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ABSTRACT Forward-looking sonar (FLS) images present various challenges in interpretation, recognition,
and segmentation due to limitations like low resolution, speckle noise, and low contrast, making them more
complex than optical images. Existing methods often focus solely on denoising or enhancement, neglecting
the potential benefits of utilizing multi-scale features to create an integrated image processing approach.
This paper introduces the Laplacian pyramid-based multi-scale denoising and enhancement (LPMsDE)
method tailored for FLS images. The proposed method begins by presenting a novel multiplicative speckle
noise model, grounded in the Gaussian distribution, specifically designed for FLS images. Next, the
Laplacian pyramid decomposition is utilized to estimate noise variance, with an modified adaptive local
filter. Lastly, a combination of the Laplacian pyramid framework, the enhanced adaptive local filter, and
Contrast-Limited Histogram Equalization (CLHE) is employed to denoise and enhance images at different
resolution levels. Through comprehensive experiments conducted on both simulated and real sonar images,
the effectiveness of the LPMsDE method is demonstrated. It surpasses other denoising and enhancement
techniques, as evidenced by superior scores in Structural Similarity Index (SSIM), Peak Signal-to-Noise
Ratio (PSNR), Contrast-to-Noise Ratio (CNR), Equivalent Number of Looks (ENL), Natural Image Quality
Evaluator (NIQE), and Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE).

INDEX TERMS Forward-looking sonar, speckle noise, image denoising, contrast enhancement, multi-scale
analysis, Laplacian pyramid.

I. INTRODUCTION
The absorption coefficient of acoustic waves in water is
significantly smaller than that of light waves and electro-
magnetic waves. As a result, sonar devices find widespread
applications in underwater activities, as they are unaffected
by the turbidity and optical visibility of water. Among the
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popular underwater detection devices, forward-looking sonar
(FLS) stands out. The FLS system employs sonar sen-
sors that emit acoustic waves, which, upon reflection from
objects in the water, generate visual images of the underwater
environment, akin to optical camera images [1]. Typically
mounted at the front of ships or vehicles, FLS systems offer
valuable situational awareness, obstacle avoidance, and nav-
igation information. They serve diverse purposes, including
marine navigation, underwater search and rescue operations,
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underwater exploration,military applications likemine detec-
tion, and the tracking of submarines [2].

The underwater environment presents unique complexi-
ties, affecting the echo signals received by sonar. Factors such
as channel propagation loss, environmental noise, and multi-
path effects lead to low resolution, blurred target edges, and
significant noise in sonar images [3]. Over the past decades,
advancements in sensor sensitivity and digital beamform-
ing and image processing technologies have considerably
improved the overall quality of FLS images. Nevertheless,
various noise types persist, making it challenging to inter-
pret the images and impacting the efficacy of scene analysis
algorithms, such as image segmentation, underwater object
detection, and recognition [4]. Consequently, reducing noise
in FLS images and enhancing their quality serve as the foun-
dation for further advancements in FLS imaging.

Existing denoising methods for sonar images can be clas-
sified into two categories: traditional methods and deep
learning methods. Traditional methods can be further divided
into two categories based on the different denoising princi-
ples: spatial domain methods and transform domain/sparse
representation methods.

In the early stages of image processing techniques, spa-
tial operations employed simple structural filters like the
Lee filter [5], Frost filter [6], and Kuan filter [7]. How-
ever, these methods tend to lose edge information during
the denoising process. Subsequently, approaches considering
other factors emerged, such as bilateral filtering based on
grayscale differences between pixels [8] and anisotropic dif-
fusion filtering based on gradient information [9]. Currently,
the forefront of research in spatial domain methods involves
denoising algorithms based on local self-similarity, leverag-
ing inherent redundancy and regularity in natural images.
The mainstream denoising algorithms include non-local
means filtering (NLM) [10], block-matching and 3D fil-
tering (BM3D) [11], along with their improved versions.
For instance, Abu and Diamant proposed an adaptive NLM
filter that models noise in different regions using distinct
distributions [12]. Han et al. introduced an improved BM3D
algorithm that adapts its parameters based on the noise char-
acteristics of sonar images. Additionally, they incorporated
a Gaussian filter and gray correction before the basic esti-
mation [13]. As the performance improves, the complexity
of these denoising algorithms has also increased, resulting in
an increase in the number of parameters which need to be
manually set. Inappropriate parameters will seriously affect
the denoising performance, limiting the robustness of these
algorithms.

Transform domain methods and sparse representation
methods fall into the same category, as they both involve
representing the image as a linear combination of a set
of basis functions, effectively separating useful information
from noise initially mixed uniformly together [14]. Vari-
ous researchers have explored wavelet domain denoisers
for sonar images, employing different thresholding methods

[15]. Others utilized the dual-tree complex wavelet trans-
form (DT-CWT) and three variants of the BiShrink filter to
reduce speckle noise [16]. Additionally, researchers proposed
enhancement algorithms in the wavelet domain, employing
techniques like Gaussian mixture tumid and Gaussian mix-
ture model to preserve weak feature information in sonar
images [17]. Further, adaptive soft threshold denoisers were
designed for sonar water column images, employing math-
ematical features of all angle sequences to divide the water
column data into background areas and target-noise mixing
areas [18]. Denoising methods based on principal com-
ponent analysis (PCA) and singular value decomposition
(SVD) have also been proposed [19], showing usefulness in
preprocessing sonar images for underwater target tracking
algorithms [20]. Other transform domain methods, including
curve transform [21], [22], discrete cosine transform (DCT)
[23], Radon transform [24], and shearlet transform [25], have
been applied to sonar image denoising as well. Existing
transform domain methods have not effectively utilized the
multi-scale characteristics of the FLS image. The images in
the transformed domain are difficult to visually comprehend,
posing challenges for analyzing the characteristics of differ-
ent scales. Currently, there is a lack of a transform method
that can effectively achieve image multi-scale analysis.

Among denoising methods based on image sparse repre-
sentation, researchers developed a novel sub-bottom profile
image denoising method, utilizing a non-local low-rank
framework to obtain underlying clean images [26]. A model
combining nonconvex total variation regularization and gen-
eralized Kullback-Leibler fidelity was presented for sonar
image denoising [27]. Similarly, a generalized low-rank
model for Cauchy noise removal was introduced, and a
proximal alternating algorithm was developed to solve the
nonconvexmodel [28]. However, sparse representation-based
methods also have some limitations, such as sensitivity to
noise, dependence on accurate and suitable dictionaries, and
high computational complexity.

In recent years, deep learning has made remarkable strides
in various image-related tasks, such as image restoration
[29], semantic segmentation [30], object detection [31].
Supervised learning methods optimize network weights by
minimizing the distance between noisy inputs and clean tar-
gets. For instance, Kim et al. developed a neural network
with auto-encoder structures to enhance sonar images, ver-
ified using acoustic lens-based multibeam sonar images [32].
Sung et al. employed a convolutional neural network to detect
and remove crosstalk noise in forward scan sonar images
[33]. Additionally, a denoising and segmentation network
integrating the Receptive Field Block and Attention Search
Function was proposed [34]. Lee et al. presented a deep
learning-based compressive sensing method with enhanced
nonlinearity using an iterative shrinkage and thresholding
algorithm for denoising side-scan sonar images [35]. How-
ever, noise-free sonar images are rare, leading supervised
training methods to use clean optical images as ground
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truth and artificially noised versions as input noise images.
This creates a domain gap between synthetic data and
real sonar images, leading to artifacts or loss of poten-
tial information [36]. Self-supervised learning methods have
shown promise as an effective denoising solution [37]. These
methods employ a blind convolutional network structure
to efficiently process noisy versions of each image in the
dataset and reconstruct clean pixels from adjacent pixels [38],
[39]. Nonetheless, due to the lack of clean FLS images,
self-supervised learning does not guarantee training results
approaching the clean image. The majority of deep learning
algorithms rely on high-quality training data and may suffer
from overfitting, while traditional methods tend to be more
robust and generalizable.

In this paper, we propose a novel Laplacian pyramid-based
multi-scale denoising and enhancement (LPMsDE) method.
Leveraging the Laplacian pyramid framework, the image
is decomposed into multiple high-frequency components
and one low-frequency component. Based on the distinct
characteristics of each component, appropriate denoising
and enhancement methods are selected, and the image is
reconstructed using the Laplacian pyramid inverse transform.
During the denoising process, an modified adaptive local
filter and a novel FLS multiplicative speckle noise model are
employed.

The contributions of this work encompass three main
aspects:

1) A reliable yet simple Gaussian distributed FLS image
multiplicative speckle noise model is proposed and
its effectiveness demonstrated through pixel value fre-
quency statistics.

2) By exploring the relationship between Laplacian image
variance and real image noise variance, a modified
adaptive local filter is proposed, utilizing Laplacian
images to estimate noise variance.

3) A multi-scale denoising and enhancement method
based on the Laplace pyramid framework is proposed.
Modified adaptive local filtering and contrast limited
histogram equalization are used to denoise and enhance
the high-frequency and low-frequency components,
respectively.

The paper is organized into five main sections. Section I
introduces the FLS image denoising and enhancement, pre-
senting an overview of related work. Section II delves into
the multiplicative noise model in FLS images. Section III
describes the proposed LPMsDEmethod. Section IV presents
experimental results and analysis. Finally, Section V con-
cludes the paper’s findings.

II. FLS SPECKLE NOISE MODEL
In this section, we try to present and analyze a reliable FLS
speckle noise model and analyze the statistical properties
of noise in FLS images. Such analysis provides a deeper
understanding of noise characteristics and distribution and
enables the development of more targeted denoisingmethods.

Moreover, a reliable noise model allows for the creation
of simulated sonar images by introducing noise to artificial
images, thus augmenting the currently limited dataset.

In spite that several speckle noise models have been pro-
posed [25], [40], [41], a speckle noise model conforming to
the unique characteristics of FLS has been lacking. In this
paper, we propose an FLS speckle noise model that enables
the generation of artificial noise, aligning with the real FLS
noise characteristics, and facilitates noise variance estimation
through adaptive local filtering in subsequent sections.

To maintain the model’s generalization and simplicity,
we do not explicitly model the actual processes of acoustic
signal generation and propagation affected by noise. Instead,
we analyze the abstract sources of noise in FLS images.
Inspired by [40], the noise in FLS images can be represented
as Equation (1):

ϕ(x, y) = ωm(x, y)ψ(x, y) + ωa(x, y) (1)

where ϕ(x, y) denotes the observed noisy image obtained
in practical scenarios, while ψ(x, y) represents the poten-
tial pure image unaffected by noise under ideal conditions.
Additionally, ωm(x, y) and ωa(x, y) respectively denote the
multiplicative and additive noise components.

The intensity of multiplicative portion in Equation (1) is
positively correlated with the echo intensity of sonar signals,
making it the primary component in general [41]. Speckle
noise is wildly observed in synthetic aperture radar, medical
ultrasound, and sonar images [42], [43], and it essentially
represents an interference phenomenon of waves. When the
acoustic waves emitted by the imaging sonar encounter rough
structures on the surface of an object, a large number of
scattered sub-waves are generated, overlapping with each
other in space. If two sub-waves reach the sonar receiving
array at their peak positions, their vibrations combine to form
a bright spot in the sonar image. Conversely, if one sub-wave
is at its peak position, and the other is at its trough position,
they cancel each other out, resulting in no acoustic waves
being received in that direction, forming a dark spot in the
image. Due to the large number of scattered sub-waves and
their highly random phase distribution, these echoes create
numerous randomly distributed bright and dark spots in the
image, known as speckle noise.

In comparison to the multiplicative component, the sources
of additive noise are more complex, encompassing ran-
dom noise distributed underwater (such as marine biological
sounds and sonar carrier motion noise), underwater impuri-
ties and small bubbles, structural noise generated during FLS
operation, and Gaussian white noise in the channel during
signal transmission, among others [44].

The intensity of the acoustic signalψ(x, y) used utilized for
FLS perception far exceeds that of additive noise, while the
intensity of the multiplicative noise is directly proportional
to the acoustic signal intensity. Consequently, the impact of
additive noise on the image is minimal compared to that
of multiplicative noise. To simplify the noise model and
reduce its complexity, the additive noise is excluded. Thus,
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FIGURE 1. Comparison of details between the simulated image with
speckle noise and real sonar image using our proposed FLS noise model.
(a) Real FLS image; (b) Simulated FLS image.

Equation (1) can be expressed as Equation (2):

ϕ(x, y) = ωm(x, y)ψ(x, y) (2)

After conducting data statistics and comparing differ-
ent distributions, a novel Gaussian-distributed multiplicative
noise model for FLS images is proposed. According to this
model, the multiplicative noise in FLS images follows a
Gaussian distribution with a probability density in Equation
(3):

f (x) =
1

√
2πσ

exp{−
(x − µ)2

2σ 2 } (3)

where µ and σ 2 represent the mean and variance of the
distribution. The mean of the Gaussian distribution, which
the multiplicative noise adheres to, is set to 1. This choice
avoids any shift in the overall pixel value level of the image
after introducing noise, thereby preserving the original image
information. The variance varies based on different noise
intensities.

Therefore, the speckle noisemodel that interferes with FLS
images can be expressed as Equation (4):

ϕ(x, y) = ωm(x, y)ψ(x, y), ωm(x, y) ∼ N (1, σ 2) (4)

To demonstrate the effectiveness of the proposed speckle
noise model, we simulated FLS images corrupted with
speckle noise based on the model. The results are illustrated
in Figure 1.

FIGURE 2. Histogram of pixel values in the contrasting regions of the
both images.

Since replicating and generating simulated images that per-
fectly match the content of real sonar images is challenging,
we chose uniform regions of the two images that lack edges
and textures for comparison. Uniform regions have a concen-
trated distribution of pixel values and lack structures such as
edges that cause abrupt changes in pixel values. Hence, they
effectively reflect the distribution characteristics of speckle
noise. In Figure 1, the comparison region of the real and
simulated sonar images exhibits a highly similar visual effect.
Moreover, we calculated and presented the frequency distri-
bution of pixel values in the comparison region by traversing
the pixel values of each pixel in both images, as shown in
Figure 2.

Figure 2 demonstrates that the simulated and real images
share similar distribution characteristics of pixel values. Since
the pixel value changes in the contrast region of both images
are solely related to multiplicative noise, the identical pixel
value distribution confirms that the synthesized image is
subject to the same multiplicative noise interference as the
real sonar image. It’s important to note that the pixel value
distributions of the simulated and real images have the same
mean value. This was deliberately set during the image syn-
thesis process to align the two pixel value distribution curves
at their peak values, making it easier to compare the degree
of pixel value dispersion.

III. METHODOLOGY OF LPMSDE
LPMsDE involves addressing two crucial aspects of FLS
image quality improvement: denoising and enhancement.
Denoising requires finding a balance between reducing noise
and preserving important details, while enhancement aims
to highlight image features while avoiding amplifying noise
[45]. To achieve this, we adopt a multi-scale analysis by
decomposing the FLS image into three levels using the Lapla-
cian pyramid framework. Each level contains different scales
and characteristics, encompassing noise, edges, textures, and
main content. This separation of specific content allows for
noise removal while retaining valuable information.
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FIGURE 3. Overall flowchart of the proposed LPMsDE method.

FIGURE 4. Structure of Gaussian pyramid.

To handle the Laplacian images containing noise,
we improved the adaptive local filter by combining it with
the image characteristics of the Laplacian pyramid. This
modified adaptive local filter is applied to denoise the first
and second levels of the Laplacian pyramid (L1 and L2 in
Figure 3). In the highest level of the Laplacian pyramid (L3),
we use contrast-limited histogram equalization (CLHE) to
enhance the image contrast and accentuate its features. The
algorithmic flow is depicted in Figure 3.

A. LAPLACIAN PYRAMID FRAMEWORK
In the proposed methodology, we utilize the Laplacian pyra-
mid framework for multi-scale representation of FLS images
[46]. An image pyramid is a collection of images arranged
in a pyramid shape, obtained from the same input image but
with varying resolutions. There are two main types of image
pyramids: the Laplacian pyramid (LP) and the Gaussian pyra-
mid (GP). The difference between the two pyramids is that all
the images of the GP are different resolution representations
of the input image, whereas in the images that make up
the LP, the higher-level images are computationally obtained

FIGURE 5. Structure of Laplacian pyramid.

FIGURE 6. Process of image decomposition and reconstruction through
image pyramid.

Laplacian images, except for the bottom level, which is the
original image. Figure 4 and 5 illustrate the structure of GP
and LP, respectively.

Both pyramids decrease in resolution from bottom to top,
with the original input image having the highest resolution
at the bottom and the lowest resolution representation at the
top. Figure 6 illustrates the process of image decomposition
and reconstruction using a three-level image pyramid. The
up and down arrows represent upsampling and subsampling,
respectively.

The GP is generated by successively reducing the scale
of the image through Gaussian kernel convolution and sub-
sampling. However, in this paper, to preserve image details
and avoid blurring edges and textures, we omit the Gaussian
kernel convolution and perform only image subsampling. Let
N be the highest level of the GP, then Gn represents the nth
level Gaussian image.G1 is the bottom level of the GP, which
is equivalent to the input image. To obtain Gn, we perform
subsampling on Gn−1, reducing the rows and columns of the
image by half, resulting in Gn, which can be represented as
Equation (5):

Gn(t) = sub(Gn−1(t)), 0 < n ≤ N (5)

where G(t) represents the image generated at time t , and
sub(·) denotes subsampling of the image.

During the generation of each level of the GP, approxi-
mately three-quarters of the information in the image is lost
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FIGURE 7. Calculation process of Laplacian images.

due to subsampling. To capture and represent this lost infor-
mation, we define the Laplacian Pyramid (LP). The Laplacian
image is obtained by subtracting the upsampled version of the
higher level of the GP from the corresponding level of the GP,
resulting in a difference image. The flowchart for obtaining
the Laplace images through Gaussian images is shown in
Figure 7.

The LP consists of L1, L2, . . . , Ln and Ln represents the nth
level of LP, which can be expressed as Equation (6):

Ln(t) = Gn(t) − up(Gn+1(t)), 0 ≤ n < N (6)

where up(·) represents the signal interpolation process
applied to the image. The upsampling is performed by inter-
polation in this case.

The Laplacian pyramid framework decomposes the
original FLS image into multiple levels of different
scales, comprising a low-frequency subband and multiple
high-frequency subbands. The low-frequency component
represents the smooth regions of the image, typically con-
taining most of the image energy and corresponding to the
background. The pixel intensity distribution of the image is
mainly reflected in the low-frequency information. On the
other hand, the high-frequency component typically repre-
sents high-frequency information, such as edges and noise,
and reflects the richness of information at corresponding
positions in the image [47]. The higher the absolute value
of the high-frequency information, the clearer the details of
the image, but it is more susceptible to noise interference.
The LP decomposition images have the ability to repre-
sent the high-frequency components of the corresponding
level of the GP, leading some researchers to refer to this
property as the predictive residual effect of the LP [48].
Originally, the LP was designed for image reconstruction

from the GP. The reconstructed image is obtained by syn-
thesizing the enhanced subband images in the LP, from the
coarsest level to the finest level. The reconstruction pro-
cess follows the inverse process of the LP decomposition to
reconstruct the corresponding GP, and finally, the restored
image G′

1(t) is obtained. The reconstruction process can be
represented as Equation (7):

G′
n(t) =

{
up(G′

n+1(t)) + Ln(t), 0 ≤ n < N
Gn(t), n = N

(7)

By decomposing the image into multiple scales using LP,
different operators can be employed to process the distinct

characteristics of each subband at different frequencies,
allowing for targeted image optimization and processing,
which can reveal previously unnoticed characteristics of the
image.

B. MODIFIED ADAPTIVE LOCAL FILTER
In the Laplacian images the L1 and L2 of the LP, which
contain high-frequency signals, detail information, and noise
exhibit different distribution characteristics, as depicted in
Figure 3. Noise is more uniformly distributed throughout
the image, while detail information like edges and textures
are more concentrated and display local distribution char-
acteristics. To effectively denoise the image, we propose a
modified adaptive local filter based on the Laplacian pyramid
framework.

The regular adaptive local filter is defined as Equation (8):

g′(x, y) = g(x, y) −
σ 2
η

σ 2
S

[g(x, y) − zS ] (8)

where S defines the neighborhood of a rectangular
sub-window centered at pixel (x, y), within which the filter
operates; g(x, y) represents the pixel value of the noise image
at pixel (x, y); σ 2

η represents the noise variance; The local
mean value of the pixel values in S is denoted byzS , and the
local variance is denoted by σ 2

S .
In the above Equation, g(x, y), zS , and σ 2

S can be obtained
from the image, and the only value that cannot be directly
calculated is the noise variance σ 2

η . Accurate estimation of
the noise variance is crucial for the denoising effectiveness
of the adaptive local filter and is a critical step in the entire
denoising process [49]. A precise noise variance leads to a
highly effective denoising result, while an overly large or
small noise variance can result in blurred boundaries or resid-
ual noise, respectively. Fortunately, by utilizing the Laplacian
pyramid framework, the input image has already been decom-
posed into Laplacian images. The Laplacian image contains
nearly all the noise and some edge information. Therefore,
if the noise variance can be estimated based on the Laplacian
image, it can significantly improve the accuracy of describing
the noise intensity compared to direct estimation.

As obtaining the noise level of a clean real sonar image is
not feasible, we can use the speckle noise model established
in the previous section. By adding speckle noise to the sim-
ulated image, we can obtain both the clean image and the
noisy image. The variance of the noise can be represented
as the difference between the noisy image and the clean
image at each corresponding pixel, with a variance of σ 2

η , and
the variance of the Laplacian image is represented as σ 2

L .
It was observed that under different variances of the Gaussian
distribution followed by the speckle noise, i.e., under different
noise levels, σ 2

η and σ 2
L exhibit a linear relationship, as shown

in Figure 8.
Therefore, the variance of noise can be expressed as

Equation (9):

σ 2
η = aσ 2

L + b (9)
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FIGURE 8. Linear relationship between the variance of noise and the
variance of Laplacian image.

The modified adaptive local filter can be expressed using
Equation (8) and (9) as Equation (10):

g′(x, y) = g(x, y) −
aσ 2

L + b

σ 2
S

[g(x, y) − zS ] (10)

C. CONTRAST-LIMITED HISTOGRAM EQUALIZATION
In underwater environments, researchers and workers are
particularly concerned with the interpretation and recognition
of sonar images. In tasks like maritime search and rescue,
it is crucial to extract as much potential information of
the drowning person from the image as possible, even if
they are in non-bright areas of the image. Therefore, fea-
ture enhancement is necessary for sonar images to improve
image interpretation and recognition by highlighting impor-
tant information that may have been initially overlooked and
making it more prominent. In essence, feature enhancement
enhances the quality of the image and increases the amount
of information contained in it.

The highest-level image of the LP, which is also the
highest-level image of the GP, has undergone two rounds
of subsampling. At this point, its resolution is only 1/16 of
the original image, and there is almost no high-frequency
information (edges and noise), only containing content infor-
mation at a coarse scale, as shown in Figure 3. To address this
characteristic, a histogram equalization (HE) method is used
to enhance the contrast of this level of the image, achieving
the purpose of feature enhancement.

In sonar images, the background areas, which occupy a
large proportion, are usually dominated by dark pixels, while
underwater targets have strong grayscale variations. There-
fore, when using HE, there may be problems with some areas
losing details or becoming noisy due to excessive contrast
enhancement [50]. To address this issue, contrast-limited
histogram equalization (CLHE) is chosen to enhance low-
resolution images. CLHE sets a threshold for the histogram
distribution to prevent the influence of excessive contrast in
some areas on the image information while ensuring that the

FIGURE 9. Comparison of images before and after CLHE enhancement.
(a) Image before CLHE enhancement; (b) Image after CLHE enhancement.

FIGURE 10. Simulated sonar images. (a) Clean image; (b) Noisy image
with speckle noise with a variance of 0.4.

integration of the probability density is still 1. The distribu-
tion exceeding this threshold is uniformly dispersed on the
probability density distribution to limit the amplification of
the transfer function (cumulative histogram). Thismethod has
a better improvement effect on dark and bright areas. The
images before and after enhancement by CLHE are shown
in Figure 9.

By combining the Laplacian pyramid framework with
CLHE, image features can be enhanced while effectively
preventing the phenomenon of noise and features being
enhanced together. As shown in Figure 9, the quality of the
image after contrast enhancement has been greatly improved
compared to the original image. The information in the boxed
area was originally not obvious due to being in a darker
area of the image, and the specific content was also difficult
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FIGURE 11. Processing results by different methods on simulation sonar image. (a) Noisy image; (b) ST; (c) CSR; (d) IBM3D; (e) ABF; (f) NCC-PDE;
(g) LPMsD; (h) LPMsDE.

to discern clearly. After enhancement, the originally low
contrast was improved, and the structural information in the
dark area became very prominent, while the noise was not
enhanced. This approach ensures that important features are
enhanced, thereby improving the overall image quality and
interpretability for underwater workers and researchers.

IV. EXPERIMENTS AND ANALYSIS
To evaluate the denoising and enhancement capabilities of the
proposed method, we conducted two experiments where the
LPMsDE was compared with other representative state-of-
the-art image processing methods: a simulation study and a
real sonar image experiment. The former was used to com-
pare the denoising performance of different methods using
SSIM and PSNR as metrics. The latter compared the feature
enhancement performance by contrasting CNR, ENL, NIQE,
and BRISQUE.

All experimental outcomes presented in this paper were
obtained on a platform equipped with an Intel Core i5
12400 CPU, NVIDIA RTX 4060 GPU, Win10 64-bit oper-
ating system, Python 3.8 and Matlab 2016b.

A. SIMULATED SONAR IMAGE EXPERIMENT
To generate the simulated sonar image, we created a syn-
thetic image based on some characteristics of FLS images,
including common shapes, and matched the size of real
sonar images used in subsequent experiments. Subsequently,
we subjected the clean image to 9 levels of speckle noise,
with variance ranging from 0.1 to 0.9, following the speckle
noise model proposed in Section II. Figure 10 (a) illustrates
the clean image, while Figure 10 (b) depicts the noisy image
with speckle noise added, with a variance of 0.4.

The proposed method was compared with other denois-
ing algorithms based on non-convex constrained PDE
(NCC-PDE) [51], adaptive bilateral filter (ABF) [52], shear-
let transform (ST) [25], convolutional sparse representa-
tion (CSR) [14], and the improved BM3D (IBM3D) [13].
Figure 11 displays the processing results for the simulated
image with speckle noise at a variance of 0.4. The results
are represented by (a)-(h), corresponding to the unprocessed
noisy image, other denoising methods for comparison, the
proposed LPMsD (denoising only) and the LPMsDE (denois-
ing and enhancement), respectively.
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FIGURE 12. SSIM and PSNR values of denoised simulated images with different noise intensities. (a) SSIM; (b) PSNR.

To compare the denoising performance of different meth-
ods, we employed two objective evaluation metrics: the
Structural Similarity Index (SSIM) and Peak Signal-to-Noise
Ratio (PSNR), both widely used for assessing the effective-
ness of image denoising. SSIM, being a full-reference image
quality evaluation index, aligns better with human visual
perception habits [53]. This method evaluates image quality
by comparing the structural features of the original image and
the noisy image, with a higher SSIM value indicating better
preservation of image structure by the denoising method.
PSNR, initially used to represent the relationship between
the maximum signal value and background noise, later found
application in comparing similarity between two images.
It is expressed on a logarithmic scale, with a higher PSNR
value suggesting stronger similarity between two images.
A common benchmark for PSNR is 30dB, with images hav-
ing PSNR values below 30dB considered significantly habits
[53]. Given that the LPMsDE significantly alters the pixel
values of the image during the enhancement process, SSIM
and PSNR are not applicable to it, and only the LPMsD was
compared. The images with nine different noise intensities
were processed by different methods, and their SSIM and
PSNR values were calculated with respect to the clean image,
as shown in Figure 12.

According to the comparison results of denoised images
in Figure 11 and the different algorithms in terms of SSIM
and PSNR in Figure 12, some conclusions can be drawn.
There is some residual noise in the image processed by the ST
method (Figure 11 (b)), which is dense and has a very small
particle size. This situation is particularly evident at low noise
levels (noise sigma≤ 0.7), but as the noise intensity increases,
the residual noise becomes less. The values of SSIM and
PSNR confirm this situation, that is, the index values at low
noise levels are lower than other methods, but they surpass
other methods at high noise levels. We believe that it is
because high-intensity noise is more easily separated after

undergoing shearlet transform, making the ST method more
suitable for processing high-intensity noise. The CSRmethod
exhibits the opposite performance to the ST method: it has
a significant advantage in dealing with low-intensity noise,
but its objective index values rapidly decrease as the noise
intensity increases. As shown in Figure 11 (c), the image
processed by the CSRmethod has many randomly distributed
local pixel value mutations. Perhaps, as mentioned in [14],
the CSR method is more suitable for processing Gaussian
noise and impulse noise in sonar images. IBM3D exhibits a
very strong denoising performance, as the speckle noise is
almost imperceptible to the naked eye in Figure 11 (d). Espe-
cially in the elliptical area with gradient colors, it achieves
amazing denoising effects. However, more artifacts, such
as blocky or streaky color patches, appear in uniform pixel
value areas (gray background). Nevertheless, thanks to its
powerful denoising performance, IBM3D maintains good
results in objective index evaluations, second only to the pro-
posed method in this paper. The ABF method (Figure 11 (e))
performs best in edge preservation, but the noise is not com-
pletely eliminated while preserving clear edges. In addition
to residual speckle noise, black and white pixels similar to
impulse noise also appear in the image. We speculate that
this is due to the failure to handle individual pixels with
large changes in value during bilateral filtering. The residual
noise not only affects the visual effect of the image but
also ranks the ABF method last in objective index com-
parison. The NCC-PDE method (Figure 11 (f)) shares the
same problem with the ST and ABF methods, as it fails to
completely eliminate speckle, resulting in noticeable residual
noise. However, unlike the latter two methods, the residual
noise after NCC-PDE processing is more evenly distributed
and the pixel value mutations are not as severe. In addition,
the NCC-PDE method performs well in edge preservation,
resulting in a visually softer image. The NCC-PDE method
also ranks in the middle in terms of SSIM and PSNR.
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From a visual perspective, the LPMsD method
(Figure 11 (g)) achieves a compromise between noise sup-
pression and edge preservation. Although it inevitably blurs
some edges, such as the white line and rectangle in the
image, which are not as clear as those in the ABF and
NCC-PDEmethods, its denoising effect is significantly better
than the latter two methods. It is worth noting that in uniform
regions, the LPMsD method exhibits the best noise sup-
pression performance, with neither too much residual noise
nor any artifacts. We speculate that this is the main reason
for its excellent performance in objective index evaluation.
As shown in Figure 12, except for the first two noise levels,
the LPMsD method consistently outperforms the other meth-
ods in terms of SSIM and PSNR. We believe that LPMsD
is more capable of eliminating medium-to-high intensity
noise, which is common in actual FLS images, making it a
powerful tool for FLS image denoising. In addition, it can
be observed in Figure 11 (h) that the LPMsDE method
significantly improves the contrast of the image compared to
the LPMsD, especially in areas with alternating brightness,
such as the rectangles and spots in the image. As a result,
the LPMsDE method significantly enhances image features,
making it easier to interpret FLS images.

B. REAL SONAR IMAGE EXPERIMENT
Real FLS sonar image experiments were used to compare
the performance of different feature enhancement methods.
The real sonar images were provided by Deepak Singh from
‘‘Marine Debris Dataset for Forward-Looking Sonar’’ [54].
The dataset was collected using an ARIS Explorer 3000 FLS,
containing a total of 1868 FLS images. We carefully selected
50 images with an image size of 480 × 320.
We compared our proposed LPMsDE method with the

currently most advanced CLAHE and alpha-rootingmethods.
As a classic histogram equalization method, the CLAHE
algorithm and its modifications limit the histogram of each
sub-block, resulting in a more natural image contrast. Alpha-
rooting is one of the more popular frequency domain
enhancement methods. It uses transformation in the fre-
quency domain throughmodificationmagnitudes and altering
the frequency content of the image [55]. The results of apply-
ing the PLT-CLAHE [56], multi-scale alpha-rooting [57],
generalized alpha-rooting [58], and LPMsDE methods to
enhance real FLS images are shown in Figure 13.
Objective evaluation methods for image quality are typ-

ically divided into three categories: full-reference (FR),
reduced-reference (RR), and no-reference (NR) methods.
When evaluating image quality, FR and RR image quality
metrics require high-quality reference images, either in full
or in part. Unfortunately, real FLS images do not have natural
reference images for comparison. To fully understand the
performance of the compared image enhancement methods,
we selected four NRmetrics: Contrast-to-Noise Ratio (CNR),
Equivalent Number of Looks (ENL), Natural Image Quality
Evaluator (NIQE), and Blind/Referenceless Image Spatial
Quality Evaluator (BRISQUE).

TABLE 1. Non-reference measures for real sonar image.

We applied enhancement methods to the 50 images and
evaluated the results using no-reference metrics, as shown in
Table 1. The results in Table 1 represent the average values
of the scores in 50 FLS images after enhancement.

Figure 13 and Table 1 demonstrate the performance
comparison of different enhancement methods. The
images processed by the two alpha-rooting methods
(Figure 13 (b) and (d)) have similar characteristics, namely,
they both enhance the contrast of the image to some extent.
However, both methods significantly increase speckle noise
while highlighting the target, which affects the visual effect
of the image. It can be seen that the difference between the
two methods is the degree of enhancement of the image. The
multi-scale alpha-rooting method has a slightly lower con-
trast enhancement compared to the generalized alpha-rooting
method and the former is less affected by noise. In terms of
objective evaluation, except for CNR, the scores of the other
indicators for both methods are relatively similar, ranking
third and fourth, respectively. It is worth mentioning that
the generalized alpha-rooting method obtained the highest
CNR value, proving that its image has the highest contrast.
The PLT-CLAHE method (Figure 13 (c)), an improvement
on the classic contrast enhancement algorithm CLAHE, did
not achieve the desired effect in highlighting image fea-
tures. Excessive brightness compensation instead led to a
decrease in contrast in some areas of the image. Never-
theless, the PLT-CLAHE method still showed improvement
in no-reference evaluation metric scores compared to the
original image, albeit ranking lower. We speculate that this
is due to the brightness compensation reducing the impact of
existing speckle noise on the image to some extent, resulting
in a higher score.

The proposed LPMsDE method (Figure 13 (e)) benefits
from the Laplacian pyramid framework, which decomposes
the image into multiple levels and applies multi-scale pro-
cessing to each level. This approach simultaneously enhances
contrast of the main content, suppresses noise, and preserves
detail information. As a result, it meets the requirements
for feature enhancement in FLS image interpretation while
preventing noise from masking valid information in the
image. In addition to CNR, the LPMsDEmethod outperforms
other methods in the remaining three objective indicators,
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FIGURE 13. Processing results by different methods on real sonar images. (a) Original images; (b) Multi-scale alpha-rooting; (c) PLT-CLAHE;
(d) Generalized alpha-rooting; (e) LPMsDE.

demonstrating its superior enhancement effect. The method
of simultaneously denoising and enhancing by first layer-
ing the image, then performing multi-scale analysis and
processing, and finally reconstructing the image is more
effective than combining separate denoising and enhance-
ment methods, whether denoising is performed before or
after enhancement. The former inevitably loses some valid
information during the denoising process, which remains
missing after enhancement, while the latter amplifies noise
and significantly increases the difficulty of denoising.

V. CONCLUSION
This paper introduces a novel multi-scale denoising and
enhancement method, LPMsDE, specifically designed for
forward-looking sonar images. The proposed approach
involves several key steps. Firstly, the image is decomposed
into two high-frequency components and one low-frequency

component using the Laplacian pyramid framework, effec-
tively separating noise, edges, textures, and main content.
Secondly, a modified adaptive local filter, in conjunction with
the Laplacian pyramid framework, is employed to calculate
the noise variance of the image based on the generated Lapla-
cian image. To establish the mapping relationship between
the Laplacian image and the noise variance, the FLS image
multiplicative noise model, adhering to the Gaussian distri-
bution, is utilized. Lastly, the modified adaptive local filter
and the contrast-limited histogram equalization algorithm
are applied to denoise and enhance the high-frequency
and low-frequency components, respectively. comprehensive
experiments demonstrate the superiority of the LPMsDE
method in both denoising and enhancement.

Looking ahead, future research will concentrate on the
following aspects: finding faster and more effective image
processing modules for the Laplacian pyramid framework,
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and exploring the optimal combination of denoising and
enhancement algorithms. By combining the proposedmethod
with deep neural networks and leveraging the concept of
multi-scale analysis, we aim to develop a more advanced
denoising network with superior performance.
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