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Abstract: As a passive damping technique for vibration and noise mitigation,

acoustic black hole (ABH) structures have been drawing an increasing attention

because of their easy-to-realize and broadband wave focusing and energy dissipation

characteristics. Structures with embedded ABHs, however, inevitably compromise the

overall structural stiffness and strength, which hampers their use as critical structural

components. As an alternative, this paper proposes a new type of device, i.e. a

two-dimensional circular ABH-based dynamic vibration absorber (2D ABH-DVA), as

an auxiliary component to be added to an existing structure for vibration suppressions.

Using a plate as benchmark structure, finite element (FE) simulation results show a

systematic reduction of its resonant peaks over a broad frequency range upon the

deployment of the ABH-DVA. Analyses uncover two underlying mechanisms which

dominate the physical process: dynamic interaction with the host structure and

damping enhancement as a result of ABH-specific energy trapping. This is warranted

by an effective dynamic coupling between the primary structure and the add-on

ABH-DVA, which can be quantified by a mode-specific and location-dependent

coupling coefficient defined in the paper. It is further demonstrated that, despite the

rich modal contents of the ABH-DVA, strong coupling with the primary structure only

takes place through a few DVA modes. Analyses also lead to a simple linear

relationship relating the overall system damping with the properties of the damping

material over the ABH-DVA. Finally, the broadband vibration suppression ability of

the proposed 2D ABH-DVA is verified through experiments. The study demonstrates
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the unique coupling features between the DVA and the host structure, which provides

design guidelines for unsymmetrical 2D or other ABH-DVA designs in the future.

Key words: Acoustic black hole; vibration control; dynamic vibration absorber;
coupling analysis

1. Introduction

Structural vibration is a vital problem in transportation vehicles such as aircraft,

high-speed trains and cars, etc. due to the use of light-weight materials and structures.

As one of the passive damping techniques, acoustic black hole (ABH) structures have

been drawing an increasing attention for applications such as vibration and noise

control owing to their easy-to-realize and broadband characteristics. In

one-dimensional cases, the thickness of an ABH wedge is tailored according to a

power-law variation   mh x x , ( 2m ). As a result, the phase velocity of the

flexural waves gradually reduces to zero when approaching the taper edge, thus

resulting in zero wave reflection theoretically. In the two-dimensional case, the

structure thickness can also be tailored along the radial direction to produce similar

phenomena, forming a type of lens which focuses the structure-borne flexural wave

energy to a specific location. Through such tailoring and employing a small amount of

damping materials within the thinnest part of the ABH region, flexural waves can be

efficiently focalized and dissipated, conducive to effective vibration suppressions of

the structure.

Existing researches on ABH target several important aspects, ranging from

theoretical [1-3] and experimental investigations [4, 5], design improvement [6-7] and

optimization [8-10] and engineering applications [11-16]. For the latter, ABHs have

been typically explored for vibration suppressions [8-12], noise control [13, 14] and

energy harvesting [15, 16]. From the design perspective, ABH indentations are

usually embedded into a structure in most applications. Efforts have also been made

to conceive various forms of ABH structures which potentially can provide better

mechanical properties, which allow for more diversified engineering applications. For

example, a new type of beam structure embedded with a double-bladed ABH

indentation was investigated from both static and dynamic perspectives [17, 18].
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One-dimensional ABH feature was also proposed to be embedded into a turbine blade

to achieve vibration control [11]. As to 2D structures, Georgiev et al. incorporated a

two-dimensional ABH near the focus of an elliptic plate and investigated its vibration

characteristics [19]. An experimental investigation was carried by Bowyer et al. on

the damping characteristics of flexural vibrations in plates containing multiple 2D

ABHs [20, 21]. As a typical application, an ABH plate was used as an engine cover

for vehicle vibration and noise reduction and a significant noise level reduction was

achieved [14]. Meanwhile, Zhao et al. designed a piezoelectric energy harvester based

on the acoustic black hole principle [15]. Capitalizing on the ABH-specific energy

trapping feature, a PZT array covering five ABH cells along a beam was proposed to

increase the energy recovery efficiency.

Although promising benefits can be achieved in structures with embedded ABHs,

the ABH indentations inevitably reduce the overall stiffness and strength of the

structures. When used as critical structural components, this kind of design and

structural modification may not be allowed. Recently the idea of add-on ABH-based

dynamic dampers, called ABH-featured Resonant Beam Damper (ABH-RBD), was

proposed by Zhou and Cheng for the vibration suppression of a beam structure [22].

The proposed ABH-RBD is a short beam with an ABH portion at its end. Attached to

the primary beam, the overall stiffness and strength of the host structure retain intact.

Through embracing the principles of both dynamic vibration absorbers and waveguide

absorbers, the ABH-RBD has been shown to exhibit broadband vibration suppression

capability, in contract to the single-frequency feature of a traditional dynamic

absorber which usually requires meticulous tuning to target particular frequencies.

The above study, however, was limited to 1D cases, in which both the primary

structure and the add-on ABH-RBD device feature relatively simple modal behavior

along the beam direction. Although one can surmise to achieve multi-directional

vibration control in a two-dimensional structure like a plate using multiple devices,

the increase in number of the device would make the implementation cumbersome

and impractical. Therefore, it is practically relevant to investigate the possibility of

using a single DVA device to control multi-directional modes of a host plate. It is

obvious that a two-dimensional structure like a plate has richer modal frequencies
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with multi-directional features. To tackle the problem, this paper reports a new type of

ABH-based circular dynamic vibration absorber (2D ABH-DVA). As will be

demonstrated later, its design, dynamics and performance differ from the existing

ones reported in the literature. The paper targets a twofold objective, thus showing its

novelty: to demonstrate the feasibility of using one add-on absorber for the vibration

reduction of a 2D structure exemplified by a plate; and to uncover the underlying

physical mechanisms behind the vibration suppression phenomena.

The paper contains the following inter-related parts. The proposed 2DABH-DVA

is first described and the vibration suppression ability is demonstrated through the

finite element model using Abaqus. For further analyses, a simplified substructuring

model is proposed to understand the observed phenomena and the dynamic interaction

between the two structural components within specific frequency ranges. Analyses

lead to a mode-specific and location-dependent coupling coefficient which allows the

quantification of the coupling strength. Vibration control mechanism and the influence

of the installation position, characteristic frequency, vibration mode shape of the

ABH-DVA and material loss factor of damping layers are discussed based on the

proposed simplified coupling model and finite element simulations. Experiments are

then conducted. Both Finite Element (FE) simulation and experimental results show

that the resonant peaks of the primary system can be effectively suppressed over a

broad frequency range. Analyses confirm two vibration suppression mechanisms:

dynamic interaction and damping enhancement, imposed on different resonance

modes of the primary structure. It is also found that, although the 2D ABH-DVA has

very dense and abundant natural modes, only a few of them can be strongly coupled

with those of the primary structure because of the selective coupling pattern.

2. 2D circularABH-DVAand simulation model

The proposed 2D circular ABH-DVA is shown in Fig. 1. It is an ABH-featured

disk, to which an annular damping layer of a constant thickness hd is bonded along its

edge. The ABH disk can be divided into three parts: a central uniform circular

platform with a constant thickness h0 (from 0 to r1), a region with a varying thickness

(from r1 to r2) and another platform of constant thickness h1 (from r2 to r3). The
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thickness profile of the disk along the radial direction can be mathematically defined

by
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The proposed 2DABH-DVA is to be attached to a primary structure, exemplified

by a plate, using either glue or a bolt, as shown in Fig 2. Since it is an add-on device,

rather than an embedded indentation into the primary structure, it does not jeopardize

the stiffness or the mechanical strength of the primary structure.

Fig.1. Schematic of a 2D circular ABH-DVA

Fig.2. Synthesis system

To test the efficacy of the proposed device for vibration suppression and to

understand the underlying physical mechanisms, FE simulations using Abaqus are

carried out. The 3D FE model comprises a rectangular plate with free boundaries,

with a lateral dimension of la by lb and a thickness lc, as the primary structure and a

2D ABH-DVA, as shown in Fig.2. The material and geometrical parameters of the

combined system are tabulated in Tables 1 and 2, respectively. Both the primary plate

and the ABH disk are made of aluminum, and the damping material is butyl rubber.

The added mass of the ABH-DVA is 0.0529 kg (4.52% of the primary plate). To

warrant a truthful description of the vibration details near the tip of the ABH-DVA and

computational accuracy, the mesh size is set to ensure more than ten elements per

wavelength. The model is discretized using C3D20R solid elements. To accommodate
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the geometrical changes in the ABH region, the grid is divided in a non-uniform way,

and the structure and additional damping layer are guaranteed to share common nodes

at the interface.

Table 1 Material parameters
Aluminum Damping material

Young's modulus (MPa)
Poisson's ratio
Density (kg m-3)

Material loss factor

70000
0.346
2710
0.001

200
0.45
1850
0.1

Table 2 Structural geometric parameters
Parameters Value

la
lb
lc

m
r1
r2
r3
h0
h1
hd
r4

300 mm
240 mm
6 mm
0.00112

2
5 mm
55 mm
61 mm
3 mm
0.2 mm
2 mm
30 mm

3. FE simulation analyses on vibration suppression and system

coupling

3.1 Vibration reduction of the plate with 2DABH-DVA

The frequency response of the plate with and without the 2D ABH-DVA under

an external force excitation is first investigated using the above FEM model. Placing

the origin of the coordinate system at the center of the plate, as shown in Fig. 3, a

transverse excitation force of 1 N in amplitude is applied at (100, 50) mm over the

plate. The 2D ABH-DVA is rigidly connected to the primary structure at (-120, -90)

mm. Modal analysis shows 26 flexural modes in the primary structure and 37 in the
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2D ABH-DVA within the frequency range of interest (10 Hz to 5000 Hz). The modal

superposition method was used to calculate the steady-state dynamic response of the

structure for evaluation of the vibration suppression performance.

Fig.3. Sketch of the 2D ABH-DVA installed on a uniform plate

The driving point mobility is calculated with and without the ABH-DVA with

results shown in Fig. 4. It can be seen that the deployment of the add-on ABH-DVA

triggers obvious broadband vibration suppression of the host structure without

particular parameter tuning in its design. Remarkable vibration suppression can be

observed for some modes, such as those at 345 Hz, 1016 Hz and 2946 Hz, whilst less

obvious effect is achieved for others, as shown in Fig. 4. Further inspection of the

response curve suggests two main vibration suppression phenomena: the dynamic

interaction (conventional DVA effect) evidenced by the typical peak splitting

phenomenon; and damping enhancement (energy dissipation) as reflected by the

reduction in some resonance peaks without splitting, in agreement with previous

observations made in 1D ABH-RBD cases [22]. Different from the previous work,

however, the presently proposed device seems to be able to cope with a large number

of structural modes, which understandably should feature bi-directional deformation

features. It is also understandable that the occurrence of the aforementioned

phenomena would both rely on an effective dynamic coupling between the primary

structure and the add-on ABH-DVA, which calls for further analyses which will be

reported in the later section.

It is relevant to note that the aforementioned vibration reduction was checked to

be caused by the ABH effects of the DVA. Numerical simulations show that a uniform

disk with the same mass (through adjusting its thickness) and damping arrangement as

the ABH-DVA could not produce the effects observed above. In order to ensure the
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simplicity of the paper, the simulation results are not shown here, but only submitted

as a supplementary material. Despite some noticeable changes on the host structure,

no systematic vibration reduction could be achieved in the absence of the ABH

feature. This is also consistent with the analyses in 1D cases [22, 24].

Fig.4. Comparisons of the driving point mobility of the primary plate with and
without 2D ABH-DVA

3.2 Dynamic coupling analysis

In order to better understand the dynamic coupling characteristics between the

two structural components and explain the observed phenomena, a substructuring

formation is established followed by a coupling analysis. The analyses intend to show

the structural interaction between the host structure and the ABH-DVA within some

particular frequency ranges. As such, the model, along with the simplifications made

and the way the model is to be used, should be understood in this particular context.

Therefore, the formulation is not to be used as a predictive model for broadband

system response calculation, which by the way, is accomplished using the

aforementioned FE model with substructuring.

For convenience, only the out-of-plane displacement of the primary structure and

auxiliary structure (2D ABH-DVA) are considered. Before they are coupled together,

the discretized dynamic equation of each sub-system can be encapsulated in the
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following discretized form:

s s s s s s  M w C w K w F  (2)

A A A A A A 0  M w C w K w  (3)

where Ms, Cs and Ks are the mass, damping and stiffness matrices for the primary

structure respectively, and MA, CA and KA are those for the add-on structure; ws

and wA are the vibration displacement of the primary structure and the add-on

structure respectively; F is the excitation force on the primary structure.

Using the modal superposition method after modal mass normalization, Eqs. (2)

and (3) can be cast into the following form in the principal modal coordinate system:

  2
s s s s s s m2      Iq q q F  (4)

  2
A A A A A A2 0      Iq q q  (5)

where I is the unit matrix; s s[2 ]  a diagonal matrix with its ith diagonal element

equal to s s2 i  with si and s being the natural frequencies and the

corresponding modal damping ratios of the plate. 2
s[ ] is another diagonal matrix

containing 2
si as diagonal elements. Replacing sub-index s by A leads to the

counterparts of these quantities in the absorber. sq and Aq are the modal

coordinates of the primary structure and add-on structure respectively.

Now imposing the coupling, the ABH-DVA is bonded to the primary structure

within a circular interfacial area enclosed by a radius r=r1 (Fig. 2). Assuming a small

interfacial area with respect to the bending wavelength, the out-of-plane motion

within the contact area can be described by a transitional displacement and a

rotational angle. To illustrate the process, consider only the translational motion of the

ABH-DVA at a single joint node between the two substructures. The displacement of

the main structure at the same joint node can be expressed as:

s s snw  GΦ q (6)

where sΦ is the modal matrix of the primary structure, {0 0, 1, 0 0}G   is row

vector with components of zeros except the one corresponding to the joint node.

The ABH-DVA, once added on the primary structure, is excited by the plate

motion. Its displacement writes:

../../../Documents/WeChat Files/mmlcheng/Documents/WeChat Files/wxid_kqgvqoggmeb612/Program Files (x86)/Youdao/Dict/7.5.2.0/resultui/dict/
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 A A A s1 nw w Φ q (7)

where AΦ is modal matrix of the ABH-DVA, {1} is a column vector with all the

components equal to 1.  factor is used to ensure the displacement continuity

between the base structure and the DVA. This is necessary because the mode vectors

of the ABH-DVA are calculated under unconstrained conditions.

Substitution of Eqs. (7) and (6) into Eq. (5) gives the modal equation of the

ABH-DVA as:

   2 T
A A A A A A A A s s2 1        Iq q q Φ M GΦ q   . (8)

Obviously the right-hand-side term which contains the modal coordinates of the

primary structure, physically corresponds to the excitation force imposed by the

primary structure on the DVA.

The same coupling force is also applied to the primary structure. Therefore, the

dynamical modal equation (5) of the primary structure can be expressed as:

   T2 T T
s s s s s s m s A A A2 1       Iq q q F Φ G M Φ q   . (9)

Should it be necessary, the natural frequency and modal vectors of the coupled

system can be obtained by simultaneously solving these two coupled equations (8)

and (9), reflecting the two-way interaction effect between the two structural

components. Instead, the above equations will be used to explain the modal

interaction behavior between the two structural components at relatively low and

narrow band frequency. Therefore, we focus on the resonant response of the primary

structure when one of its modes dominates. Considering the orthogonality among the

modes of the 2D ABH-DVA before coupling and the linearity of the system, the

influence of each ABH-DVA mode can also be scrutinized separately upon some

implication of the model. This allows the problem to be simplified. Without

compromising the general coupling principle, some particular mode pairs are selected

in order to highlight their coupling characteristics.

Assuming that ith mode in the primary structure and the jth mode in the add-on

DVA dominate the system response under a modal excitation force Fmi. The equations

of dynamic motion (Eqs. (8) and (9)) become:
2

s A s s s s s m2i ij j i i i i iq q q q F         , (10)
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2
A s A A A A A2 0j ij i j j j jq q q q         , (11)

where ij is an important parameter to quantify the coupling strength between the

two structures, referred to as the modal coupling coefficient. In accordance to Eq. (9),

ij is mathematically defined as:

 T T
A A s A A s= 1ij i j i j   Φ M GΦ Φ M GΦ . (12)

It is clear that, ij not only depends on the two modes involved including their

respective mode shapes, but also the location of the ABH-DVA.

The influence of coupling coefficient on vibration suppression effect is analyzed

and discussed in the following for two cases: first, the modal frequency of the primary

plate is close to that of the add-on structure; second, the difference between the two is

relatively large.

Dynamic interaction

When the excitation frequency  is close to both si and Aj , one has
22 2

s s s s m
2 2 2

AA A A

j2
0j2

iji i i i

jij j j

q F
q

     

      

            
        


 (13)

where miF , siq and Ajq denote the amplitude of miF , siq and Ajq respectively.

Solution of Eq. (13) gives
2 2
A A A

s m

j2j j
i iq F

     



 (14)

where

  2 2 2 2 2 4
s s s A A Aj2 j2i i j j ij                  . (15)

Obviously in the approximated 2DOF system, the add-on structure acts as a

dynamic vibration absorber on the primary structure. As such, the original resonance

peak of the primary structure is expected to split into two, the frequencies of which

are the eigenvalue solution of Eq. (15) and the height depends on A , Aj and si .

When A sj i  , defining

s/ i   (16)

the two resonance frequencies of the undamped counterpart of Eq. (15) are
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2
1,2

1
1 ij







. (17)

The complex amplitude of modal coordinates of the primary structure with the

add-on structure at these two frequencies can be obtained as:

  
2

mA
s 22 2

ss A s A

1 j2
4 j2 1

i
i

i

Fq   
      

 
 
   

(18)

with 1  or 2  .

As a special case without ABH-DVA, ij = 0 and in that case, 1 2  . The

amplitude of modal coordinate of the primary structure is

m
s 2

s s

1
2

i
i

i

Fq
 

  . (19)

Obviously, the ratio between the modal displacement amplitude of the primary

structure with and without add-on structure can be used to evaluate the vibration

suppression effect of the add-on structure, defined as

 
  

1,2

2
A ss

2 2
s s A s A

1 j2 2

4 j2 1
i

i

qA
q

 

   

      


 
 

   


, (20)

where A is a function of Ω1,2, which, in turn, is a function of ij . The relationship

between A and ij with different A when s=0.001 and 1  is plotted

in Fig. 5(a), which shows that the larger the coupling coefficient ij , the better the

control effect. However, even for a small coupling coefficient, an appreciable control

effect can still be obtained. Meanwhile, the control effect is not significantly affected

by the modal damping ratio of the ABH-DVA. Therefore, perfect vibration

suppression is possible, as long as the primary structure and the ABH-DVA meet

certain coupling conditions, as shown in Eq. (12).

Damping enhancement

An ABH-DVAmode with Aj , which is significantly different from si , can be

regarded as a damping contributor to the primary system. When the primary structure

is excited around its resonance frequency si , that is, s 1i    , the response of

the ABH-DVA can be expressed in the following form:
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2

A s2 2
Aj2

ij
j i

ij ij

q q
 

   
 

 
  (21)

where A sij j i   . When A sj i  , then 1ij  . With 1  , A sj iq q  ,

suggesting that the dynamic effect of the ABH-DVA on the primary structure is of

secondary effect. On the contrary, when A sj i  , 1ij  . By neglecting the

second order term, 2
ij in the denominator, one has:

 A s A s
A

1 j2
1 j2

ij
j i ij ij i

ij

q q q


   
  

     


   . (22)

Substitution of Eq. (22) into Eq. (10) gives

    2 2 2 2
s A s m s1 1 j2ij ij ij i i iq F               . (23)

Obviously, this gives an equivalent damping ratio, i.e. 2
s Aij ij    , denoted by c

2
c s A=i ij ij j     . (24)

The above expression indicates that a low-frequency mode of the ABH-DVA can add

damping to a strongly coupled mode of the primary structure with a higher resonance

frequency. Using Eq. (20), one has:

  2

s s
2

s s A 1/(1 )

2
j2

ij

i

i ij ij

qA
q

 


    

 

 



. (25)

The relationship between A and ij with A=0.1 , s=0.001 and varying

ij from 0.1 and 0.9 is plotted in Fig.5 (b). It follows that, for the same modal

damping ratio of the ABH-DVA, the larger the frequency ratio is, the better the

control effect is, i.e. better control effect for those modes whose natural frequencies

are closer to that of the ABH-DVA. From a different perspective, A - ij

relationship with =0.5ij , s=0.001 and varying A from 0.01 and 0.3 is plotted

in Fig. 5(c). It can be seen that, although the control effect is less pronounced than

that of the dynamic interaction under the same coupling coefficient, appreciable

control can still be obtained by increasing either A or the coupling coefficient.

Therefore, a damping enhancement in the primary structure can be obtained by

increasing the modal damping ratio of the add-on structure when the resonance

frequencies of primary structure are higher than those of the ABH-DVA.
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(a) 1  and s=0.001

(b) A 0.1  and s=0.001
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(c) 0.5ij  and s=0.001
Fig.5. Relationship between normalized control effect and coupling coefficient

3.3 Control mechanisms and the parametric influence on control

performance

Based on the above analysis tool, dynamic features related to the proposed

ABH-DVA as well as its coupling with the host plate are scrutinized in this section.

This allows one to understand how the aforementioned mechanisms are materialized

in the current context.

3.3.1 Dynamic coupling characteristics of the 2DABH-DVA

Eqs. (20) and (25) and the results of Fig. 5 suggest that the vibration suppression

effect is directly related to the coupling coefficient ij , no matter which mechanism

dominates the process. In order to gain insights into the factors that influence ij ,

discussions are made on the physical meaning of the two parts in Eq. (12),

 T
A A 1iΦ M and sjGΦ , both of which are real numbers. For the convenience of

discussion, Eq. (12) is rewritten as:
   1 2=ij ij ij     (26)

where
   1 T T

A A A A1ij i i  Φ M Φ M ,  2
sij j GΦ . (27)
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According to the definition of the vector G ,  2
ij is a specific component of the

vector sjΦ . The absolute value of  2
ij reaches maximum when the ABH-DVA

is installed at the peak of the mode shape of the primary structure. The term  1
ij

is the mass-weighted summation of the components of modal vectors of the

add-on structure. Its value depends on the mode shape of the ABH-DVA.

Influence of mode shape on the coupling coefficient

Some typical modal shapes of the 2D ABH-DVA are shown in Fig.6, in which

the notation RmCn denotes an ABH-DVA mode with a radial order m and a

circumferential order n. Due to the axisymmetric geometry of the circular

ABH-DVA, its natural modes corresponding to the lateral vibration can be

expressed as

     A , = cosnm mr r n Φ W . (28)

Any combination of (m, n) corresponds to an i in the index of ij . As examples, three

circumferential 5th-order modes are shown in Fig.7. The continuous counterpart of
 1
ij in Eq. (27) is

     1 T
A A cos d dij i mW r n r r     Φ M (29)

where  is the density of the ABH-DVA. It is obvious from Eq. (29) that  1
ij equals

zero when 1n  . Therefore, only the fundamental circumferential modes with n=0 are

coupled with the primary structure. It follows that, only a few modes of 2D

ABH-DVA are strongly coupled with the primary structure although there are

much greater number of modes in the 2D ABH-DVA than the primary structure.

The modal damping ratios of the system and its constituents are shown in Fig. 8.

The resonance frequencies and modal damping ratios of the modes below 1600 Hz are

listed in Table 3. The damping ratios of all the modes of the primary structure are

0.0005, which is half the material loss factor of the primary structure. The triangle

ones denote the modal damping ratios of ABH-DVA itself, which are much greater

than those of the primary structure due to the combination of the ABH effect and the

damping layer [4, 23]. It is also obvious that the modes of the ABH-DVA can be

roughly classified into three groups, as labeled in Fig.8. Further inspection of their
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mode shapes shows that the modes in each group share the same radial order,

corresponding to the radially 1st, 2nd, and 3rd orders, respectively. Based on the

above coupling analysis, only three modes, (1, 0), (2, 0) and (3, 0), can be coupled

with the primary structure. The frequencies of the three modes are 302 Hz, 1210 Hz

and 2952 Hz, respectively. This explains why the dynamic interaction effect is only

observed around 300 Hz, 1200 Hz and 2900 Hz in Fig.4.

Fig. 6 Modal shapes of 2DABH-DVA coupled with the primary plate

(a) Mode (1, 5): 651 Hz (b) Mode (2, 5): 2218 Hz (c) Mode (3, 5): 4478 Hz

Fig. 7 Radial modes of first, second, and third order of the ABH structure
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Fig.8. Modal damping ratios of the combined system and different components

The ABH-DVA has 37 modes in the frequency range from 10 Hz to 5000 Hz,

much more than the number of modes in the primary structure. Although the rich

dynamic of the ABH-DVA can theoretically increase the chance to match the modal

frequency of the primary structure, many of them however cannot be efficiently

coupled with the primary structure in practice. Modal frequencies and modal damping

ratios of different structures in the frequency range of 0-1600 Hz are tabulated in

Table 3. The modes of 2D ABH-DVA with n=0 and n=1 are shown in bold and italic.

The results in Fig.8 and Table 3 also clearly show that all the modes (m, n) of the 2D

ABH-DVA with 2n  are almost completely decoupled with the primary structure,

since they all preserve their modal features even after the coupling. Taking mode (1, 4)

of the 2D ABH-DVA as an example, the uncoupled natural frequency (480.37 Hz) and

the damping ratios (0.0314) basically remain intact in the combined system (480.35

Hz and 0.0313, respectively) as shown in Table 3. Their modes shapes are shown in

Figure 9.

Another example is mode (1, 5) of the 2D ABH-DVA shown in Fig.10(a) at

651.16 Hz with a damping ratio of 0.0369. In light of Eq. (29), this mode cannot be

coupled with the primary structure. Although there is a mode in the primary structure

with very close resonance frequency at 647.46 Hz, shown in Fig.10(b), these two

modes indeed are not coupled and there is no dynamic interaction effect. The

frequency of the mode in the combined system corresponding to mode (1, 5) of

ABH-DVA, as shown in Fig.10(d), is 651.13 Hz and its damping ratio is 0.0369,
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almost the same as that of the ABH-DVA itself. The mode in the combined system

corresponding to the original mode of the primary structure, as shown in Fig.10(c),

has a frequency of 640.10 Hz, which is slight lower than the frequency of the original

mode because the ABH-DVA can be approximated as a lumped mass in this case. Its

modal damping ratio is slightly increased from 0.0005 to 0.0014, which can be

affected by other frequencies as explained by Eq. (25).

Table 3 Modal frequencies and modal damping ratios of different structures
Uniform Plate ABH-DVA Synthetic system

Frequency
(Hz)

Modal
damping
ratio

Frequency
(Hz)

Modal
damping
ratio

Frequency
(Hz)

Modal
damping
ratio

267.44
345.42
578.51
647.46
761.05
1016.07
1262.56
1286.87
1560.01

0.0005
0.0005
0.0005
0.0005
0.0005
0.0005
0.0005
0.0005
0.0005

285.12
289.21
301.65
357.14
480.37
651.16
862.88
1110.30
1171.34
1209.64
1268.37
1389.54
1535.70

0.0129
0.0141
0.0144
0.0227
0.0314
0.0367
0.0400
0.0417
0.0231
0.0224
0.0256
0.0427
0.0282

235.84
269.62
280.45
287.62
328.41
357.05
362.61
480.35
576.04
640.10
651.13
752.77
862.85
987.40
1110.28
1115.59
1127.25
1220.22
1259.57
1291.82
1350.10
1389.51
1535.18
1571.10

0.0031
0.0103
0.0115
0.0140
0.0087
0.0227
0.0057
0.0314
0.0015
0.0014
0.0369
0.0015
0.0400
0.0044
0.0417
0.0193
0.0165
0.0128
0.0256
0.0026
0.0106
0.0427
0.0282
0.0012

It should be noted that, the qualitative modal coupling analysis based on

translational continuity between the ABH-DVA and the plate, ignores the rotational

motion of the connecting area. Should this effect be taken into account, additional
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coupling path can be created. This is demonstrated by examining three modes (1, 1),

(2, 1) and (3, 1), with a frequency of 285.12 Hz, 1171.34 Hz and 2906.7 Hz,

respectively. The commonality among the three modes is that, according to the mode

shapes shown in Fig. 6, they share the same circumferential deformation denoted by

(m, 1) ( 1,2,3m  ). Indeed, they are coupled with primary structure through rotation,

which can be observed in the FE simulation results because both the lateral motion

and the rotational motion were considered in the FE simulations. Nevertheless, even

with the addition of these modes, effective coupling can only be possible between the

plate and a small number of ABH-DVAmodes, due to the axis-symmetrical geometry

of the device.

(a) ABH-DVA: 480.37 Hz (b) Uniform plate-ABH-DVA system: 480.35 Hz
Fig.9. Modal shapes at 480 Hz of single ABH-DVA and synthetic system

(a) ABH-DVA: 651.16 Hz (b) Uniform plate: 647.46 Hz
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Uniform plate-ABH-DVA system: (c) 640.10 Hz, (d) 651.13 Hz

Fig.10. Modal shapes of different systems near 647 Hz

From the above discussions, it is obvious that the vibration modes of the

combined system can be divided into three categories: the primary structure-dominant

modes, the ABH-DVA dominant modes and coupled modes. The ABH-DVA dominant

modes have little influence on the primary structure and are not visible in the

frequency responses in Fig. 4. All the coupled modes are the results of modal

combination of the primary structure and 2D ABH-DVA, as discussed in Section 3.2.

In the present case, these modes appear around 320 Hz, 1200 Hz and 2900 Hz. They

exhibit strong dynamic interaction as shown in Fig.8. The primary structure-dominant

modes are weakly influenced by the modes of the 2D ABH-DVA and their damping

ratios are slightly increased, as indicated by Eq. (25), which will be discussed in the

following.

Influence of the ABH-DVA installation position on coupling coefficient

As shown in Eqs. (26) and (27), the installation position of the ABH-DVA also

affects the coupling coefficient. If the modal function of the jth mode in the

continuous form is  s ,j x y , the continuous counterpart of  2
ij in Eq. (27) is

       2
s s A A s A A, , d d ,ij j j jx y x x y y x y x y       GΦ (30)

where  ,x y is a two-dimensional Dirac  function and  A A,x y is the

installation coordinate of the 2D ABH-DVA on the primary structure. It is obvious

that the 2D ABH-DVA should be installed at the maximum vibration displacement

area of the primary structure to maximize the coupling coefficient.
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Fig.11. Driving point mobility at different positions

(a) 1# (b) 2#
Fig.12. Modes at 1765 Hz of the combined system with different mounting positions

To illustrate this effect, the frequency response of the primary structure is

calculated when the 2D ABH-DVA is installed at the center of the plate at (0, 0) mm.

Comparisons are made with the nominal case at (-120, -90) mm in Fig.11, which

shows a reduced vibration suppression effect for some major peaks, exemplified by

1765 Hz. The modal deformation at 1765 Hz, shown in Fig. 12, confirms that the

mode has a nodal line cross the middle of the plate, thus neutralizing the possible

coupling with the ABH-DVA.

3.3.2 Damping enhancement by the 2DABH-DVA

As shown in Eq. (24), the damping effect of the strongly coupled ABH-DVA

modes can contribute to the modal damping ratio of the primary structure even the
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resonance frequencies of ABH-DVA modes are not close to those of the primary

structure modes. The modes of the ABH-DVA, that are strongly coupled with the

primary structure in the frequency range up to 5 kHz, are modes R1C1, R1C0, R2C1,

R2C0, R3C1, and R3C0. Their frequencies and mode shapes are shown in Fig. 6.

According to Eq. (24), the damping enhancement is only effective when 1ij  and

the effect proportionally decreases with ij . It implies that R1C1 and R1C0 modes

would contribute to the damping of all the coupled modes of the primary structure

without dominant dynamic interaction effect above 300 Hz; whilst R2C1 and R2C0 to

those modes above 1100 Hz and R3C1 and R3C0 to those modes above 2800 Hz. As

an example, the modal damping ratio of mode i between 1100 Hz to 2800 Hz can be

expressed in the following form

                       

2
c s A

1

2 2 2 2
s 1,1 1,1 A 1,1 1,0 1,0 A 1,0 2,1 2,1 A 2,1 2,0 2,0 A 2,0

ij

i ij ij j

i i i i i i i i



    

            



 

    


, (31)

where the index j has been replaced by (m, n). Because the damping enhancement

effect is proportional to s Aij i j   and the modes R2C1 and R2C0 take greater

value of  , these two modes have greater contribution to the damping ratios of the

primary structure from 1100 Hz to 2800 Hz than the modes R1C1 and R1C0.

In the FEM simulations, Aj is adjusted by changing the material loss factor of

the damping layer pasted on the ABH disk, which is denoted by d . The driving point

mobility curves and the modal damping ratio of the primary structure without and

with the ABH-DVA with different d are shown in Fig. 13. Special attention is paid

to the modes of the primary structure without dominant dynamic interaction effect. It

can be seen that the damping ratio of almost all the modes in the primary structure is

increased when d increases, except for a few modes which are not coupled with the

ABH-DVA. For example, the mode at 4136 Hz is not affected because the installation

location of the ABH-DVA is on the nodal line of this mode.

The linear FEM analysis used in this study stipulates that A Aj j dk  , where

Ajk is the coefficient taking different value for different mode j. As an example, the

relationship between the material loss factor d of the coating layers and the modal

damping ratios Aj of the mode R1C0 and R1C1 of the ABH-DVA is shown in Fig.
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14, with slopes of 0.1404 and 0.1254 for the two modes respectively. When assigning

0d  to the damping material, Aj is 0.0004, which is less than half the loss factor

of the material of the ABH-DVA. Increasing d to 0.3, Aj reaches 0.0425 for

R1C0 and 0.0380 for R1C1. Due to the ABH effect, the modal damping ratio of the

ABH-DVA, Aj , can be greatly increased upon using a small amount of damping

material. According to Eq. (31), the enhanced damping ratio of structural mode can be

expressed as

2
c s A

1ij

i ij ij j dk


    


 
    

 
 . (32)

As an example, the damping ratio and the driving point mobility of the mode at 640.1

Hz of the primary structure are calculated for different value of d and the results are

plotted in Fig. 15. Interestingly enough, ci and d shows a coherent and linear

relationship and the slope is estimated as            
2 2
1,1 1,1 A 1,1 1,0 1,0 A 1,0 0.0093i i i ik k     .

The driving point mobility of the modal response also decreases with the increase of

d . When d is increased from 0.03 to 0.3, the modal vibration response at 640.1 Hz

is reduced by as much as 12.43 dB, as a result of the enhanced damping contributed

by the lower-order, strongly coupled and remotely spaced ABH-DVAmodes.

(a) Driving point mobility of the primary structure
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(b) Modal damping ratio of the primary structure
Fig.13. Driving point mobility and modal damping ratio of the primary structure
without and with ABH-DVA considering different damping of the coating layers

Fig.14. The relationship between the material loss factor of the coating layers and the
modal damping of the ABH-DVAwith the mode of R1C0 and R1C1
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(a) Modal damping ratio of the primary structure with different d

(b) Driving point mobility of the primary structure with different d
Fig.15. Modal damping ratio and driving point mobility of the primary structure with

different d at modal frequency of 640.1 Hz

4. Experimental validation

Experiments were performed to validate the numerically predicted vibration

suppression performance of the proposed 2D ABH-DVA. An aluminum ABH-DVA of

the same size as the one used in the simulation was manufactured by computer

numerical control (CNC) milling. A ring of butyl rubber damping layer with an outer

diameter of 122 mm was pasted on the surface of the ABH-DVA. Three different

damping layouts of the ABH-DVA were realized using different widths of the

damping layer, namely 5 mm, 8 mm and 30 mm respectively, instead of using



27 / 33

different damping material. The primary structure is an aluminum plate of the same

size as that used in the simulation. Free boundary condition was realized by

suspending the plate using two elastic strings attached to a rigid frame. The

ABH-DVA was installed on the primary plate via a standard 5 mm screw. The

experimental setup is shown in Fig.16. An electromagnetic shaker (B&K 4809),

driven by a power amplifier (B&K 2718), was used to generate a periodic chirp force

from 10 Hz to 3000 Hz to excite the plate at (100, 50) mm. The response

measurement was performed using a Polytec™ Laser Scanning Vibrometer (PSV 500)

device.

The driving point mobility of the plate without and with ABH-DVA was

measured up to 3000 Hz and the results are shown in Fig. 17. The upper limit

frequency was set to 3000 Hz due to excitation and measurement limitations. It can be

seen from Fig. 17(a), where the damping layer with the same width (30 mm) as that in

simulations is pasted, that the deployment of the ABH-DVA indeed causes a vibration

reduction in all resonant peaks in the measured frequency range. This validates the

effectiveness of the 2D ABH-DVA in the vibration suppression of a 2D primary

structure.

Due to the relatively large amount of damping materials bonded on the 2D

ABH-DVA, all the resonance peaks have been effectively reduced so that the two

control mechanisms are difficult to distinguish from the shape of peaks. In order to

further verify the two control mechanisms of the 2D ABH-DVA, two cases with

narrower damping strips were measured and shown in Fig. 17(b). More specifically,

the dynamic interaction effect is observed at the resonance modes of the plate at 273.4

Hz, 592.2 Hz, 1314.1 Hz, 1759.4 Hz and 1965.6 Hz, and damping enhancement is

observed in basically all other resonance mode, as shown in Fig. 17(b).

Results generally agree although rigorous comparison is difficult to achieve

because of the uncertainties in the estimation of some physical parameters such as the

frequency-dependent loss factors of the damping material to which dynamic

interaction effect is very sensitive. Slight difference in resonance frequencies in the

plate and ABH-DVA can also cause significant difference in the frequency response of

the combined structure. In order to further investigate the cause that leads to the
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observed differences, the mode shapes of the 2D ABH-DVA around these frequencies

were measured and shown in Fig. 18. It follows that the actual ABH-DVA is not

strictly axisymmetric due to the machining imperfection in the ABH-DVA on one

hand, and the installation shaft connecting the primary structure with the add-on

structure is not completely in the center of the ABH-DVA on the other hand. As a

result, the mode shapes of the ABH-DVA are not as ideal as the simulation results.

The real operational mode shapes observed experimentally are the result of

regrouping the ideal modes caused by machining imperfection. For example, both

modes at 212.5 Hz and 582.8 Hz are the combination of the modes R1C1 and R1C0,

with the former more like the shape of R1C1 and the later more like the shape of

R1C0. Obviously, the modes at 212.5 Hz and 582.8 Hz are coupled with the plate and

induce the dynamic interaction effect at 273.4 Hz and 592.2 Hz. The reason for the

dynamic interaction effect in the modes above 1000 Hz is believed to be the same.

Despite of the imperfection, the vibration suppression performance predicted by

numerical simulations, as well as the predicted coupling phenomena are both

confirmed. Meanwhile, results also allude to the possibility of making use of the

imperfection to deliberately destroy the axisymmetric property of the ABH-DVA in

order to further improve the performance of the device. This should be explored in

our future work.

Fig.16. Experimental test set-up
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(a)

(b)
Fig.17. Experimental results of driving point mobility of the plate without and with

different ABH-DVAs: (a) with a wider damping layer; (b) with two narrower damping
layers

(a) 212.5 Hz (b) 582.8 Hz (c) 1160 Hz (d) 1865.6 Hz
Fig.18. Experimentally measured mode shapes of the ABH-DVA
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5. Conclusions

To tackle the inherent limitations of embedding ABH features into structures, this

paper proposes a new type of 2D circular ABH-DVA as an auxiliary add-on device for

the vibration suppression in a two-dimensional structure. Its design, dynamics and

performance differ from the existing ones reported in the literature. Using a plate as

benchmark structure, FE simulation results show a systematic reduction of the

resonant peaks of the primary structure over a broad frequency range upon the

deployment of the ABH-DVA.

Analyses based on a simplified, yet fully coupled model, explain the observed

phenomena within specific frequency ranges and allow drawing design guidelines. In

particular, a modal coupling coefficient is defined to evaluate the strength of the

modal coupling, which is shown to play a vital role in system performance analysis.

Analyses uncover two major vibration suppression mechanisms: dynamic interaction

between the host structure and the ABH-DVA, and damping enhancement as a result

of ABH-specific energy trapping of the latter, for different resonance modes of the

primary structure. The occurrence of both physical mechanisms can be materialized

provided that the strong coupling conditions are met, as quantified by the defined

coupling coefficient. In this regard, the proposed 2D circular ABH-DVA features

selective coupling pattern with the primary plate. Despite the abundant modes and the

rich dynamic of the ABH-DVA, only a few of them (which feature n=0 and 1 in the

circumferential directions of the disk) are strongly coupled with the primary structure

to trigger the two aforementioned mechanisms. The coupling coefficient between a

mode of the primary structure and that of the ABH-DVA depends not only on the

mode shape of the latter, but also its installation position.

Meanwhile, upon a proper coupling, the low-frequency modes of the

ABH-DVA that strongly couple with the primary structure contribute to a damping

increase of the primary structure with higher resonance frequencies due to the ABH

effect. The aggregated damping enhancement on most of structural modes, alongside

the effective dynamic interaction on particular modes, collectively contribute to a

broadband overall reduction of the system resonances, as confirmed both numerically
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and experimentally in this paper.

As a future work, the vibration suppression performance of the proposed device

can be further improved by optimizing its geometry parameters and the profile.
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