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HIGHLIGHTS

• A novel fluoro-methoxylated end group for Y-series acceptors is produced, and asymmetric substitution strategy is applied as a step-
by-step optimization.

• 19.24% power conversion efficiency is achieved for industrially compatible solvent ortho-xylene processed organic solar cells.

• Underlying morphological and photo-physical variation is revealed for device performance difference brought by solvent selection, 
which could set up a template for future research on similar topics.

ABSTRACT With plenty of popular and effective ternary organic solar 
cells (OSCs) construction strategies proposed and applied, its power 
conversion efficiencies (PCEs) have come to a new level of over 19% in 
single-junction devices. However, previous studies are heavily based in 
chloroform (CF) leaving behind substantial knowledge deficiencies in 
understanding the influence of solvent choice when introducing a third 
component. Herein, we present a case where a newly designed asymmetric 
small molecular acceptor using fluoro-methoxylated end-group modifica-
tion strategy, named BTP-BO-3FO with enlarged bandgap, brings differ-
ent morphological evolution and performance improvement effect on host 
system PM6:BTP-eC9, processed by CF and ortho-xylene (o-XY). With 
detailed analyses supported by a series of experiments, the best PCE of 
19.24% for green solvent-processed OSCs is found to be a fruit of finely 
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tuned crystalline ordering and general aggregation motif, which furthermore nourishes a favorable charge generation and recombination 
behavior. Likewise, over 19% PCE can be achieved by replacing spin-coating with blade coating for active layer deposition. This work 
focuses on understanding the commonly met yet frequently ignored issues when building ternary blends to demonstrate cutting-edge 
device performance, hence, will be instructive to other ternary OSC works in the future.

KEYWORDS Organic solar cells; Ternary design; Solvent selection; Flouro-methoxylated end group; Morphological ordering

1 Introduction

Organic solar cells (OSCs), that are of great promise in 
carbon-zero society and smart city construction as energy 
supplier, have achieved over 19% power conversion effi-
ciency (PCE) in single-junction devices, and > 20% values 
in tandem structures [1–16]. This is mainly attributed to 
rational material design and combination, yet also thanks to 
chloroform (CF), a powerful solvent (solubility) enabling 
quick liquid-to-solid phase transition, which makes thin-
film morphology tuning easier than high boiling point (BP) 
solvent-based systems [5, 17–23]. However, CF is not an 
ideal choice for mass production of OSC devices, especially 
in printing-type scenarios, whose low BP would make the 
film formation process hard to control. Besides, its potential 
carcinogenicity is an evitable disadvantage. Thereby, real-
izing high PCE in high BP, non-halogenated solvents, such 
as ortho-xylene (industrially compatible)-processed OSCs, 
is of great significance.

Designing novel materials with appreciable features, e.g., 
desired energy level, strong crystallinity, and good solubility, 
as a third component to construct ternary blend with host 
donor–acceptor system has been a popular and facile strat-
egy to improve the device efficiency in recent years [24–33]. 
Notably, almost all reports focus on CF-processed device to 
evaluate material performances, for that a basic hypothesis 
is other solvents enabled devices shall demonstrate similar 
efficiency variation tendency. Therefore, it is still a blank in 
the research field of reporting solvent selection induced ter-
nary device working mechanism difference: Rare cases focus 
on whether processing solvent has impact on the sucess of 
morphology optimization when ternary strategy is applied.

On the other hand, the development of small-molecule 
acceptors (SMAs) with high lowest unoccupied molecular 
orbital (LUMO) energy levels as the third component is 
an important strategy to enhance the efficiency of ternary 
devices. The terminal group, as an essential “A” component 
of A − DA′ D − A-type NFAs, plays non-negligible roles in 

modulating the absorption spectrum, determining LUMO 
level and intermolecular charge transfer (ICT) effect. Cur-
rently, for  ADA1DA-type SMAs, halogenated substituted 
terminal groups have shown great advantages in developing 
acceptors with large dipole moments, strong crystallinity, 
and high device performance. Besides, the position of the 
halogen in the hetero-di-halogenated substituted terminal 
group also exerts a notable influence on the physicochemi-
cal properties of the molecule. For instance, we have devel-
oped three isomeric Cl/Br co-substituted terminal groups 
(IC-ClBr with β- and γ-halogen substitution sites, IC-ClBr1 
with γ- and δ-halogen substitution sites, and IC-ClBr2 with 
β- and γ-halogen substitution sites) by changing the posi-
tion of Cl and Br on the terminal benzene (Fig. 1a) [34]. 
Among them, the IC-ClBr-terminated acceptor-based device 
demonstrated higher open-circuit voltage (VOC) than that of 
IC-ClBr1- and IC-ClBr2-terminated acceptor (0.906 vs. 
0.854 vs. 0.845 V). Similarly, the fluorine-chloride co-sub-
stituted terminal groups reported by Wang and co-workers 
also showed the same trend of VOC change. Furthermore, the 
incorporation of electron-donating units (methyl, methoxyl) 
into terminal group could effectively upshift LUMO value 
and reduce the optical bandgap, thereby enhancing the VOC 
of OSCs. Hence, the development of terminal groups with 
specific positions of a halogen and an electron-donating 
unit presents a promising avenue for creating acceptors with 
high VOC and good efficiency [35]. Additionally, there have 
been limited reports on terminal groups that combine both 
electron-donating and electron-withdrawing units. Exploring 
such combinations will not only expand the range of avail-
able terminal groups but also enrich the material library for 
both terminal groups and SMAs.

Drawing upon these points, we have synthesized a fluo-
rine- and methoxy-co-substituted terminal group with β- 
and γ-substitution sites and successfully incorporated them 
into SMAs, which leads to the creation of two different 
acceptors, namely symmetric BTP-BO-SFO and asym-
metric BTP-BO-3FO. Both materials contain enlarged 
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bandgaps and yield high VOC in binary devices matching 
with the celebrity polymer donor PM6. Though higher VOC 
of 1.00 V is achieved by BTP-BO-SFO-based cell, its poor 
short circuit current density (JSC) and fill factor (FF) leads 
to a low PCE of 10.2%, thus not an ideal material for ternary 
blend construction. In contrast, the asymmetric BTP-BO-
3FO realizes a decent efficiency as high as 15.80%, while 
the VOC still locates at a satisfactory level of 0.952 V. Then, 
BTP-BO-3FO is incorporated into a representative high-
efficiency (in both CF- and o-XY-treated devices) binary 
system PM6:BTP-eC9 to pursue a greater photovoltaic 
performance. As a result, CF-processed ternary cells with 
an optimized ratio produces a 18.60% efficiency compared 
to 18.29% of binary counterpart. Although enhanced VOC 
and JSC, decreased FF limits the general PCE improvement. 
Meanwhile, o-XY-processed cells display a more significant 
rise in PCE due to simultaneously improved VOC, JSC, and 
FF. A series of morphological and photo-physics character-
izations reveal such different behaviors are caused by differ-
ent effect upon film morphology, i.e., CF-processed ternary 
films show much more loss in order phase proportion and 

crystalline ordering, while o-XY cast series demonstrate 
less π–π stacking ordering and general order phase (desired 
electronic transition). This difference is further confirmed 
by charge behavior characterization, from which we can 
learn that o-XY-processed ternary film’s charge transfer and 
recombination kinetics is more favorable. This study not 
only realizes a cutting-edge efficiency value for applica-
tion favorable o-XY-processed OSCs, but also provides a 
new case and understanding where ternary blend construc-
tion combined suitable solvent selection can maximize the 
expected improvement.

2  Experimental Section

2.1  Materials

PBDB-T-2F, PBDB-TF or PM6: poly[(2,6-(4,8-bis(5-(2-
ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b′]
dithiophene))-alt-(5,5-(1′,3′-di-2-thienyl-5′,7′-bis(2-
ethylhexyl)benzo[1′,2′-c:4′,5′-c′]dithiophene-4,8-dione)].

Fig. 1  a Design strategy of IC-FOMe; b Synthetic route and electrostatic potential of BTP-BO-3FO and BTP-BO-SFO
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BTP-eC9: 2,2′- [[12,13-Bis(2-butyloctyl)-12,13-di-
hydro-3,9-dinonylbisthieno[2″,3″:4′,5′]thieno[2′,3′:4,5]
pyrrolo[3,2-e:2′,3′-g][2,1,3]benzothiadiazole-2,10-diyl]
bis[methylidyne(5,6-chloro-3-oxo-1H-indene-2,1(3H)-
diylidene)]]bis[propanedinitrile].

PFN-Br :  Po ly (9 ,9 -b i s (3 ′ - (N,N-d imet hyl ) -N-
ethylammoinium-propyl-2,7-f luorene)-alt-2,7-(9,9-
dioctylfluorene))dibromide.

All above materials are purchased from Solarmer Inc.
MA: melamine.
PFN-Br-MA: doped PFN-Br by MA.
Chloroform, chlorobenzene and ortho-xylene are from 

Sigma-Aldrich Inc.
PEDOT:PSS with the type of Clevios P VP AI 4083 was 

obtain from Heraeus.
The leaser patterned ITO substrates (15 Ω  sq−1) were pur-

chased from were obtained from South China Xiang City 
Inc.

All reagents and solids were used as received without any 
further purification.

2.2  Device Fabrication and Characterization

Solar cells were fabricated in a conventional device configu-
ration of ITO/PEDOT:PSS-TA/active layers/PFN-Br-MA/
Ag. The ITO substrates (~ 94% transmittance) were first 
scrubbed by detergent and then sonicated with deionized 
water, acetone and isopropanol subsequently, and dried over-
night in an oven. The glass substrates were treated by UV 
ozone for 30 min before use. PEDOT:PSS-TA (1 mg  mL−1 
tyramine doped in standard Hareus Al 4083 solution) was 
spin-cast onto the ITO substrates at 6000 rpm for 30 s, 
and then dried at 160 °C for 15 min in air. The blend of 
PM6:acceptors (eC9, BTP-BO-3FO, BTP-BO-SFO, and 
derived alloys) (1:1.3 in weight) were dissolved in CF 
(7 mg  mL−1 donor concentration) and o-XY (10 mg  mL−1 
donor concentration), with DIO (0.3% vol in CF and 0.5% 
vol in o-XY, respectively) as additive, and stirred on a 40 °C 
(for CF)/100 °C (for o-XY) hotplate for 20 min in a nitro-
gen-filled glove box. The blend solution was spin-cast at 
2500 rpm for 30 s onto PEDOT:PSS-TA films followed by 
a temperature anealing of 100 °C for 1 min. PFN-Br-MA 
(melamine doped with 0.25% weight ratio) thin layers were 
coated on the active layer with 3000 rpm (0.5 mg  mL−1), fol-
lowed by the deposition of Ag (100 nm) (evaporated under 

1 ×  10–3 Pa through a shadow mask). The optimal active 
layer thickness measured by a Bruker Dektak XT stylus 
profilometer was 100–110 nm. The current density–volt-
age (J–V) curves of devices were measured using a Key-
sight B2901A Source Meter in glove box under AM 1.5G 
(100 mW  cm−2) using a Enlitech solar simulator. The device 
contact area was 0.05  cm2, device illuminated area during 
testing was 0.04  cm2, which was determined by a mask. The 
EQE spectra were measured using a Solar Cell Spectral 
Response Measurement System QE-R3011 (Enlitech Co., 
Ltd.). The light intensity at each wavelength was calibrated 
using a standard monocrystalline Si photovoltaic cell.

2.3  Open‑air Blade Coating for Active Layers

The blade coat films were fabricated by o-XY solutions 
(11 mg  mL−1 donor concentration, for binary and ternary 
blends; 100 °C to ensure materials are fully dissolved) with a 
35 mm  s−1 speed forward and backward (the blade-substrate 
gap is c.a. 120 μm) on room temperature ITO/PEDOT:PSS 
substrates and then transferred (after c.a. 15 s) to a nearby 
100 °C hotplate to be annealed for 1 min. These steps are all 
carried out in ambient atmosphere with a 70% RH humid-
ity. The  N2 knife is used to properly accelerating the film 
drying, to make the blade-coated film has a similar drying 
kinetics as spin-coated counterparts does, and prevent any 
unexpected morphology destruction caused by too slow 
evaporation. The knife is achieved by gas pipeline releas-
ing  N2 with controllable intensity and direction (normally 
parallel to the film).

3  Results and Discussion

3.1  Material Eigen Properties

Figure 1b presents the detailed synthetic routes to IC-FOMe 
and two SMAs, BTP-BO-SFO and BTP-BO-3FO via a series 
of mature reactions reported before. The synthesis proce-
dures and characterization data, including NMR and mass 
spectra, are provided in Figs. S1–S7. Note the end group 
IC-FOMe shall have two isomers called IC-FOMe-A and 
IC-FOMe-B, as demonstrated in Fig. S1. They are not likely 
to be separated due to highly similar polarities. Fortunately, 
based on low yield of IC-FOMe-B and further NMR results, 
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we can confirm the terminal group on BTP-BO-3FO is IC-
FOMe-A. The thermal stability and thermodynamics of 
BTP-BO-SFO and BTP-BO-3FO were investigated through 
thermogravimetric analysis (TGA) and differential scanning 
calorimetry (DSC) measurement, as shown in Fig. S8. The 
results indicated that both BTP-BO-SFO and BTP-BO-3FO 
possess great thermal stability with decomposition temper-
ature  (Td, 5% weight loss) over 300 °C. Furthermore, the 
melting point of BTP-BO-3FO locates at higher temperature 
than BTP-BO-SFO according to the DSC curves, suggest-
ing superior molecular packing and stronger crystallinity 
of BTP-BO-3FO compared to BTP-BO-SFO. Subsequently, 
cyclic voltammetry was carried out to investigate the energy 
alignment of those two new acceptors with the credited 
donor PM6 and the results are shown in Fig. S9. The low-
est unoccupied molecular orbital (LUMO)/highest occu-
pied molecular orbital (HOMO) levels were determined to 
be − 3.30/− 5.53 and − 3.52/− 5.60 eV for BTP-BO-SFO and 
BTP-BO-3FO, respectively. Besides, density functional the-
ory (DFT) calculations based on the wb97xd/6–31 + g(d,p) 
level were conducted to investigate the electrostatic potential 
(ESP) and molecular dipole moment (Figs. 1b and S10). 
Both new acceptors possess positive electrostatic poten-
tial (ESP) and high dipole moment, which could facili-
tate charge separation and self-assembly of molecules for 
ordered molecular stacking. Focusing on the end groups in 
the BTP-BO-3FO and BTP-BO-SFO, we observed that the 
incorporation of methoxy groups leads to a reduction in the 
ESP of the benzene due to the electron-donating proper of 
the methoxy groups (from 0.0194 to 0.0117 a.u. in Fig. S11), 
resulting in increased electron density and diminished intra-
molecular ICT effects. Additionally, BTP-BO-3FO shows 
smaller dipole moment of 4.83 Debye than that of BTP-BO-
SFO (8.32 Debye), which could be ascribed to the lower ESP 
of benzene ring in IC-FO relative to that of the benzene ring 
in IC-2F [36].

Subsequently the photovoltaic performances of these two 
materials are evaluated by fabricating a series of devices 
based on traditional configuration of ITO/PEDOT:PSS-TA/
active layer/PFN-Br-MA/Ag [37, 38]. The current density 
vs voltage (J-V) characteristics are drawn in Fig. S12a, 
wherein specific parameters (VOC, JSC, FF and PCE) are also 
notated. As a result, The PM6:BTP-BO-SFO blend yields 
an efficiency of 10.23%, due to its poor JSC and FF, which 
indicates though high VOC, its interplay with binary host 
materials is supposed to be harmful to charge generation/

recombination dynamics. On the contrary, BTP-BO-3FO 
can realize a 15.80% PCE in binary devices, where JSC and 
FF values are decent. Therefore, this material, thanks to 
the finely tuned properties by new end-group design and 
asymmetric substitution strategy, becomes promising in 
the high-efficiency ternary blend construction. In addition, 
the reliability of testing results is confirmed by the external 
quantum efficiency (EQE) spectra and integrated current 
density values, as shown in Fig. S12b.

3.2  Photovoltaic Performance

Next, the ternary blend construction is carried out by com-
bining BTP-BO-3FO with PM6:BTP-eC9 host system, 
whose CF- and o-XY-processed devices both performs 
well. Corresponding J-V curves, extracted parameters, 
and their normal distribution plots are given in Figs. 2 and 
S13, Table 1. Within CF-processed cells, the component 
optimization is also carried out: 1:1:0.3 weight ratio for 
PM6:BTP-eC9:BTP-BO-3FO is the best. Both VOC and JSC 
are improved there, but FF suffers some loss, which leads 
to insufficient efficiency promotion. When BTP-BO-3FO’s 
content becomes larger, the PCE drops quickly to 15.42%, 
even lower than its own binary devices. This variation indi-
cates that BTP-BO-3FO is capable of tuning energy level 
and optimize absorption spectra, but has negative impact 
on film morphology, under CF casting condition. On the 
contrary, o-XY-processed 1:1:0.3 devices have a more sig-
nificantly improved PCE than its counterpart, thanks to 
simultaneously enhanced VOC, JSC, and FF, which implies 
a different morphology evolution in o-XY cast active lay-
ers. Notable 19.24% is among the highest level of non-hal-
ogenated solvent processed OSC efficiencies, which is then 
emphasized by a brief comparison shown as Fig. 2c. The 
literature values are listed in Table S1. Furthermore, EQE 
spectra are measured and presented as well, in Fig. 2d. Since 
o-XY’s greener nature and high boiling point, our research 
interest drives us to further explore the ternary strategy’s 
effect on blade-coating (a printing compatible fabrication) 
cells. The results are shown in Fig. 2e, f and Table 1. Over 
19% efficiency for non spin-coating devices based on easy-
controllable solvent is for the first time achieved.

Beyond efficiency, the light-soaking stability and ther-
mal stability of encapsulated devices are paid attention 
for non-halogenated solvent processed groups, as well. 
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According to Fig. 2g, h, where the results are plotted, the 
addition of BTP-BO-3FO is beneficial to prolonging the 
lifetime for those under white LED illumination under 
ambient condition, while long-term thermal stability var-
ies little when they are on 80 °C hotplate for thermal deg-
radation, which is supposed to be dominated by interlay-
ers. However, the results still suggest that ternary system 
has better potential in achiveing long-term stable OSCs.

Corresponding device physics analyses are done alto-
gether while device efficiency measurement. The exciton 
dissociation (ηdiss) and charge collection efficiencies (ηcoll) 

of the devices were investigated through Jph vs Veff curves 
plotted in Fig. S14a and the corresponding efficiencies 
presented in Table S2, the addition of BTP-BO-3FO can 
enhance the saturated current density (Jsat) in both CF- 
and o-XY-processed devices and slightly improvement 
in ηdiss was observed in o-XY-processed devices which 
is consistent with changes in JSC and FF values. Also, 
the charge recombination mechanisms of the devices are 
investigated by figuring out the relationship between illu-
mination intensity and VOC/JSC plotted in Fig. S14b, c. The 
n values calculated from VOC vs light intensity lines are 

Fig. 2  a J-V characteristics. b Normal distribution of PCEs. c A comparison of non-halogenated solvent processed OSCs. d EQE spectra. 
Blade-coating active layer from o-XY based binary and ternary solar cell performances: e J-V curves and f EQE spectra. g Light soaking stabil-
ity of o-XY fabricated devices, and corresponding h thermal stability (80 °C)
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0.934, 0.994, 1.13, 0.971 and 0.974, respectively. These 
results indicate that introducing proper amount of BTP-
BO-3FO can reduce the surface recombination dominance, 
but overdosing it could result in more severe trap-assisted 
recombination [39–41]. The slopes of VOC vs light inten-
sity curves are calculated to be 0.987, 0.983, 0.977, 0.978 
and 0.976. They are all close to 1, indicating that the bimo-
lecular recombination is generally reduced. The slight 
change of their values could be the result of altered charge 
mobility, instead of unfavorable recombination dynamics, 
according to subsequent charge transport and recombina-
tion analyses [42–44]. The energy transfer existence is 
confirmed by using photoluminescence (PL) measure-
ments (Fig. S14d) [45]. Accordingly, clear enhancement 
of PL signal intensity of blend acceptor films compared 
to pure films can be attributed to energy transfer between 
BTP-eC9 and BTP-BO-3FO. Meanwhile, the series and 
shunt resistances (Rseries, Rshunt) are also investigated via 
resistance vs applied voltage (Rdiff-V) curves (Fig. S15). 
Principally high Rshunt and low Rseries are desired, and 
accordingly obtained data are consistent with the FF vari-
ation tendency. Furthermore, we also present the corrected 
voltage (Vcor) based J–V characteristics in Fig. S15 for 
reference [46].

3.3  Morphology Analysis

The device performance is supposed to be tightly correlated 
to the film morphology, especially for our cases that two 
different solvents brought to different ternary design’s effi-
ciency improvement effect. Before analyzing blend films, 

the acceptor-only films are focused on, since structurally 
similar acceptors are supposed to have good miscibility, 
thus interactive crystallization tuning effect. Figuring out 
what happens within acceptors is helpful to understanding 
overall morphology change of active layers. Herein, both 
UV–Vis absorption profiles and PL spectra of those films 
are presented in normalized way. The fitting methods are 
all proposed by previous studies [47–49]. The green-shaded 
region represents the spectroscopical contribution from S1 
ordered aggregation phase in film, and the organged part 
comes from S1 amorphous phase. The S2 and S3 contri-
butions are marked gray and blue, respectively. Starting 
with CF-processed acceptor films related UV–Vis spec-
tra (Fig. S16a), the green-shaded part is composed by two 
peaks, referring to S0 → S1 electronic transition, while the 
orange-shaded region is considered to represent the amor-
phous state. According to the results of UV–Vis spectrum 
fittings, blending BTP-BO-3FO with BTP-eC9, especially 
when its content becomes high, more amorphous states are 
induced, under CF processing. BTP-BO-3FO is intrinsi-
cally with strong amorphous property, though it cannot be 
found in UV–Vis analysis, but clearly shown in PL fitting 
(since it is more emissive than BTP-eC9). As for PL signals 
for 1:0.3 and 0.7:0.6 weight ratio films in Fig. S16b, the 
reduced amorphous state might not be contradictory to their 
UV–Vis spectra, since there exists energy transfer between 
two materials, which is supposed to bring more emission 
from BTP-eC9’s ordered phase.

Subsequently more attention is paid on two o-XY-
processed films, whose UV–Vis and PL analyses are all 
presented in Fig.  S16c. Compared to its CF-processed 

Table 1  Device performances

The brackets contain averages and standard errors of PCEs based on at least 10 devices

PM6:BTP-eC9:BTP-BO-3FO VOC (V) JSC / JEQE (mA  cm−2) FF (%) PCE (%)

CF processed
1:1.3:0 0.849 27.17/26.25 79.3 18.29 (17.95 ± 0.23)
1:1:0.3 0.863 27.42/26.40 78.6 18.60 (17.99 ± 0.45)
1:0.7:0.6 0.885 24.07/23.66 72.4 15.42 (15.09 ± 0.30)
o-XY processed
1:1.3:0 0.838 27.97/27.09 79.5 18.63 (18.32 ± 0.19)
1:1:0.3 0.857 28.13/27.16 79.8 19.24 (18.99 ± 0.12)
o-XY blade coating
1:1.3:0 0.840 27.59/26.60 79.5 18.42
1:1:0.3 0.857 27.73/26.73 79.7 19.05
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counterpart, o-XY cast neat BTP-eC9 film is more ordered 
in 0–0 vibrational part, but less ordered in 0–1 region, which 
would possibly make its interaction with BTP-BO-3FO dif-
ferent here. Interestingly, 0.3/1.3 ratio’s BTP-BO-3FO does 
increase the ordered peaks while amorphous state’s contri-
bution becomes significantly weaker. This is also observed 
in PL spectra, where the emission from amorphous state is 
nearly erased out.

Then we turn on the focus to D/A blend films to further 
reveal the different morphology evolution upon ternary blend 
films caused by solvent variation. Beginning at the nanom-
eter scale molecular packing, the grazing incidence wide-
angle X-ray scattering (GIWAXS) tests are utilized [50–53]. 

The 2D patterns and extracted line-cuts are displayed in 
Fig. 3a, and the fitted parameters for π–π stacking are dem-
onstrated in Table S3. Within CF-cast films, the coherence 
length (CL) values for (010) peaks are very significantly 
reduced along with the increase of BTP-BO-3FO’s content. 
Fewer orderly packed molecules through π–π interaction is 
negative to the charge transport and then decreased FF. In 
parallel, the o-XY films display similar variation trend, yet 
weaker degree of crystalline ordering decrease. After the 
comparison of crystallite order, the proportion of ordered 
phase and amorphous phase is further studied, also enabled 
by UV–Vis spectrum fitting. The green shaded regions sepa-
rately represents UV–Vis absorption from ordered donor and 

Fig. 3  Blend film morphology analysis: a 2D GIWAXS patterns and relative line-cuts. b UV–Vis spectra with gaussian fitting results
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acceptor(s), while the organge patterns here are the sum of 
amorphous phases of both donor and acceptor(s). Accord-
ing to the results shown in Fig. 3b, adding BTP-BO-3FO 
significantly damages the ratio of ordered phase (lower rela-
tive peak height and disappeared 0–1 peaks for donor and 
acceptors), while improves amorphous state’s proportion, 
which is supposed to reduce the chare transport ability, as 
well. In contrast, ternary film cast from o-XY does not lead 
to clearly order/amorphous phase’s content change. With a 
better maintained film morphology, and tuned energy level 
distribution, the o-XY-processed ternary devices rationally 
exhibit as good FF as that of binary counterparts.

To confirm the charge transport deduction, the hole and 
electron mobility is evaluated by fabricating a series of hole-
only and electron-only devices, that is, the space charge 
limited current (SCLC) method. As shown in Fig. S17 and 
Table S4, obviously improvement in both hole and electron 
mobility (also their balance) in o-XY-processed ternary 

systems, totally different from CF-processed devices, which 
echoes the above morphology analysis.

Next, larger nanometer scale (10 nm to 50 nm) film mor-
phology investigation is supported by atomic force spec-
troscopy (AFM) and grazing incidence small-angle X-ray 
scattering (GISAXS) experiments [54–56]. The obtained 
height/phase images, 2D intensity patterns, line-cuts and 
fitting results are all provided in Fig. 4. The AFM height 
and phase images both suggest o-XY-processed PM6:BTP-
eC9 has more favorable interpenetrating fibrils compared to 
aggregates contained morphology of the CF cast counter-
parts, consistent with our previous finding. Then it is notable 
that ternary films cast from CF exhibit very clearly reduced 
phase separation marks, also considered as a phenomenon 
of decreased ordered phase. Meanwhile, the o-XY-processed 
1:1:0.3 film presents very similar to its binary control, refer-
ring to a better-kept morphology.

Fig. 4  a Blend AFM and b GISAXS
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The quantitative study is then carried out based on 
GISAXS calculation results that are summarized in 
Table 2. Obviously, o-XY treatment results in more inter-
penetrating morphology than CF does, as both amorphous 
state length scale (ξ) and cluster radius of aggregates (Rg) 
values are lower there. As the rise of Rg values with the 
addition of BTP-BO-3FO in CF-processed active layers, 
and the figured out reduced ordered phase, its amount of 
PM6 or acceptor aggregates shall be reduced, which is 
consistent to AFM images. However, the Rg values treated 
by o-XY are getting smaller in ternary blend film, and thus 
more small-size aggregates with decent purity show up, 
which is beneficial to charge generation and transport. This 
is also consistent with the coherence length (η) results, and 
fractal dimension of acceptor (D) values: o-XY-processed 
films locate at lower level [57].

To obtain more understanding from thermodynamic 
view, the powerful tool, UV–Vis absorption measurement 
is again utilized [58–60]. The absorption deviation metrics 
 (DMT) can be obtained from different temperature anneal-
ing enabled normalized absorptions of all films (Fig. S18), 
and the extracted information presented in Fig. S19 locates 
the glass transition points (Tg). The CF cast neat BTP-eC9 
film demonstrates an 80 °C Tg, which is lowest among all 
films investigated here, and in consistence with the previ-
ous report. However, its o-XY-processed counterpart has a 
much higher Tg of 107 °C. Considering the prepared con-
centration of BTP-eC9 in o-XY is twice higher than that 
in CF, while the film drying time is also much longer, this 
big Tg value gap is due to more condensed film enabled by 
o-XY. Therefore, BTP-BO-3FO (Tg = 110 °C processed by 
CF) easily change the host system’s Tg if it is cast from CF, 
but the Tg values of all o-XY-processed films are stabilized 
in the range of 106–110 °C. In addition, the slopes of two 

stages for these films demonstrate that o-XY-processed 
films contain stabler molecular aggregation states, prob-
ably due to its longer film drying duration leads to a less 
non-equilibrium morphology state. This could also explain 
why the Tg varied limitedly for binary and ternary films 
cast from o-XY.

3.4  Exciton Behavior Evaluation

Finally, the charge behavior is investigated by the femto-
second transient absorption spectroscopy (fs-TAS) tech-
nology, as an important supplementary study aside from 
the morphology analysis.62,63 The TAS representative 
spectra of acceptor-only and blend films are all shown in 
Figs. S20 and S21, inserted with their 2D color maps. 
Figure 5a shows the TAS spectra at 0.5 ps after pumping 
to represent the photogenerated singlet excitons. It can be 
observed that the features of BTP-eC9 and BTP-BO-3FO 
are of great difference which are also inferable from their 
relative absorption spectra. Under CF processing, their 
alloy films spectral shape changes relative to the BTP-
BO-3FO content, as highlighted in both purple and green 
shaded regions. In contrast, o-XY processing with 0.3/1.3 
ratio BTP-BO-3FO barely changes with BTP-eC9 host 
film indicative that the BTP-eC9’s superior property is 
well maintained. It is also supported by the singlet exci-
ton lifetime variation plotted in Fig. 5b, where the decay 
rates of CF-processed alloy films are at the middle part 
of two neat films, but that of o-XY cast bi-acceptor film 
is almost identical to the pure BTP-eC9 counterpart. This 
can be attributed to BTP-BO-3FO chromophore is closer 
to BTP-eC9 chromophore in o-XY-processed films with 
suitable PL and absorption overlaps, thereby suggestive 
to enable energy transfer. The polarons of blend films are 
detected at 570–590 nm and analyzed to represent the sub-
ns scale recombination kinetics and the ultrafast charge 
transfer process. The lines are then plotted in Fig. 5c, d 
for CF- and o-XY-coated active layers, respectively. The 
polarons generation rate appears faster with BTP-BO-3FO 
content upon CF processing while it remains dominated by 
BTP-eC9 for o-XY processing, complimenting that BTP-
eC9 superior characteristics is well maintained when o-XY 
is the precursor solvent. Meanwhile, we can see promot-
ing BTP-BO-3FO’s content monotonically increases the 
recombination rate, which is consistent with FF loss in 

Table 2  GISAXS fitting results

PM6:BTP-
eC9:BTP-BO-3FO

ξ (nm) η (nm) D Rg (nm)

CF processed
1:1.3:0 21.6 11.3 3.0 23.9
1:1:0.3 15.2 9.9 3.4 26.6
1:0.7:0.6 15.8 12.1 3.2 31.2
o-XY processed
1:1.3:0 7.1 7.9 2.3 15.4
1:1:0.3 7.5 5.6 2.2 10.4
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CF-processed devices. On the other hand, the addition of 
BTP-BO-3FO does not increase the recombination rate 
up upon o-XY processing. Instead, it is slightly slower 
which is well consistent with the observed FF improve-
ments. Note the recombination decay curves might not be 
very significant from each other in these two graphs; how-
ever, such situations take place from time to time in recent 
reports [63–67]. More importantly, the yielded tendency 
is a good explanation for device performance variation.

4  Conclusions

In summary, by developing a novel fluorine- and methoxy-
co-substituted terminal group and applying asymmetric sub-
stitution strategy, a SMA called BTP-BO-3FO is synthesized 
as an effective guest material in pursuing the PCE of host 

system PM6:BTP-eC9 processed by both CF and o-XY. Fur-
thermore, the use of BTP-BO-3FO brings different param-
eter variation features in two solvent-processed devices. 
Morphological analyses (GIWAXS, GISAXS, AFM, UV/PL 
fitting) and photo-physics characterizations reveal the dif-
ferent packing/aggregation ordering changings shall be the 
explanation. This work not only provides a successful mate-
rial design case that helps ternary blend achieving higher 
PCEs, (especially 19.24% for green-solvent processed one), 
but also a reminder that solvent selection has strong impact 
on ternary strategy’s effect, as well as a research template of 
how to analyze these differences.
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