases of 𝐻0
∗ = 0.1, 0.3, 0.4 and 0.5, though fluctuations may arise in the upstream, the fibers’ orientations 

eventually stabilize at values that very close to zero, meaning that the fibers eventually nearly align with the 

flow and translate forward. For these cases, the fibers also tend to be straight in the far downstream, as their 

bending factor approach unity as shown in Fig. 7b. The fibers in these cases attain their equilibrium states in 

the downstream, and their equilibrium configurations are shown in Fig. 8a. In contrast, no equilibrium state is 

observable for the fiber initially placed at 𝐻0
∗ = 0.2 . Instead, it is found to do a tumbling motion, which 

becomes periodic in the downstream (this can be observed from the flips shown in Fig. 7a, when a flip takes 

place, the end-to-end orientation becomes discontinuous). A typical tumbling motion is presented in Fig. 8b. 

During the tumbling process, the fiber is also observed to buckle into a shallow arc thereby undergoes a springy 

deformation [8]. The tumbling of fiber in a Poiseuille flow has also been reported in [47, 48]. In the cases that 
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the fiber initially aligned with the flow, the tumbling motion may be triggered by a severe fiber-wall collision 

which brings the fiber a large rotational kinetic energy (a small rotational kinetic energy may eventually be 

damped out by the flow and the fiber will translate forward as in the case of 𝐻0
∗=0.1, where the fiber tumbles 

only for a short period at the beginning). The tumbling motion is maintained in the downstream by the 

rotational component of the local shear rate, as shown in Fig. 9a. The streamlines based on the absolute and 

relative velocity field are given in Fig. 9a and b, respectively. In the translation cases, when the fiber eventually 

gets stable, the presence of fiber seems to have a negligible effect on the flow field (see Fig. 10). 

 

 

Fig. 7. The time evolutions of the end-to-end orientation (a) and bending factor (b) for various 𝐻0
∗ 

 

   

   



 

Fig. 8. The equilibrium states observed at the far downstream for fiber placed at various 𝐻0
∗ (a) a typical 

tumbling motion for fiber placed at 𝐻0
∗ = 0.2 (b) 

 

 

Fig. 9. Snapshots of the shear rate contour in a tumbling cycle (b) the corresponding streamlines based on the 

relative velocity between the flow and the fiber 

 

 

Fig. 10. The dimensionless u-velocity (a) and shear rate (b) contours in the far downstream for 𝐻0
∗ = 0.3 

 

The time evolutions of the fiber’s vertical position for various 𝐻0
∗  are shown in Fig. 11a. Interestingly, 

though some fibers drift to the near-wall region in the upstream, there is a trend for them to migrate laterally 

to the channel central region in the downstream. This phenomenon has also been observed by Słowicka et al. 

[48], where the effect of several parameters on this phenomenon was investigated in their study. We also notice 

that when the lateral migration has been completed, the fiber will eventually remain at a vertical position 

   

   
                    

           

                    



slightly away from the centerline of the channel. This is consistent with the low-Reynolds-number results of 

Farutin et al. [47], where the authors predicted accumulation positions more or less away from the centerline. 

Moreover, for a fiber not placed at the centerline, we observe an off-centerline distance around 0.07 at the 

downstream for the fiber that translate forward, while a much larger distance of 0.26 is found for the tumbling 

case. The time evolution of the conveyance speed is shown in Fig. 11b, where large fluctuations in the 

conveyance speed are observable for cases with 𝐻0
∗ ≠ 0.5. These fluctuations typically occur at the upstream 

and are likely caused by the sideway drift motion and fiber-wall collisions. After a rapid acceleration process, 

all the fibers reach their terminal conveyance speeds and preserve those speeds in the rest journey. In the 

translation cases, the fibers’ terminal conveyance speeds are very close to the maximal velocity of the 

Poiseuille flow  m, while in the tumbling case, the conveyance speed keeps fluctuating in the downstream, and 

is 5% lower compared to that in the translation cases. This is because a tumbling fiber tends to settle at a 

position further away from the centerline (i.e. it has a larger off-centerline distance), where the local flow 

velocity is lower. The eventual conveyance speeds, off-centerline distances, and tumbling cycles for 

various 𝐻0
∗ are summarized in Table 4.  

 

 

Fig. 11. The time evolutions of the vertical position (a) and conveyance speed (b) of the fiber for various 𝐻0
∗ 

 

Table 4. The eventual conveyance speeds, off-centerline distances, and tumbling cycles for various 𝐻0
∗ 

𝐻0
∗ 

Long-term dynamics 

pattern 

Eventual conveyance 

speed U/ max 

Eventual distance 

to the centerline 

Tumbling cycle T  

at far downstream 

      



0.1 Translation 1.00 0.072 / 

0.2 Tumbling 0.95 0.256  28.76 

0.3 Translation 1.00 0.075 / 

0.4 Translation 1.00 0.075 / 

0.5 Translation 1.00 0 / 

 

5.2. Fiber released at vertical position 𝐻0
∗ = 0.5 with various initial orientations 𝜃0 

In this section, the fiber we simulated is no longer horizontally placed but is tilted at 𝐻0
∗ = 0.5. Due to the 

symmetry of the problem, the initial orientation 𝜃0 is chosen as 15°, 30°, 45°, 60°, 75°, and 90°, respectively. 

All the other parameters remain the same as in Section 5.1. 

The evolutions of the fiber’s configuration in the upstream are presented in Fig. 12. We can see, the fiber 

drift to the sideway in all the cases except 𝜃0 = 90° due to the non-zero y-component of the pressure drag. The 

sideway drift motion further causes fiber-wall collisions and fiber slip motion in the case 𝜃0 = 60°. The slip 

motion significantly reduces fiber conveyance speed but helps to straighten the fiber. Fig. 13 shows the 

streamlines at several selected timesteps for various 𝜃0, and Fig. 14 plots the time evolutions of the fiber’s end-

to-end orientation for different 𝜃0 . The fibers with initial orientations 𝜃0 =  60°, 75°, and 90° are found to 

translate forward with a nearly zero orientation in the downstream. In the case that the fiber is vertically placed 

(i.e. 𝜃0 = 90°), it is found that the fiber remains its vertical orientation for a period of time in the upstream, 

during which, the fiber is slightly buckled, and the symmetry of the system is maintained (see Fig. 12f). 

However, when t  is around 200, instability is triggered. The system is found to gradually lose its symmetry, 

and the fiber’s orientation starts to vary (see this process in Fig. 15). This is different from the symmetry case 

we studied in Section 5.1 (i.e. the case when the fiber is initially horizontally placed at the channel centerline), 

where the system remains stable and symmetric throughout the conveyance. This suggests that this nonlinear 

system may be easier to lose stability when a fiber is vertically placed in a symmetric system. A symmetric 

system with a horizontally placed fiber, however, may be more stable and can withstand disturbances at higher 

levels. For the cases 𝜃0 = 15°, 30°, and 45°, the fibers are observed to do periodic tumbling motions in the 

downstream (see Fig. 14b). Interestingly, the tumbling cycles T  we observed are nearly identical (around 29) 

for all the 𝜃0 and 𝐻0
∗ considered in this study, indicating that they may not affected by the initial orientation or 

vertical position of the fiber, but are likely controlled by some other parameters. 



 

Fig. 12. Evolutions of the fiber’s configurations at the initial stage for various 𝜃0 

 

  

          

          

          

          

          

          

  



 

Fig. 13. The streamlines at several selected timesteps for various 𝜃0 (streamlines plotted based on the 

absolute flow velocity) 
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Fig. 14. The time evolutions of fiber’s end-to-end orientation for various 𝜃0 

 

 

Fig. 15. Loss of the system stability and symmetry during the conveyance in the case of 𝜃0 = 90° 

(streamlines plotted based on the relative velocity between the flow and the fiber) 

 

The time evolutions of the vertical position and conveyance speed for various 𝜃0 are given in Fig. 16. All 

the fibers are observed to deviate from the horizontal path in the upstream. However, the deviations are found 

to be corrected in the downstream as the fibers migrate towards the central region. In the translation cases, the 

fibers eventually reach to their equilibrium vertical positions, while in the tumbling cases, the fibers would 

fluctuate slightly around some mean values. The off-centerline distances are calculated and tabulated in Table 

5. For all the tumbling cases, the distances are around 0.26, a value much larger than that in the translation 

cases. As no apparent difference appears in the off-centerline distance for the fibers with same dynamics pattern 

(translation or tumbling), we can say the eventual vertical position is dynamic-pattern dependent for a chosen 

conveyance system, rather than directly correlates with the specific orientation angle or vertical position. For 

the conveyance speed, similar result is found as in the vertical position cases studied in Section 5.1. The fiber’s 

eventual conveyance speed depends on its vertical position and corresponds well with the local flow velocity. 

In the translation cases, the fibers are eventually close to centerline, therefore their terminal conveyance speeds 

are close to the maximal flow velocity. In the tumbling cases, the fibers have larger off-centerline distances, 

      

t =370 t =520 t =570 t =820



thus they have lower conveyance speeds. 

 

 

Fig. 16. The time evolutions of the vertical position (a) and conveyance speed (b) for various 𝜃0 

 

Table 5. The eventual conveyance speeds, off-centerline distances, and tumbling cycles for various 𝜃0 

𝜃0 
Long-term 

dynamics pattern 

Eventual conveyance 

speed U/ max 

Eventual distance 

to the centerline 

Tumbling cycle T  

at the downstream 

15° Tumbling 0.94 0.255 28.91 

30° Tumbling 0.94 0.257 28.96 

45° Tumbling 0.94 0.257 28.97 

60° Translation 1.00 0.065 / 

75° Translation 1.00 0.062 / 

90° Translation 1.00 0.062 / 

 

6. Conclusions 

In this study, numerical simulations are performed to investigate the effect of fiber’s initial vertical position 

and orientation on its dynamics in a channel flow at Re=2000. The immersed boundary-lattice Boltzmann 

method is adopted to solve the fluid-fiber interaction, and a short-range repulsive force is introduced to model 

fiber-wall collisions. For the conveyance system we considered, the following conclusions can be drawn based 

on our simulation results  

   

centerline

   



1. The initial vertical position and orientation both could impact the fiber’s dynamic pattern and equilibrium 

state. The fiber is found to go straight forward along a horizontal path when it is aligned with the flow and 

symmetrically placed at the channel centerline. Breaking this symmetry by slightly offsetting the fiber’s 

initial vertical position from the channel centerline or tilting the fiber will induce the instability of the 

system, which then leads to deviations and fluctuations in fiber’s conveyance path. Interestingly, despite 

this deviation, the fiber is observed to gradually migrate towards the channel central region in the 

downstream. The vertical position that a fiber eventually settles may be slightly away from the channel 

centerline and the off-centerline distance is dynamic-pattern dependent. Typically, we find an off-

centerline distance around 0.25 for tumbling cases, and around 0.07 for translation cases (not include the 

symmetry case with 𝐻0
∗ = 0.5 and 𝜃0 = 0). 

2. By varying the initial fiber states, we observed two kinds of dynamic patterns in the downstream channel. 

In the first pattern, the fiber eventually reaches its equilibrium state and is observed to translate forward. 

In the second pattern, no equilibrium state can be observed, and the fiber is found to do a tumbling motion 

with a constant period. The tumbling cycle is found to be independent of the initial fiber state and is about 

29 for the considered system. Generally, when a fiber reaches its equilibrium state, it will have a straight 

configuration and a zero (or almost zero) orientation.  

3. The fiber’s eventual conveyance speed depends on the vertical position it eventually settles and can be 

roughly approximated by the local flow velocity. Therefore, fibers in translation cases can eventually 

obtain a larger conveyance speed due to its smaller off-centerline distance. 
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