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Abstract 

Acoustic Black Hole (ABH) effect shows promise for vibration control, but 

mainly limited to a relatively high frequency range. Though achievable in 1D periodic 

ABH structures, complete sub-wavelength band gaps (BGs) have not yet been 

realized in 2D configuration. Capitalizing on the unique wave propagation 

characteristics of the ABH, we propose a new type of plates containing periodically 

arranged double-layer ABH cells which offer complete and omnidirectional BGs. The 

phenomena originate from the combined effects of the ABH-specific local resonances 

and Bragg scattering, which are made possible through a dual process: a proper 

channeling of the wave propagation path and an impaired coupling between the 

ABH-induced local resonances and the global vibration of the unit cells. The former is 

warranted by a proper structural tailoring of the unit cells and the latter by the 

dynamics of the double-layer ABH design. It is shown that the BGs can be tuned 

through adjusting ABH parameters. Meanwhile, attaching the centers of the double 

ABH branches with a connecting cylinder can further broaden and lower the 

frequencies of the BGs as a result of the enhanced Bragg scattering. It is also 

demonstrated numerically and experimentally that remarkable vibration attenuation 

and energy insulation can be achieved in a plate with only a small number of ABH 
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cells, thus pointing at the possibility of achieving sub-wavelength vibration control in 

structures with reasonable dimensions.  

Keywords: Periodic plates; complete sub-wavelength band gaps; acoustic black hole; 

vibration attenuation; flexural waves. 

1. Introduction 

    The Acoustic Black Hole (ABH) effect features unique wave propagation 

characteristics inside a structure whose thickness is tailored according to a power-law 

relationship. With the decreasing structural thickness, the local phase/group velocity 

of flexural waves gradually reduces, ideally to zero with no wave reflection when the 

thickness diminishes [1, 2]. The resultant energy focusing phenomenon within the 

ABH region offers new possibilities for applications such as vibration control [3-6], 

sound radiation reduction [7-10] and energy harvesting [11-13]. 

Single ABH element/structure has been widely investigated with demonstrated 

effectiveness for vibration attenuation [14-20]. However, systematic broadband ABH 

effects can only be achieved above a certain frequency, referred to as cut-on 

frequency in the literature, when the incoming wavelength is comparable to or smaller 

than the characteristic dimension of the ABH element [7, 21]. Therefore, for the lower 

frequency range, the dimension of an ABH element would become prohibitively large, 

which seriously hampers practical applications. Therefore, realizing sub-wavelength 

control is a bottle-necking problem of paramount importance, considering the 

imperious demands in extending ABH effect to a lower frequency region in structures 

of reasonable dimensions.  

Structures embedded with multiple or periodic ABH elements may provide a 

feasible means to solve this dilemma. For 1D beam structures with periodic ABH cells, 

we have firstly demonstrated that, through a proper combination of local resonances 

and Bragg scattering, broad band gaps (BGs) can be achieved over a wide frequency 

range, including the low frequency one [22, 23]. Subsequently, various ABH-based 

designs of periodic beams were exploited, exemplified by V-folded beams [24], 



graded ABHs [25] and composite ABHs [26] etc. The above existing efforts, however, 

were limited to 1D configuration, in which wave propagation takes place in a 

relatively simple and easy-to-control manner. For 2D structures such as a plate, 

periodic ABHs have been explored to realize exotic wave propagation phenomena 

such as bi-refraction [27] or to conceive specific acoustic devices such as acoustic 

lens [28] and topological elastic waveguides [29]. However, different from 1D case, 

wave propagation mode/paths in 2D ABH plates are much more complex. As a result, 

only directional BGs, which prohibit wave propagation along the direction 

perpendicular to a width-through ABH tunnel, were achieved in our previous work 

[30, 31]. Therefore, complete BGs in periodic 2D ABH plates have not been 

materialized yet up to now.  

Motivated by this, we propose here the design of a new type of compound plates 

containing periodically arranged double-layer ABH cells. By capitalizing on the 

unique wave propagation characteristics of the ABH, the proposed structure is shown 

to exhibit complete and omnidirectional BGs, conducive to applications such as 

vibration attenuation and energy insulation of flexural waves. Apart from the 

demonstration of the superior BG properties of the plates, the underlying mechanism 

behind the BG formation is also revealed, thus showing another novelty of the work.  

The paper is organized as follows. The underlying design philosophy of the 

proposed 2D ABH plates and their wave propagation characteristics are first analyzed. 

Complete sub-wavelength BGs and the underlying mechanism are then demonstrated 

and analyzed through numerical simulations. Ways to increase the BG performance 

are then exploited, including the tuning of the ABH parameters and the use of 

additional structural elements to broaden the BGs. Then, experiments are conducted 

to validate the numerically predicted phenomena. Finally, conclusions are drawn. 

 

2. Periodic plates embedded with 2D ABHs 

2.1 Wave propagation in 2D ABH plates 



Figure 1(a) shows a uniform plate element carved inside with a 2D ABH 

indentation whose thickness, h(r), is tailored according to ( )= mh r r  with m being 

the taper power index, normally larger than 2 [3]. As shown in Fig. 1(a), when 

flexural waves travel from the uniform part to the ABH indentation along a vector k 

direction, the ray trajectory is governed by Snell law [27]: 
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where r and   are the coordinates in a polar system with origin at the ABH center, 

  is the angle between k and r, and ( ) / ( )n r h h r  is the local refraction index 

with h and h(r) being the local thickness of the uniform part of the plate and that of 

the ABH indentation, respectively.  

    Typical wave propagation pattern is first qualitatively illustrated to show the 

underlying design philosophy. More quantitative and detailed analysis can be found in 

[32]. Considering an incident plane wave for instance, the wave propagation 

trajectory in an ideal ABH plate is sketched in Fig. 1(b).  On one hand, the trajectory 

of the wave traveling through the ABH would be curved inside towards the ABH 

center, before finally being trapped at the center of the ABH indentation in the ideal 

zero thickness case, as shown by the red solid lines in Fig. 1(b). This process would 

promote a high energy concentration and rich local dynamics inside the ABH region. 

On the other hand, the other portion of the waves beyond the ABH region would 

directly pass through the uniform part of the structure as denoted by the green solid 

lines, jeopardizing the possible formation of BGs. Therefore, this direct wave 

transmission path needs to be cut through proper structural design while preserving 

the locally resonant effects of the ABH cells to achieve complete BGs, similar to 

beam structures [22, 23]. One intuitive way is to enlarge the radius of the ABH 

indentation so that its periphery intersects with the boundaries of the uniform plate 



element, as shown in Fig. 1(c). Admittedly, in practice, a residual thickness inevitably 

exists at the ABH center which results in non-zero wave velocity. Nevertheless, as 

sketched in Fig. 1(d), the incident waves would still be concentrated and focused 

around the ABH center and then continue to propagate until part of the energy is 

reflected by the ABH boundaries and re-injected back into the indentation.  
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Fig. 1 Sketch illustrating typical wave propagation in a plate embedded with a 2D 

ABH indentation: (a) reference system used for ray trajectory analysis; (b) uniform 

plate carved inside with an ideal 2D ABH indentation; (c) ideal ABH indentation with 

its periphery intersecting with the boundary of the plate; (d) non-ideal ABH 

indentation with its periphery intersecting with the boundary of the plate. 

 

2.2 Design of periodic plates with 2D ABHs 

Based on the above analyses, we propose a plate design which ensures an 

effective confinement of the incoming waves to the ABH indentation area, while 

maintaining a reasonably good structural integrity when forming a periodic lattice. It 



is expected that, as long as the outer periphery of the ABH indentation and the 

boundary of the uniform plate element intersect with each other, all incoming waves 

would be forced to enter the ABH indentation area. The confined waves would 

eventually produce the locally resonant and scattering effects, as to be demonstrated 

later on. This will ultimately produce BGs when these unit cells are periodically 

arranged to form a lattice.  

In light of these considerations, we propose a new type of compound plates, 

comprising double-layer periodic unit cells as shown in Fig. 2. Each unit cell is a 

uniform plate element excavated inside with a symmetrical circular cone tapered 

according to a standard ABH profile, as depicted by the blue solid in Fig. 2(a). Fig. 

2(b) shows the zoomed-in cross-sectional detail of the unit cell, as encircled by a red 

dashed line in Fig. 2(a). The unit cell has a lattice constant a and a thickness h. The 

thickness of the ABH portion follows 0( )  mh x x h  with m and h0 being the taper 

power index and the residual truncation thickness, respectively. To ensure the 

intersecting conditions as well as the structural integrity of the element, the radial 

length of ABH lABH and the lattice constant a should satisfy
ABH ABH2 2 l a l . Here, 

ABH ABH= 2 and 2a l l  correspond to the two extremum conditions when the ABH 

periphery is completely excircled and encircled by the unit cell, respectively. After 

excavation of the ABH circular cone, the unit cell is formed as shown in Fig. 2(c). 

Such a design guarantees the structural integrity in terms of both lattice surface and a 

reasonable overall structural stiffness and strength, different from the conventional 

ABH design in which ABH indentation is usually carved inside the plate. 
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Fig. 2 (a) Unit cell of a periodic plate with a uniform plate element excavated inside 

by a symmetrical ABH circular cone as denoted by the blue solid; (b) Local cross 

section of the unit cell as circled by the red dash line in Fig. 2(a), where the thickness 

of ABH profile follows 0( )  mh x x h ; (c) sketch of the unit cell; (d) FE mesh of the 

unit cell. 

3. Numerical results and analyses  

Finite element analysis using COMSOL Multiphysics 5.2 is carried out. For an 

infinite plate, Floquet-Bloch perioidc boudary conditions are imposed at the edges of 

the unit cell in both x and y directions. A parametric sweep of reduced wavevector 

kπ/a is applied over the first irreducible Brilliouin zone. The mesh is 

physics-controlled with tetrahedral elements in finer element size to ensure the 

convergence of the computation, shown in Fig. 2(d). The material is alumimum with a 

mass density of 2700 kg/m3, Young’s modulus of 70 Gpa and Poisson ratio of 0.3. 

The initial structural demensions are: h=7.08 mm, h0=0.3mm, m=3, lABH =60 mm, and 

a=100 mm. The structural dimension is subject to change in the following parametric 

analyses whenever needed. 

3.1 Formation of complete sub-wavelength band gaps 



The calculated band structures are presented in Fig. 3, in which blue circles denote 

flexural waves, red circles S0 waves and green circles SH0 waves. Detailed analyses 

and discussions on S0 and SH0 waves, which are beyond the interest scope of this 

work, can be found in Ref. [30]. We shall only focus on flexural waves, which are 

excited by out-of-plane excitations and more relevant to vibration and sound radiation 

problems in flexible structures. To better quantify the phenomena, a normalized 

frequency R /f fa c  is defined and included as the right-hand-side vertical 

coordinate to eliminate the actual size effect, with c being the flexural wave velocity 

in the uniform part of the plate. It can be seen that, several broad directional flexural 

wave BGs alongГ-X  appear, as marked inside the grey areas. More importantly, 

two complete flexural wave BGs (marked by pink areas) appear in two frequency 

ranges from 904 Hz to 1262 Hz and from 1364 Hz to 1467 Hz, respectively. The 

corresponding normalized frequencies are around 0.15, one order of magnitude lower 

than the characteristic frequency c/a of the unit cell. Namely, the periodic plates 

exhibit complete, omnidirectional and sub-wavelength flexural wave BGs at a 

reduced frequency range.  
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Fig. 3 Band structures with blue, red and green circles denoting flexural, S0 and SH0 

waves, respectively. 



3.2 Underlying formation mechanism of the BGs 

    To understand the underlying mechanism behind the formation of the observed 

BGs, eigenmodes at the edge points as labeled in Fig. 3 are shown in Fig. 4 in terms 

of normalized vibration displacement. For the first BG, the eigenmode at the upper 

edge U1 shows accentuated vibration within the central area of the ABH indentations 

with out of phase and negligible vibration on the uniform part of the plate element, 

thus exhibiting strongly local resonances. The nearly flat dispersion curves also 

confirm the fact that waves with zero group velocity would be trapped inside the ABH 

which can hardly propagate forward. The eigenmode at the lower edge L1, on the 

contrary, involves global vibration of the element with strong anti-symmetrical 

motion at its four corners, typical of the Bragg scattering effect. Indeed, from the 

wave propagation perspective, for the practical ABH taper with a residual thickness, 

waves would be concentrated around the center of ABH and propagate forward before 

being reflected back by the ABH periphery and the unit cell. This process repeats 

itself and develops into the Bragg scattering whenever waves hit the ABH boundary. 

Therefore, the first BG can be attributed to the combined effects of local resonances 

and Bragg scattering. Similarly, the eigenmode L2 at the lower edge of the second BG 

is also highly localized within the ABH with in-phase vibration. The vibration in the 

upper eigenmode U2 is partly localized around the ABH center but with 

non-negligible structural deformation on the uniform part. Therefore, the second BG 

also results from the coupling between the local resonance and Bragg scattering. This 

dual process backs up the formation of the two complete sub-wavelength BGs with 

relatively broad bandwidth, which are far below the characteristic frequency c/a.  
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Fig. 4 Eigenmodes at edge points of the complete band gaps with normalized 

displacement. 

 

As discussed in Sect. 2.1, to ensure that all incoming waves enter the ABH 

indentation to produce effective local resonances and the resultant BGs, the periphery 

of the ABH taper and the boundary of the uniform plate element should intersect with 

each other under 
ABH ABH2 2 l a l . To demonstrate the necessity of this condition, 

the effect of the normalized a/lABH on band structures is shown in Fig. 5. As expected, 

when a/lABH =2, corresponding to the case when the ABH cell is encircled within the 

uniform plate element, no complete BGs can be obtained, as shown in Fig. 5 (a), since 

the lowest dispersion curve corresponding to the global mode intersects with the flat 

dispersion curves induced by the ABH local resonances. Namely, although most 

waves pass through the ABH taper and generate the local resonance, part of waves, at 

the same time, still escape from the small margin in the uniform part. When further 

reducing a/lABH, the boundary of the ABH taper and that of the uniform plate start to 

intersect with each other, BGs (marked by pink areas) start to appear. Specifically, 

reducing a/lABH shows little effect on the dispersion curves corresponding to the local 

resonance since the local resonant modes are mainly dominated by the strong 

vibration around the center of the ABH indentation. However, the dispersion curve 

corresponding to the global deformation would be lower because of the reduced 

global stiffness. As a result, complete BGs can be achieved at even lower frequencies. 
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Fig. 5 Effects of normalized a/lABH on band structures with different values of lattice 

constant a: (a) 2; (b) 1.92; (c) 1.83; (d) 1.5. 

  

    As a comparison, Fig. 6 shows the unit cell of a conventional single-layer plate 

element with the same ABH geometrical parameters and the corresponding band 

structures. Interesting enough is the observation that complete BGs cannot be 

achieved even under the condition
ABH ABH2 2 l a l .  As can be seen, different 

from the band structures of the compound plates in Fig. 3, flat dispersion curves 

representing local resonance can only be observed along Г to M, rather than over the 

whole first irreducible Brilliouin zone. Some representative eigenmodes are also 

given in Fig. 6. It can be seen that, although locally resonant modes, exemplified by 

C1, still exist, with almost the same frequency as the one shown in Fig. 3 due to the 

use of the same set of ABH parameters, these locally resonant vibrations are closely 

coupled to the global vibration of the unit cell in the lower sub-wavelength frequency 

range as encircled by the red dashed line, typically denoted by C2 and C3. As a result, 

the closeness of their vibration frequencies between the local resonance and the global 

vibration jeopardizes the formation of the BGs. Actually, for the single ABH plate 



element, the ABH indentation, as part of the entire unit cell, strongly affects the 

overall structural stiffness of the element and therefore results in a strong coupling 

between the local resonance and the global vibration of the element. However, owing 

to the compound double-layer ABH configuration, the overall structural stiffness of 

the element is significantly increased as compared with its single layer counterpart. 

Consequently, global vibration of the element occurs at a higher frequency, further 

separated away from that of the local resonances. This analysis suggests that, 

achieving complete sub-wavelength BGs in the proposed structures relies on two 

main factors. The first one is to produce reduced coupling between the ABH-induced 

local resonances and the global vibration of the element, which is materialized by the 

proposed compound double-layer design. The other one is to channel all waves to 

propagate into the ABH indentation, which is realized by reducing the lattice constant 

or enlarging the ABH indentation so that its outer boundary intersects with that of the 

uniform plate element before forming the periodic lattice. 
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Fig. 6 Band structures of a conventional single-layer plate lattice with the same 

geometrical ABH parameters. 

 

3.3 Vibration insulation in a finite plate 

The vibration attenuation ability of the proposed structure is assessed using a 

finite freely-supported plate containing 6×4 cells. A transverse harmonic point force 

excitation is applied at one corner of the plate while the receiver is at the opposite 



diagonal corner. A transmissibility is defined as 1020log ( / ) out inT w w  with wout and 

win being the displacement amplitudes at the receiver and excitation points 

respectively. Results are shown in Fig.7, in which two BGs (marked by pink areas) 

obtained in the corresponding infinite plate are also given as reference. As can be seen, 

the vibration amplitude is significantly reduced within two frequency bands by as 

much as 80 dB across the two points with only a few ABH cells, which demonstrates 

the ability of the proposed plate for vibration insulation. The attenuation bands with 

weak transmission correspond well to the two BGs calculated using infinite plate 

above. The vibration displacement distributions at two typical frequencies, one inside 

and the other outside the attenuation band, are also provided in the figure. For 1230 

Hz which is inside the first attenuation band, the vibration is basically confined to the 

center close to the first ABH cell and quickly attenuated in the following ones. After a 

few rows along the diagonal direction, vibration literally disappears on the remaining 

portion of the plate. This also partly confirms that this BG is attributed to the coupled 

effect of local resonances and Bragg scattering as discussed above. By contrast, at 

2330 Hz which is outside the attenuation bands, vibration spreads over the entire plate 

with no noticeable attenuation along the excitation-receiver path.  
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Fig. 7 Transmissibility of a finite plate with 6×4 cells. Vibration displacement field is 

displayed for 1230 Hz and 2330 Hz, which are inside and outside attenuation band, 



respectively. 

4. Methods to broaden the sub-wavelength band gaps 

4.1 Tuning ABH parameters 

Since the formation of the BGs is closely related to the ABH phenomena, effects 

of tuning ABH geometrical parameters, i.e. truncation thickness h0 and taper power 

index m, are analyzed to seek possible ways for broadening the BGs. Variations of 

BGs with respect to h0 and m are shown in Fig. 8, in which BGs are marked by blue 

areas whose upper and lower boundaries denote their corresponding edge frequencies. 

As shown in Fig. 8 (a), reducing h0 lowers both the upper and lower boundaries of the 

first BG, alongside the creation of more BGs. This is understandable considering the 

positive effect of a smaller h0 on reducing the local resonance frequencies. Predictably, 

should an ideal ABH taper with zero thickness be possible, BGs would have been 

achieved over the entire frequency range, which is obviously an idealized and 

unrealistic scenario. Similarly, increasing m would have the same effects in terms of 

enhancing ABH effects and the induced local resonances. As a result, lower and wider 

BGs can be obtained as shown in Fig. 8 (b), as long as m is not excessively large to 

violate the smoothness condition [33]. Therefore, we can tune the ABH geometrical 

parameters h0 and m, as well as the lattice constant a, to obtain desirable 

sub-wavelength BGs in specific frequency ranges. 
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Fig. 8 Effect of (a) h0 and (b) m on BGs as marked by blue areas. The upper and lower 

boundaries denote corresponding edge frequencies of the BGs. 

 



4.2 Strengthening Bragg scattering through adding a connecting cylinder 

The margin for increasing the bandwidth of BGs through the tuning of ABH 

geometrical parameters is, to some extent, not very large and limited by 

manufacturing capability and practical constraint. As an alternative, we propose 

adding a small cylinder with a radius r at the ABH center to connect the two ABH 

branches, as shown in Fig. 9. The unit cell is still a uniform plate excavated inside 

with a symmetrical tapered ABH profile, as depicted by the blue area in Fig. 9 (a). In 

so doing, the ABH area becomes a ring. As shown by a cross-sectional view in Fig. 9 

(b), the thickness variation of each ABH branch follows 0( ) ( )  mh x x r h . With 

all other geometrical parameters remaining the same as before, the actual length of 

ABH taper becomes lABH-r. The final unit cell is sketched in Fig. 9 (c). The additional 

connecting cylinder, through attaching the two ABH branches at the center would 

avoid the use of extremely thin truncation thickness within the indented area, thus 

increasing the both the local and overall stiffness of the element. More importantly, its 

use would create a large impedance mismatch/discontinuity with the surrounding thin 

ABH indentation, so as to generate more pronounced Bragg scattering to broaden the 

resultant BGs. 
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Fig. 9 Unit cell of periodic 2D ABH plates with additional connecting cylinder.  

 

With this disposition, Fig. 10 shows the corresponding band structures with a 

connecting cylinder with r=20 mm while other parameters being kept the same as 

used in Fig. 3. Compared with Fig. 3, a broader complete sub-wavelength BG marked 

by pink area is achieved from 751 Hz to 1664 Hz, corresponding to the normalized 



frequency range from 0.11 to 0.24. The obtained bandwidth basically doubles the one 

obtained without the connecting cylinder (Fig. 3). Meanwhile, the lower frequency 

bound of the BG is also shifted from 904 Hz to 751 Hz, which further maximizes the 

low frequency benefit. The eigenmodes at some critical edge points are also presented 

in Fig. 10. The eigenmode Lx1 at the lower edge of the first directional BG along Г-X 

is highly localized around the ABH center. In this case, the connecting cylinder acts as 

a lumped mass, vibrating with the ABH indentation. Therefore, the local resonance 

frequency is reduced compared with that without the cylinder, shown in Fig. 3. For L1 

and U1, more global vibration is observed, favorable to the creation of Bragg 

scattering effect. This is partly attributed to the fact that waves converging towards the 

ABH center are reflected by the connecting cylinder. The combination of the local 

resonances induced by ABH indentation and Bragg scattering induced by the 

connecting cylinder collectively produces a broad sub-wavelength BG. It can be 

surmised that, if permissible, increasing m or reducing h0 would further broaden the 

BGs. 
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Fig. 10 Band structures of periodic ABH plates with a connecting cylinder with radius 

r=20 mm.  

 

The effect of the normalized radius r/a on BGs is investigated and shown in Fig. 

11. Here, only the cylinder radius is changed while all other geometrical parameters, a, 

h0, m and lABH, are kept the same as before. Keep in mind that the whole length of 



ABH taper lABH -r also changes accordingly. Fig. 11 shows that increasing r/a up to 

0.2 would broaden the BG, alongside a simultaneous reduction in the lower frequency 

bound and an increase in the upper one, as a direct benefit of the enhanced Bragg 

scattering effect. However, a further increase in r/a would shrink the bandwidth 

oppositely, since the whole length of ABH taper lABH -r is excessively reduced so that 

the necessary ABH-induced local resonances are compromised. Therefore, there exists 

an optimal size for the connecting cylinder to balance the dual effect of local 

resonance and Bragg scattering to achieve the broadest BGs. 
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Fig. 11 Effect of normalized r/a on BGs.  

 

Analyses are also conducted on a finite freely-supported plate containing 6×4 

cells with connecting cylinders to demonstrate its vibration insulation ability. Using 

the same pair of excitation and receiver points as before, Fig. 12 shows the 

displacement transmissibility curve. A very broad band with drastic vibration 

attenuation appears, which is consistent with the BG (marked by pink area) obtained 

in infinite periodic plate. This high level of attenuation is obtained by using only a 

small number of cells in the plate. The inset at 1180 Hz which is within the 

attenuation band also confirms that the vibration energy is highly concentrated in the 

half part of the first cell due to the reflections from the supporting cylinder. The 

enhanced Bragg scattering entails effective wave attenuation when reaching roughly 



the third row of the ABH cells, demonstrating the extremely high ability of the 

proposed structure in vibration insulation. As a comparison, the vibration field at 1180 

Hz which is outside the attenuation band shows no obvious energy attenuation trend 

throughout the plate. 
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Fig. 12 Displacement transmissibility of a freely-supported finite plate with 6×4 

ABH cells with a connecting cylinder inside. Also displayed are the displacement 

fields at 1180 Hz and 2310 Hz, in and out of the attenuation bands, respectively. 

 

 

5. Experimental validations 

To verify the above revealed phenomena, experiments were carried out on a 3D 

printed plate containing 6×4 ABH cells with a connecting cylinder. The plate is made 

of aluminum with a mass density of 2550 kg/m3, Yong’s modulus of 70 GPa, 

Poisson’s ratio of 0.3 and a damping loss factor of 0.001. The structural dimensions 

are given by h=7.2 mm, h0=0.6mm, m=3, lABH =50 mm, r=15mm, and a=80 mm. The 

experimental system is shown in Fig. 13. The plate was suspended by two thin strings 

to mimic free boundaries. Through an electromagnetic shaker (MB Dynamics 

MODAL50), a force excitation driven by a periodic chirp signal from 0 to 5 kHz was 

applied at the left bottom corner of the plate. The excitation force was measured by a 

force transducer (PCB PIEZOTRONICS 208C02). A Polytec 400 laser vibrometer 

was used to measure the vibration velocity field by scanning 83×51 equally 



distributed points. Both the excitation force and vibration field signals were fed back 

to a PC with Polytec 400 laser vibrometer system for FFT post-processing. The 

sampling frequency and sampling time were set at 12.8 kHz and 320 ms, respectively. 
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Fig. 13 Experimental system: (a) schematic diagram; (b) Experimental setup 

Using the same pair of excitation and receiver points as the one used in the 

previous simulations, the experimentally measured displacement transmissibility is 

shown and compared with numerical results in Fig. 14. The experimental results agree 

well with FEM analyses in terms of both amplitude and resonant frequencies below 

3700 Hz. The difference at higher frequencies may be caused by local dimensional 

errors from the machining and the torsional modes ignored in the simulation, both of 

which emerge more obviously at higher frequencies. Particularly, a broad attenuation 

band is observed with a significant transmissibility attenuation , roughly ranging from 

2070 Hz to 3590 Hz, showing again a high consistency between experiment and 

numerical results. It is understandable that the extremely low transmissibility (close to 

-120 dB) that was numerically predicted could never be reached experimentally, due 

to the extremely weak vibration level within attenuation band and the inevitable 

existence of the torsional waves, existing in experiments but ignored in simulations. 

To better visualize the energy insulation effects, the displacement distributions over 

the plate at a few representative frequencies inside and outside the attenuation band 

(as marked by F1, F2, F3, F4 in Fig. 14) are also shown in Fig. 15. It can be seen that at 



the attenuation valley f=2831 Hz (marked by F1), the vibration reduction is confined 

to the vicinity of the excitation region with virtually no propagation to the rest of the 

plate. Even for the local peak frequency at f=3221 Hz (marked by F2) inside the 

attenuation band, the vibration reduction from the excitation to receiver points is also 

considerable as shown in Fig. 15 (b). As to the other two frequencies 1562 Hz and 

4284 Hz, both outside the attenuation band, vibration is spread over the entire plate as 

shown in Fig. 15 (c) and (d). Therefore, the predicted high vibration attenuation 

ability of the proposed structure is experimentally confirmed. 
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Fig. 14 Displacement transmissibility comparison between experimental (red dashed 

line) and numerical results (dark solid line). 



(a) (b)

(c) (d)  

Fig. 15 Experimentally measured displacement distributions at selected frequencies as 

marked in Fig. 14 inside and outside the transmissibility attenuation band: (a) f=2831 

Hz as marked by F1; (b) f=3221 Hz as marked by F2; (c) f=1562 Hz as marked by F3; 

(d) f= 4284 Hz as marked by F4.  

6. Conclusions 

By capitalizing on the ABH-specific wave propagation properties in a 2D ABH 

plate, a new type of compound double-layer periodic plate is proposed in this paper. 

Finite element analyses show the existence of complete sub-wavelength BGs in a 

lattice with periodically arranged compound double-layer ABH unit cells, which are 

absent in the corresponding single-layer configuration. Numerical analyses on band 

structures and eigenmodes at the edge points reveal that the formation of these BGs 

results from the combined effects of local resonances and Bragg scattering, which are 

fully played out by the proposed design through maximizing the benefits of ABH 

features.  

Analyses show that the effective generation of the BGs is achieved through a 

dual process: a proper channeling of the wave propagation path and an impaired 

coupling between the ABH-induced local resonances and the global structural 

vibration of the unit cells. The former is achieved through a proper tailoring of the 



structural configuration and the latter by the specific dynamics of the double-layer 

ABH design.  

As possible means to improve the BG performance, reducing truncation 

thickness or increasing the taper power index of the ABH thickness profile allows for 

possible but limited tuning of the BGs properties in terms of lowering the BG 

frequency and broadening its bandwidth. As a more effective method, adding a small 

connecting cylinder at the center of the ABH indentation turns out to be a better way 

to further increase the resultant BGs through enhancing Bragg scattering effect. In all 

cases, implementing the proposed design principle in finite plates embedded with only 

a small number of cells can enable remarkable vibration attenuation and energy 

insulation across the plate. Experiments conducted on a plate of finite size confirm 

and validate the numerically predicted phenomena and the efficacy of the proposed 

plate in terms of vibration insulation. Therefore, the proposed plates with a small 

number of ABH cells can be used as basic building block to conceive effective 

vibration systems, especially in a sub-wavelength frequency range with structures of 

reasonable dimension. 
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