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Abstract: This study proposes a novel fuzzy programming optimization model for tugboat schedul-
ing, directly considering multiple berthing bases, time windows, and operational uncertainties. The
uncertainties in the required number of tugboats, the earliest start time, the latest start time, the
processing time, and the start and end locations of each task are directly captured in the proposed
fuzzy optimization model. The objective of the presented formulation is to minimize the total cost of
fuel and delays. According to the characteristics of the problem, a Grey Wolf Optimization algorithm
based on random probability encoding and custom genetic operators is proposed. The proposed
algorithm, LINGO, the canonical Grey Wolf Optimization algorithm, and particle swarm optimization
were used to compare and analyze the results of several examples. The results validate the efficiency
of the proposed algorithm against the alternative exact and metaheuristics methods. Moreover,
the findings from the conducted sensitivity analysis show the applicability of the developed fuzzy
programming model for different confidence interval levels.

Keywords: tugboat scheduling; multiple berthing bases; fuzzy programming; genetic operators;
Grey Wolf Algorithm

1. Introduction

In recent years, the rapid growth of port cargo throughput and increasing size of ships
in China have made port auxiliary operations busier and more complex. As the main
force of port auxiliary operations (including ships entering and exiting the port, berthing
and disembarking, cargo loading and unloading between different berths at the port, as
well as mooring buoys and temporary anchoring, etc.), tugboats play a crucial role in port
operations [1]. It is not a viable decision for port operators to purchase an abundant amount
of tugboat fleets, and the problem of maximizing profits for port services based on existing
tugboat fleets to meet the towing needs of inbound and outbound ships is particularly
important. Therefore, determining a reasonable tugboat assignment through scientific
methods has become the key to solving the tugboat assignment problem (TAP).

To adapt to the scale of port construction and the increase in the number of inbound
and outbound ships, many ports have built multiple tugboat berthing bases and imple-
mented regional management of tugboat operations to minimize the idle time of tugboats as
much as possible [2]. Multiple tugboat berthing bases can effectively reduce the ineffective,
idle distance of tugboats compared to a single tugboat berthing base, but it also makes
tugboat scheduling problems more complex.

The tugboat scheduling problem has a high degree of uncertainty [3]. The port side
needs to develop a tugboat scheduling plan based on the summarized order of vessel entry
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and exit during the planning period and the estimated time of entry and exit, taking into
account the real-time position and driving speed of the tugboats used to ensure smooth
docking with their service objects. In addition, it is necessary to calculate the theoretical
time required for each task based on the specific location of the port pool and berth during
the loading and unloading of each ship. Due to the influence of channel conditions and the
natural conditions of ships entering and exiting the port, the service time, start location, end
location, earliest start time, and latest start time of the task are often uncertain. In addition,
according to the requirements of the port, two high-power tugboats need to work together
to complete the tugboat assistance process for a ship, but sometimes three low-power
tugboats can also meet the power supply requirements. This requirement is difficult to
control in tugboat scheduling schemes. Therefore, the number of tugboat requirements
required for each task is also uncertain.

In fact, the optimization problem of tugboat scheduling in ports requires the consider-
ation of many complex factors. If the scale of the problem increases, it will be particularly
difficult to solve, which is a test for ports. Therefore, an efficient calculation method is
necessary. In summary, the main challenges that still exist in the research on the TAP
problem of port auxiliary operations are (1) how to establish a tugboat scheduling mixed
integer linear (MILP) model that can be directly solved using well-established commercial
solvers when there are three or more multi-tugboat docking bases at the port and external
uncertain factors; and (2) how to design advanced optimization algorithms to effectively
solve large-scale tugboat scheduling problems.

Based on the above two challenges, this paper innovatively establishes a fuzzy pro-
gramming optimization model for tugboat scheduling with multiple docking bases in-
spired by classic models such as parallel multi-aircraft scheduling, route planning, and
vehicle routing, along with the consideration of uncertainty. Fuzzy programming theory
is applied to transform the fuzzy model into the equivalent deterministic mixed-integer
linear programming model. This study also designs a Grey Wolf Optimization algorithm
based on random probability encoding and custom genetic operators to solve the resulting
model. The proposed algorithm is comprehensively evaluated against an exact optimiza-
tion method and alternative metaheuristic algorithms. Furthermore, some practical insights
are derived using the proposed methodology as well.

The structure of this article is as follows: Section 2 introduces the relevant research
on tugboat scheduling problems. Section 3 provides a mathematical model of the tugboat
problem under consideration. Section 4 provides a detailed explanation of a new solution
method for the Grey Wolf Optimization algorithm based on random probability coding and
custom genetic operators. Section 5 is a numerical experiment that uses several examples
generated from real data ranges at different scales to test the efficiency of the proposed
algorithm and perform sensitivity analysis on changes in uncertain parameters. Finally,
management insights were proposed. Section 6 presents the conclusions of current research
and future recommendations.

2. Related Work

This study mainly considers the optimization problem of task sequence and tugboat
scheduling for ships entering and leaving ports with multiple berthing bases and external
uncertainties, and considers constraints such as berthing bases and time windows as
well as tugboat horsepower. Based on the ship schedule, basic ship information, tugboat
information, and tugboat docking base information received in advance by the port, the
scheduling of port tugboats and the optimization of the order of tasks required for the entry
and exit of ships are generated. Below is a review and analysis of relevant literature.

Despite its practical importance, the TAP decision problem has not been widely
researched to date. Wang and Meng [4] first used a heuristic algorithm combining a
genetic algorithm and ant colony optimization to study the allocation problem of tugs
at container terminals. Subsequently, Wang et al. [5,6] published two research papers,
continuing to study the TAP decision problem at container terminals and presented the
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first two mathematical models combining various scheduling rules. The difference is that
the former applies an improved trust-based ant colony optimization method to obtain
the scheduling plans, while the latter provides a solution method combining scheduling
rules. However, the above literature only establishes nonlinear scheduling models that are
difficult to solve directly for the TAP problem involving a single or two docking stations and
proposes corresponding heuristic algorithms as solution approaches. Without comparing
with accurate solutions, the efficiency of heuristic algorithms is difficult to define even for
small-size problem instances.

For the optimization model of tug scheduling, Zhen et al. [7] studied the problem of
tug allocation in the seaport at the estuary, first proposed a mixed-integer programming
model to optimize the barge–tug allocation scheme, and also proposed an accurate solution
method based on the branch and bound method to solve the proposed model. Since then,
some scholars have started to study the optimization problem of tugboat scheduling from
the perspective of classic allocation problems. For example, Wu et al. [8] studied the evacu-
ation planning problem of barges that may arise in reclamation projects. From the strategic,
tactical, and operational levels, a team of heterogeneous barges working in offshore land
reclamation areas needs to evacuate to coastal shelters before the storm arrives to make
decisions on tugboat allocation and scheduling, and a customized heuristic method was
proposed. Specifically, in terms of incorporating time slot resource allocation into the allo-
cation of tugboats, Omar et al. [9] considered the berth problem and all required resources
(tugs, pilots, pilot ships, and mooring teams), safety considerations (within and between
vessels), and berth location availability. They proposed a mixed-integer programming
model and precise solution method based on constraint separation technology for port en-
try. The decision on the start and end times of departure and relocation indicates significant
improvements in the management of port resources, especially during congestion periods.
Jia et al. [10] aimed their research at the problem that ships entering and leaving the seaport
need tugboat assistance in berthing or unberthing and turning operations, determined
the time schedule of tugboat service for ships and the time schedule of ship berthing or
unberthing, and generated a test example based on the operation data of a container port
in Shanghai, proving that the iterative algorithm combining Lagrange relaxation and Ben-
ders decomposition proposed is superior to the designed benchmark algorithm in solving
quality. In terms of the canal, Petris et al. [11] took the medium-sized port of Venice in Italy
as an example, and four heuristic algorithms were proposed, proving that they provide
high-quality solutions for most instances in a reasonable computational time. Liu et al. [12]
proposed a two-stage stochastic mixed-integer linear programming model for harbor berth
and channel planning considering the limited availability of berths and channels, aiming
to minimize the expected total weighted completion time of ships when the arrival time
and processing duration of ships are uncertain. The first stage determines the allocation of
berths for ships under multi-scenario conditions. In the second stage, channel planning,
including channel selection, tugboat allocation, and vessel sequencing, is determined af-
ter achieving uncertainty and a stage decomposition method and decomposition-based
heuristic algorithm for solving are proposed. Kasm et al. [1] established a mixed-integer
programming model to simulate ship scheduling under channel constraints and different
tugboat allocation strategies in order to achieve better resource utilization. Jiang et al. [13]
established a mathematical optimization model from the perspective of time allocation, con-
sidering constraints such as restricted channels and complex navigation rules for scheduling
resources (including tugboats), and proposed an elite selection genetic algorithm encoded
with ship service sequences to solve the optimization model. However, when modeling
from the perspective of allocation problems, it is often necessary to linearize some formulas
to increase variables and increase the complexity of the model.

Another group of scholars have studied tugboat scheduling optimization from the
perspective of flow shop, such as Kang et al. [3] considering the uncertainty of container
ship arrival and tugboat process time in large container ports. The uncertain ship arrival
and tugboat operation process time is represented as a set of bounded discrete scenarios,
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and uncertainty is addressed using integrating active and reactive scheduling strategies. A
mixed-integer linear programming model of the tugboat scheduling problem is established,
and a self-organizing algorithm is designed to generate tugboat chains to solve large-scale
problems. Although this article considers the uncertainty of ship arrival and tugboat
operation processes, this method will increase the difficulty of solving the model. In terms
of natural factors, Zhong et al. [14] studied the green tugboat scheduling problem for tidal
ports with multiple port areas in long waterways. Considering the factor of the tidal time
window, the schedule of tugboat service ships was determined based on task sequence
numbering, solving the trade-off between time and fuel consumption goals. The tidal time
window is only a simple upper threshold value. However, modeling from the perspective
of the flow workshop makes it difficult to solve the problem of ships not entering the port
in the predetermined order.

The rest of the scholars studied the optimization of tug scheduling from the perspective
of classic vehicle routing problems. For example, Wei et al. [2] formed a point line network
of berths, tugboat bases, and artificial waypoints in the port waters, established mixed-
integer linear programming models for tugboat-assisted container ship berthing, shifting,
and unberthing, and developed six effective inequality families, which were combined into
the standard branch and bound algorithm. However, this article simply considers that
the tugboat base is a fixed starting and ending point, without considering that tugboats
can dock at any tugboat base. In terms of river and sea ports, Zhu et al. [15] designed a
variable neighborhood search algorithm to address the social responsibility of shipping
companies in reducing greenhouse gas emissions by arranging tugs and barges reasonably
and determined the transportation route for tug–barge transportation. The calculation
results show that compared with the scheduling rules, the model reduces carbon emissions
by approximately 46.93%. Hao et al. [16] considered the joint scheduling of barges and tugs
at river sea transfer ports with tidal influence channels, established an integer programming
model based on a state spatiotemporal network to minimize the time required for bulk
cargo transfer, and designed a customized variable neighborhood search algorithm. Wang
et al. [17] studied the tug scheduling problem considering multi-waypoint and multi-service
modes, established a mixed-integer linear programming model, which can make better use
of limited tugs, and developed an efficient adaptive large neighborhood search algorithm.

Although many researchers have invested in tugboat scheduling optimization research,
there are still the following problems:

(1) Most scholars model tugboat scheduling optimization problems from the perspectives
of allocation and flow shop. Models established from these two perspectives can only
be scheduled according to the predetermined order of ships and cannot be selected
and scheduled from chaotic ship tasks. However, modeling from the perspective of
vehicle routing can successfully solve this problem.

(2) The existing literature rarely considers the mooring base of tugboats, while the lit-
erature that considers tugboat bases simply considers that tugboat bases are a fixed
starting and ending point, without considering that tugboats can dock at any tug-
boat base.

(3) A small amount of the literature considers the tugboat scheduling problem in uncer-
tain scenarios, as well as the auxiliary service time, start location, end location, earliest
start time, latest start time, and required tugboat demand of ships.

(4) Existing literature has proposed multiple heuristic algorithms to solve the optimiza-
tion problem of tugboat scheduling, but there is no calculation method for tugboat
scheduling problems with multiple berthing bases and uncertain situations.

Therefore, this article will attempt to design relevant optimization models and algo-
rithms to solve the above four problems.



J. Mar. Sci. Eng. 2023, 11, 2180 5 of 19

3. Problem Description and Uncertainty Modeling
3.1. Problem Description

The present research relies on the following definitions.

Definition 1. Task—Before the tugboat starts operations, the port arranges the tugboat operation
plan for the day based on the customer requests and the operational requirements of the ships.
Therefore, the service content of a single vessel operation, the required number and power of tugs, the
earliest start time, the latest start time, and the start and end locations can all be known in advance.
This article defines these five aspects of information and relates them to tasks.

Definition 2. Tugboat Operation—After completing a particular task, the tugboat travels to a
certain base to stop and wait for the next task.

The TAP problem with multiple berthing bases studied in this article is a scheduling
and allocation problem between multiple berthing bases, multiple tugs, and multiple tasks
in port auxiliary operations. Tugboats can dock at any docking base, and they must depart
from a certain base and complete a task before returning to a certain base to wait for
subsequent tasks (not necessarily the following task). Therefore, the TAP problem in this
article can be seen as a tugboat scheduling network optimization problem where tugboats
travel back and forth between the mooring bases and the tasks. Figure 1 shows the specific
operational example of tugboat scheduling. Assuming there are 2 tugboats, 5 tasks, and
3 bases, tasks 1 and 2 require 2 tugboats to operate simultaneously, while other tasks only
require 1 tugboat. Based on the considered example, Tugboat 1 is expected to wait for the
task from initial base 2, receive task instructions to sail and execute task 3, then return to
base 1. Similarly, Tugboat 2 is expected to sail and execute task 1, return to base 3, sail and
execute task 4, return to base 1, cooperate with Tugboat 1 to execute task 2, return to base 2,
and finally return to the maintenance point.
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Figure 1. Tugboat scheduling operation situation.

The billing method for tugboat fees is generally based on the number of tugboat
operations. Once the tasks to be completed during a specific day are determined, the total
amount of fees is also determined. Therefore, the quality of the scheduling plan mainly
depends on the cost, and the cost is mainly related to the fuel cost. At the same time, the
quality of tugboat scheduling plans is also related to the timeliness of services. Each task
needs to be completed in a timely manner, that is, the task needs to be completed promptly
within the specified start time range. Based on this operational feature, this article adds task
delay costs. Therefore, this article aims to minimize the total cost estimated as a summation
of the fuel cost and task delay costs.

During actual port operations, external uncertainties may affect the service time, start
location, end location, earliest start time, latest start time, and tugboat demand of the
task. Moreover, “longer/shorter service time” can be viewed as a vague concept [12].
Therefore, this article assumes that some of the model parameters have uncertainty, and
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the changes in the parameters are represented by triangular fuzzy numbers [18–20]. Under
the above conditions, this article aims to minimize the total sum of fuel and task delay
costs for tugboat operations in uncertain situations and studies the scheduling problem of
tugboat execution tasks. Using fuzzy programming methods, a tugboat scheduling fuzzy
programming model is established to study the problem.

3.2. Model Establishment
3.2.1. Model Assumptions and Symbols

This article relies on the following assumptions: (1) The scheduling plan period is one
day; (2) The tugboat docks at the base where all tasks of the previous day ended before the
start of all tasks; (3) The difference between external and internal berths of the base is not
considered; (4) The standby time of the tugboat is short, and the time it takes to dock and
leave the base berth is negligible; (5) Different tugboats have their fixed speeds (optimal
economic speeds); and (6) There is no limit to the number of tugboats that can be docked at
each base.

The following symbols to be further used in this study are defined:

(1) Set: C is set of tasks, i, j ∈ C = {1, 2, . . . NN}; N is the union set of 0 tasks and other
tasks, i, j ∈ N = {0, 1, 2, . . . , NN}, 0 represents the task at time 0 before the start of the
day’s task; V is the set of tugboats, k ∈ V = {1, 2, . . . NK}; and L is the set of bases,
l ∈ L = {1, 2, . . . , NL}.

(2) Parameter: w̃i is the fuzzy service time for task i, i ∈ N; c̃1li is the fuzzy distance from
the base l to the starting point of the task i operation, i ∈ N; c̃2li is the fuzzy distance
from the base l to the end of assignment location of the task i, i ∈ N; Bkl is the position
of the tugboat k at the base l at the end of the previous day’s mission; ẽi is the earliest
fuzzy start time for the task i, i ∈ N; lãi is the latest fuzzy start time of the task i, i ∈ N;
M is a sufficiently large value; D̃i is the number of fuzzy tugboat requirements for the
task i, i ∈ C; vc is the speed of the tugboat; Pk is the power of the tugboat k; mi is the
required tugboat power for the task i; γ is the unit time delay cost; and Co is the unit
cost per unit fuel consumed.

(3) Decision variables: xklij is 0–1 variable. If the tugboat k completes the task i and
returns to the base l to complete the task j, it is 1, otherwise it is 0, i, j ∈ N. si is the
start time of the task i processing.

3.2.2. Objective Function and Constraints

According to the problem description and adopted notations, the objective function of
the fuzzy programming model (M1) established in this paper includes the total fuel cost of
returning to the base from the time of completing the task, the total fuel cost of traveling
from the base to the start time of the task, and the total delay cost of the task:

min ∑
k∈K

∑
l∈L

∑
i∈C

∑
j∈C

Co× c̃2li × xklij + ∑
k∈K

∑
l∈L

∑
i∈C

∑
j∈C

Co× c̃1l j × xklij + ∑
i∈C

γ× (si − ẽi) (1)

According to the model assumptions, the decision variables need to meet the following
constraints:

∑
k∈V

∑
l∈L

∑
j∈N

xklij ≥ D̃i, ∀i ∈ C (2)

∑
j∈N

xkl0j ≤ Bkl , ∀k ∈ V, l ∈ L (3)

∑
l∈L

∑
i∈N

xklih −∑
l∈L

∑
j∈N

xklhj = 0, ∀h ∈ C, k ∈ V (4)

si + w̃i + xklij c̃2li/vc + xklij c̃1l j/vc −M
(

1− xklij

)
≤ sj, ∀i, j ∈ C, k ∈ V, l ∈ L (5)
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ẽi ≤ si ≤ lãi, ∀i ∈ N (6)

Pk ≥ mixklij, ∀i, j ∈ N, k ∈ V, l ∈ L (7)

xklij ∈ {0, 1}, ∀i, j ∈ N, k ∈ V, l ∈ L (8)

si ≥ 0, ∀i ∈ N (9)

where Equation (2) indicates that the number of deployed tugboats that should be sufficient
to complete the task. Equation (3) represents the position of the initial mooring base of
the tugboat on a given day. Equation (4) indicates that a given task should be completed
before leaving for another task. Equation (5) estimates the task completion time for each
tugboat considering the start time of the previous task, the uncertain processing time of the
previous task, and the uncertain sailing time between the tugboat bases and the assigned
tasks. Equation (6) indicates that the start time of the task cannot exceed the specified
time range. Equation (7) indicates that the power of the tugboat cannot be lower than the
required power for the task. Equation (8) indicates that the main decision variable of the
optimization model is a binary variable. Equation (9) indicates that the start time of each
task cannot be less than zero.

3.3. Defuzzified Model Formulation

By referring to the chaos theory in physics and mathematics to deal with nonlinear
dynamic systems, Zadeh [18] put forward the fuzzy theory, and then the theory was
widely used in operations research, management science, artificial intelligence systems,
control theory, statistics, and other disciplines. For the fuzzy mixed-integer programming
model M1, this paper applies the method proposed by Pishvaee and Torabi [20] in com-
bination with the theory of Parra et al. [21] and Jiménez et al. [19] to transform the fuzzy
model into an equivalent deterministic linear model, which allows decision-makers to
display their preference for decision-making in a fuzzy environment, thereby finding a
satisfactory solution.

This method is based on the definition of the ‘expected interval’ of fuzzy numbers [22,23].
Assuming d̃ is a triangular fuzzy number (dp, dm, do), then the membership function d̃ can
be defined as follows:

µd̃(x) =


fd(x) = x−dp

dm−dp , dp ≤ x ≤ dm

1, x = dm

gd(x) = do−x
do−dm , dm ≤ x ≤ do

0, dp ≥ x, x ≥ do

In addition, using the α value to represent the uncertainty of fuzzy parameters and
employing support Aα for representing triangular fuzzy numbers, the greater the support,
the higher the uncertainty. The higher the value of α, the higher the confidence level of the
fuzzy parameter.

The expected interval is defined by Jiménez et al. [19] as follows:

EI(d̃) = [Ed
1 , Ed

2 ] =

[∫ 1

0
f−1
d (x)dx,

∫ 1

0
g−1

d (x)dx
]
=

[
1
2
(dp + dm),

1
2
(dm + do)

]
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Meanwhile, considering ã and b̃ as fuzzy numbers, according to the sorting method
proposed by Jiménez et al. [19], the degree to which ã is greater than b̃ is defined as follows:

µM(ã, b̃) =


0, Ea

2 − Eb
1 < 0

Ea
2−Eb

1
Ea

2−Eb
1−(Ea

1−Eb
2)

, 0 ∈ [Ea
1 − Eb

2, Ea
2 − Eb

1]

1, Ea
1 − Eb

2 < 0

If µM(ã, b̃) ≥ α, then the degree to which ã is greater than or equal to b̃ is α. Further-
more, according to Parra et al. [21], if ã and b̃ are two independent fuzzy numbers, then
both satisfy the following equation:

ã ≥ α
2

b̃ (10)

ã ≤ α
2

b̃ (11)

At this point, Equations (10) and (11) can be rewritten as:

α

2
≤ µM(ã, b̃) ≤ 1− α

2
(12)

Below is a fuzzy mathematical model, where the parameters are represented by
triangular fuzzy numbers:

min z = c̃tx
s.t. ãix ≤ b̃i, i = 1, . . . , l

ãix = b̃i, i = l + 1, . . . , m
x ≥ 0

If mini=1,...,m

{
µM(ãix, b̃i)

}
= α, the decision vector x ∈ Rn is feasible to a certain

extent α. By using Equations (10)–(12), ãix ≤ b̃i and ãix = b̃i can be rewritten as:

Eaix
2 − Ebi

1

Eaix
2 − Eaix

1 + Ebi
2 − Ebi

1

≤ α, i = 1, . . . , l and
α

2
≤

Eaix
2 − Ebi

1

Eaix
2 − Eaix

1 + Ebi
2 − Ebi

1

≤ 1− α

2
, i = l + 1, . . . , m

Using the definition of the expected interval, an equivalent deterministic model can
be written as follows:

min z = ctp+ctm+cto

3 x
s.t. [(1− α)Eai

2 + αEai
1 ]x ≤ αEbi

2 + (1− α)Ebi
1 , i = 1, . . . , l[(

1− α
2
)
Eai

2 + α
2 Eai

1
]
x ≥ α

2 Ebi
2 +

(
1− α

2
)
Ebi

1 , i = l + 1, . . . , m[
α
2 Eai

2 +
(
1− α

2
)
Eai

1
]
x ≤

(
1− α

2
)
Ebi

2 + α
2 Ebi

1 , i = l + 1, . . . , m
x ≥ 0

Based on all of the preliminary information presented above, the equivalent determin-
istic mixed-integer linear model M2 can be used to replace the original fuzzy programming
model M1 and can be formulated as follows:

Objective function:

min ∑
k∈K

∑
l∈L

∑
i∈C

∑
j∈C

Co c2p
li+c2m

li +c2o
li

3 xklij + ∑
k∈K

∑
l∈L

∑
i∈C

∑
j∈C

Co
c1p

lj+c1m
lj +c1o

lj
3 xklij

+ ∑
i∈C

γ

(
si −

ep
i +em

i +eo
i

3

) (13)
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Constraints: Equations (3) to (4), Equations (7) to (9)

∑
k∈V

∑
l∈L

∑
j∈N

xklij ≥ (1− α)
Dm

i + Do
i

2
+ α

Dp
i + Dm

i
2

, ∀i ∈ C (14)

si + α
wm

i +wo
i

2 + (1− α)
wp

i +wm
i

2 +

[
(1− α)

c2m
li +c2o

li
2 + α

c2p
li+c2m

li
2

]
xklij
vc +[

(1− α)
c1m

lj +c1o
lj

2 + α
c1p

lj+c1m
lj

2

]
xklij
vc −M

(
1− xklij

)
≤ sj, ∀i, j ∈ N, k ∈ V, l ∈ L

(15)

(1− α)
em

i + eo
i

2
+ α

ep
i + em

i
2

≤ si ≤ α
lam

i + lao
i

2
+ (1− α)

lap
i + lam

i
2

, ∀i ∈ N (16)

4. Solution Method

The model M2 built in the previous section is a mixed-integer linear programming
model, which can be solved directly with well-known commercial solvers (such as CPLEX,
LINGO, and GUROBI). However, as the scale of the problem increases, the efficiency of
existing exact optimization solvers becomes very low. In particular, these solvers may
take a prohibitively large amount of time to solve realistically sized problem instances.
In this case, heuristic and metaheuristic algorithms, such as genetic algorithms, nested
segmentation algorithms, and simulated annealing algorithms, can be used to improve the
solving efficiency and obtain good quality solutions in a short period of time.

The Grey Wolf Optimizer (GWO) is a swarm intelligence optimization algorithm
proposed by Mirjalili et al. [24], which is a search method simulating grey wolves’ prey.
It has a strong search ability, few control parameters, and is easy to implement. This
metaheuristic algorithm has been successfully applied in parameter optimization [25],
image classification [26,27], path identification [28], scheduling [29–32], and other domains.
Therefore, the tugboat scheduling problem studied in this paper is solved using the GWO
algorithm, and an encoding method based on random probability is used to represent
individuals in the groups of wolves.

However, similar to other swarm intelligence optimization algorithms, GWO is also
prone to premature convergence at local optima. The main reason is that the wolf groups
in the GWO algorithm lack communication among individuals. Therefore, this paper
uses genetic operators, such as the crossover operator and the mutation operator, which
are commonly deployed in genetic algorithms for the exploration and exploitation of
search space domains [33,34]. The implementation of crossover and mutation operators
within the GWO framework is expected to increase the exchange of information between
individuals, so as to expand the search potential of the wolf groups and improve the
search ability of GWO. Thus, this article proposes a Grey Wolf Optimization algorithm
based on random probability coding and custom genetic operators (pgGWO) to solve the
optimization model M2. The main algorithmic steps are shown in Figure 2 and further
discussed in the following sections of the manuscript.
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4.1. Grey Wolf Optimization Algorithm

The GWO algorithm is an intelligent swarm optimization algorithm inspired by the
hunting behavior of wolf groups in nature. It is an optimization algorithm constructed by
categorizing the hunting behavior of wolf groups into three types of behavior: (1) tracking,
(2) hunting, and (3) attacking. The algorithm abstracts each wolf as a solution to the problem.
The solution with the best fitness is called wolf α, the solution with the second best fitness is
wolf β, and the solution with the third best fitness is wolf δ. The other solutions are referred
to as wolves ω. Under the guidance of wolf α, wolf β, and wolf δ, each wolf ω completes
tracking, hunting, and attacking steps, constantly approaching the prey, and ultimately
catching it. For the N-dimensional combinatorial optimization problem, each wolf is an
N-dimensional vector, which can be expressed as Xi(xi1, xi2, . . . , xiN). Therefore, the wolf
hunting behavior can be defined using the following mathematical relationship:

X(t + 1) = Xp(t) + A×
∣∣C× Xp(t)− X(t)

∣∣ (17)

where A = 2a× r1 − a, C = 2× r2, a = 2− 2× t/Num, X is a gray wolf individual, Xp is
the location of the prey, A and C are coefficient vectors, t is the current iteration number,
Num is the maximum number of iterations, r1 and r2 are random numbers between [0, 1],
and a is the distance control parameter.

The wolf attacking behavior can be defined using the following mathematical relationship:

X(t + 1) = [X1(t) + X2(t) + X3(t)]/3 (18)

where X1 = Xα + A1 × |C1 × Xα − X|, X2 = Xβ + A2 ×
∣∣C2 × Xβ − X

∣∣, X3 = Xδ + A3 ×
|C3 × Xδ − X|, parameters A1, A2, and A3 are calculated according to formula A = 2a×
r1 − a and parameters C1, C2, and C3 are calculated according to formula C = 2× r2.

4.2. Individual Encoding and Decoding Processes

This algorithm adopts an encoding method based on random probability. In this
paper, if there are V tugboats, L bases, and C tasks, a row of V * L * (C − 1) + V random
numbers with different orders and sizes between [0, 1] is generated. Then, the generated
random numbers are distributed in order from top to bottom and from left to right. Taking
3 tugboats, 3 bases, and 5 tasks as an example, the first step is to sort the tasks according
to their earliest start time, and select 3 different probability values for each tugboat in
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each task. In the second step, 39 ordered probability values are randomly generated with
different sizes (as shown in Table 1), and the 39 ordered probability values should be placed
in order from left to right and from top to bottom. The results are shown in Table 2. Among
them, the order of tasks in Table 2 is 5, 1, 3, 2, 4, with parentheses indicating the required
number of tugboats. For example, in the first row of the table, Task 5(2) indicates that Task
5 is executed first and requires two tugboats.

Table 1. Encoding based on [0, 1] random numbers.

1 2 3 4 5 6 7 8 . . . 33 34 35 36 37 38 39

0.91 0.75 0.89 0.42 0.78 0.63 0.95 0.74 0.43 0.67 0.51 0.17 0.65 0.48 0.18

Table 2. A feasible scheduling plan.

Task 5 (2) Task 1 (1) Task 3 (2) Task 2 (2) Task 4 (1)

Tug Initial
Base Base Task Base Task Base Task Base Task Base Task Base

1 (2) (2) 0.91
(5)

0.42,
0.78,
0.63

0.93
0.22,
0.59,
0.64

0.79
0.74,
0.56,

0.58 (1)

0.68
(2)

0.43,
0.73,
0.53

0.56
0.37,
0.69,

0.43 (2)

2 (1) 0.75
0.95,
0.74,

0.59 (1)

0.86
(1)

0.77,
0.23,

0.29 (1)

0.87
(3)

0.36,
0.82,
0.76
(2)

0.71
(2)

0.07,
0.39,
0.08

0.84

0.67,
0.51,
0.17
(1)

3 (1) (1) 0.89
(5)

0.19,
0.38,
0.23

0.65
0.65,
0.41,

0.09 (1)

0.97
(3)

0.49,
0.39,
0.94

0.83
0.55,
0.87,

0.32 (2)

0.78
(4)

0.65,
0.48,
0.18
(1)

The decoding process can be performed as follows: Under the conditions of meeting
the required power for the task and whether the required starting point of the task can
be reached on time (i.e., between the start and end times of the task), priority is given to
selecting the tugboat and the base with the highest probability value. As shown in Table 2
(The bold data indicates being selected, the values in parentheses indicate the selection of a
certain base or task), it is necessary to check and determine whether the required power
for Task 5 and the required starting point for Task 5 can be reached on time. Task 5 will
be served by Tugboat 1 and Tugboat 3. In particular, Tugboat 1 departs from initial Base 2,
and Tugboat 3 departs from initial Base 1. Then, Task 1 was assigned to Tugboat 2 while
checking and determining whether the required power for Task 1 was met and whether
the required starting point for Task 1 could be reached on time. At the same time, Tugboat
2 departed from the initial Base 1. It should be noted that although Tugboat 1 has the
highest probability value (0.93), Tugboat 1 is currently executing Task 5 and cannot sail at
the same time to execute Task 1. Therefore, Task 1 was assigned to Tugboat 2, which has
the second-highest probability value. The same procedure can be repeated for all the tasks,
and the operational route of tugboats will be Tugboat 1: 2-5-1-2-2, Tugboat 2: 1-1-1-3-2-2-1,
and Tugboat 3: 1-5-1-3-2-4-1.

4.3. Fitness and Selection Operation

The fitness of each solution in the proposed pgGWO algorithm was estimated as the
reciprocal of the objective function value (i.e., Equation (13)), i.e., fitness = (1/individual
objective function value). The selection operation was adopted based on the well-known
roulette wheel selection method. Assuming the population size is size, due to the crossover
operation of the wolf groups, the number of wolf groups becomes twice the original number,
which is 2*size. Thus, during the selection operation, the roulette wheel needs to rotate
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2*size times. For the two individuals selected by rotating the roulette wheel twice, choose
the individual with the best fitness value according to their estimated fitness, and repeat
the same operation process to keep the number of wolves at size.

4.4. Crossover and Mutation Operations

As indicated earlier, unlike the canonical GWO algorithm, the developed pgGWO
algorithm directly deploys crossover and mutation operators to enhance its explorative
and exploitative capabilities.

(1) The crossover operation is based on a single-point crossover method:
Step 1: Randomly divide the population individuals into pairwise groups.
Step 2: Randomly select an integer r within the range [1, V * L * (C + 1) + V * C].
Step 3: The probability values from r to V * L * (C + 1) + V * C are exchanged between

the two individuals to obtain the two new individuals, while retaining the original two
individuals.

(2) Using the method of variation with a 30% probability for each individual, the
method of mutation operation is conducted as follows:

Step 1: Randomly select an integer p between [1, V * L * (C + 1) + V * C].
Step 2: Replace the p-th value in the individual with a new random number within

the range [0, 1].

5. Numerical Experiments

To evaluate the performance of the pgGWO algorithm in the port tug scheduling
problem, the pgGWO algorithm is compared with the particle swarm optimization (PSO)
algorithm, because the structure of the PSO algorithm is similar to the pgGWO algorithm
proposed in this paper. At the same time, the pgGWO algorithm is also compared with
the canonical GWO algorithm without genetic operators. The pgGWO, PSO, and GWO
use the encoding method proposed in this study. In addition, the M2 optimization model
is also encoded and run on LINGO12, and the pgGWO algorithm is compared with the
results obtained using LINGO12. The pgGWO, PSO, and GWO were all coded using the
software MATLAB R2015b. The execution environment of software MATLAB R2015b and
LINGO12 includes an Intel (R) Core (TM) i7 2.70 GHz processor, 4 GB of memory, and a
Windows 10 (64 bit) laptop operating system. By referring to the relevant data of Zhong
et al. [14], this study randomly generated 12 problem instances of different scales based
on the data presented in Tables 3 and 4. The confidence level was initially set to one for
the uncertain parameters, and the algorithms were launched 20 times for each problem
instance. The results obtained using all the considered solution approaches are reported in
Table 5, where bold numbers represent the optimal solution, and those marked with “*”
represent feasible solutions. Note that the number of iterations and the population size
were increased for large-sized problem instances to facilitate the search capabilities of the
candidate algorithms. All the algorithmic parameters were set based on the preliminary
algorithmic runs for the developed problem instances.

As shown in Table 5, for Examples 1–3, although the running time of pgGWO is longer
than that of LINGO, the objective function value obtained using pgGWO is the same as
that of LINGO. This indicates that pgGWO is suitable for smaller scale problems, but its
efficiency is significantly lower than that of LINGO. For Example 4, the objective function
value obtained using pgGWO is larger than that of LINGO, and the running time used by
pgGWO is longer than that of LINGO. However, for Examples 5–8, the objective function
value obtained using pgGWO is still larger than that of LINGO, but the running time used
by pgGWO is significantly shorter than that of LINGO. This can indicate that for slightly
larger problems, the accuracy of pgGWO is reduced, but its efficiency is improved. For
Example 9, the objective function value obtained using pgGWO is smaller than LINGO and
its running time is shorter than LINGO. Meanwhile, for Examples 10–12, LINGO cannot
provide a feasible solution even when the system memory is insufficient, while pgGWO
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can provide a better solution within an acceptable time range. The above analysis can
indicate that the pgGWO algorithm has a certain efficiency.

Table 3. Scales of problem instances (unit: units).

Example Tasks Tugs Bases

1 5 3 3
2 15 9 9
3 25 15 15
4 35 21 21
5 45 27 27
6 60 36 36
7 70 42 42
8 80 48 48
9 90 54 54
10 100 60 60
11 110 66 66
12 120 72 72

Table 4. Ranges of parameters used in the computational experiments.

Parameter Range Parameter Range

wp
i Uniform (30, 50) wm

i Uniform (50, 70)
wo

i Uniform (70, 90) c1p
li Uniform (9, 16)

c1m
li Uniform (10, 17) c1o

li Uniform (11, 20)
c2p

li Uniform (9, 16) c2m
li Uniform (10, 17)

c2o
li Uniform (11, 20) ep

i Uniform (0, 480)
em

i Uniform (0, 480) eo
i Uniform (0, 480)

lap
i Uniform (0, 480) lam

i Uniform (0, 480)
lao

i Uniform (0, 480) Dp
i Uniform (1, Total number of tugboats)

Dm
i

Uniform (1, Total
number of tugboats) Do

i Uniform (1, Total number of tugboats)

vc Uniform (1, 8) Pk Uniform (2600, 4600)
mi Uniform (2600, 4600) γ Uniform (100, 150)
Co Uniform (30, 40)

In Table 5, as the scale of the examples increases, the solving time of LINGO increases
exponentially, while the solving time of pgGWO increases similarly linearly with little
increase. At the same time, for Examples 1–8, the results obtained using pgGWO are not
significantly different from LINGO. This indicates that the pgGWO algorithm can obtain
an optimal solution within a reasonable time range, indicating that the trGA algorithm has
better efficiency.

In Table 5, compared with PSO and GWO, for Examples 1–12, although the running
time of pgGWO is longer than that of PSO and GWO, which is caused by the need for
increased information exchange between individuals (crossover and variation), the target
value and average value obtained using pgGWO are smaller than those of PSO and GWO,
and the difference in time used is not significant, indicating that pgGWO is more efficient
than PSO and GWO. In addition, compared with PSO, for Examples 1–12, the objective
function obtained using GWO is smaller and takes less time than PSO, indicating that GWO
has more advantages in algorithm structure compared to PSO.

In order to compare the convergence speed and solution accuracy of pgGWO with PSO
and GWO, a larger scale Example 7 was selected for solution, and Figure 3 was obtained. In
Figure 3, with the same number of iterations, population size, and other parameters, GWO
is more likely to jump to the local optimal solution in local search than PSO, indicating
the superiority of GWO’s own algorithm design. After adding genetic operators, pgGWO
shows superiority over pure GWO in global and local searches for optimal results and
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optimization accuracy, because genetic operators can enhance communication between
individuals in the population.

Table 5. Recorded objective function and CPU time values.

LINGO pgGWO PSO GWO

Example
(Population

Size,
Number of
Iterations)

Objective
Value

CPU
Time

(seconds)
Objective

Value
Average

Objective
value

CPU
Time

(seconds)
Objective

Value
Average

Objective
Value

CPU
Time

(seconds)
Objective

Value
Average

Objective
Value

CPU
Time

(seconds)

1 (50, 100) 12,180 1.83 12,180 12,833.38 39.78 12,180 13,021.29 39.26 12,180 12,945.87 38.67

2 (50, 100) 36,536 13.67 36,536 37,142.62 80.65 36,628 37,347.42 79.34 36,597 37,253.73 78.69

3 (50, 150) 60,873 99.82 60,873 61,828.26 170.24 61,051 62,146.79 168.75 60,912 61,917.59 167.53

4 (100, 150) 85,197 192.37 85,267 86,138.36 267.26 85,637 86,527.45 249.95 85,468 86,227.79 238.35

5 (100, 200) 109,581 385.68 109,976 110,217.23 350.03 110,923 112,571.62 332.38 110,157 111,256.71 323.17

6 (100, 300) 146,206 983.57 146,923 147,510.57 500.43 148,165 149,267.25 483.49 147,681 148,049.36 462.34

7 (200, 300) 170,612 2375.87 171,287 172,537.27 585.71 173,846 174,207.63 539.55 172,513 173,451.08 539.55

8 (200, 350) 194,753 4219.53 195,632 196,135.52 686.62 197,675 198,852.26 654.13 196,247 197,247.63 635.83

9 (200, 400) 219,265 * >9867.82 219,213 220,246.51 778.53 223,549 224,527.04 752.56 221,564 222,276.76 717.48

10 (300, 350) -- -- 243,529 243,067.56 896.37 245,105 246,023.75 817.14 244,276 245,207.36 805.25

11 (300, 400) -- -- 267,953 268,210.26 965.37 269,358 271,652.31 928.26 268,247 269,514.28 896.24

12 (300, 450) -- -- 292,337 293,967.37 1230.65 294,476 295,476.42 1195.67 293,275 294,571.23 1136.95
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In order to analyze the impact of fuzzy parameters on logistics networks, this study
uses Problem Instance 1 to study the network model. The main data used throughout
the analysis is shown in Tables 6 and 7. In Table 7, except for required power, other data
represents the triangular fuzzy number of each task. The confidence level was changed
between 0% and 100%, and the pgGWO algorithm was used to solve the developed
optimization model for each confidence level scenario. The obtained results of the closed-
loop supply chain network model under each confidence level are shown in Tables 8–11
and Figure 4.

Table 6. Tugboat-related data.

Tugboat 1 2 3

Fuel cost 30 30 30
Power 2600 4000 3600
Speed 8 8 8
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Table 7. Task-related data.

Task 1 2 3 4 5

Number of tugs required (0.8, 0.9, 1) (1.8, 1.9, 2) (1.8, 1.9, 2) (0.8, 0.9, 1) (1.8, 1.9, 2)
Operation time (50, 69, 79) (49, 68, 78) (49, 67, 79) (50, 68, 68) (49, 65, 81)
Required power 3600 2600 2600 3600 2600

Earliest start time (minutes) (190, 195, 200) (90, 95, 100) (80, 85, 90) (290, 295, 300) (280, 285, 290)
Latest start time (minutes) (240, 245, 250) (90, 145, 150) (120, 125, 130) (3300, 340, 350) (3300, 340, 350)

Table 8. Objective function values recorded for the confidence level scenarios considered.

Confidence Level 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Objective value 11,780 11,820 11,860 11,900 11,940 11,980 12,020 12,060 12,100 12,140 12,180

Table 9. Scheduling plan with a confidence level of 0%.

Task 3 Task 2 Task 1 Task 5 Task 4

Tugboat Base Task Base Task Base Task Base Task Base Task Base

1 3 3 1 2 - - 2 5 - - 1

2 1 3 1 2 - - - - 2 4 1

3 - - - - 2 1 2 5 - - 2

Table 10. Scheduling plan with a confidence level of 50%.

Task 3 Task 2 Task 1 Task 5 Task 4

Tugboat Base Task Base Task Base Task Base Task Base Task Base

1 3 3 1 2 - - 2 5 - - 1

2 - - - - 1 1 2 5 - - 2

3 1 3 1 2 - - - - 2 4 1

Table 11. Scheduling plan with a confidence level of 100%.

Task 3 Task 2 Task 1 Task 5 Task 4

Tugboat Base Task Base Task Base Task Base Task Base Task Base

1 - - 3 2 - - - - 2 4 3

2 1 3 - - 2 1 2 5 - - 3

3 1 3 1 2 - - 2 5 - - 1

According to Tables 8–11, it can be seen that overall, as the confidence level increases,
the operation routes of each tugboat in the scheduling plan change significantly, and the
objective function value increases. This is because the increase in confidence level leads
to an increase in reliable task completion time, which turns out to be more costly. To
maintain the rationality and robustness of scheduling, it is necessary to make changes
to the scheduling plan, that is, to change the route of each tugboat, which is expected to
increase fuel costs and delay costs, ultimately increasing the objective function value.

When the confidence level changes, both the earliest and latest start times of the task
change. Although the sequence of tasks has not been significantly changed, changing the
route of tugboat operations indicates that the uncertainty of the start time of the task affects
the operational process of tugboat operations.
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After solving Problem Instance 1 for all the generated confidence level scenarios, it
was found that the scheduling plans with confidence levels of 0% to 100% vary significantly.
For demonstration purposes, only scheduling plans with confidence levels of 0%, 50%, and
100% were selected for comparison. In Table 9, the scheduling plan with a confidence level
of 0% is as follows: The operation route of Tugboat 1 is Base 3–Task 3–Base 1–Task 2–Base
2–Task 5–Base 1; the operation route of Tugboat 2 is Base 1–Task 3–Base 1–Task 2–Base
2–Task 4–Base 1; and the operation route of Tugboat 3 is Base 2–Task 1–Base 2–Task 5–Base
2. Based on Table 10, the scheduling plan with a confidence level of 50% is as follows: The
operation route of Tugboat 1 is Base 3–Task 3–Base 1–Task 2–Base 2–Task 5–Base 1; the
operation route of Tugboat 2 is Base 1–Task 1–Base 2–Task 5–Base 2; and the operation
route of Tugboat 3 is Base 1–Task 3–Base 1–Task 2–Base 2–Task 4–Base 1. Based on Table 11,
the scheduling plan with a confidence level of 100% is as follows: The operation route of
Tugboat 1 is Base 3–Task 2–Base 2–Task 4–Base 3; the operation route of Tugboat 2 is Base
1–Task 3–Base 2–Task 1–Base 2–Task 5–Base 3; and the operation route of Tugboat 3 is Base
1–Task 3–Base 1–Task 2–Base 2–Task 5–Base 1. The above results indicate that the tasks for
the solutions with confidence levels of 0% to 100% have the same demand for tugboats, but
the operation routes have changed, that is, the change in the confidence level affects the
tugboats’ sailing patterns.

Based on the results reported in Figure 4, the objective function value (cost) increases
with the increase in confidence level and shows a linear proportional relationship (i.e., the
total cost linearly increases with the confidence level). This indicates that changes in the
confidence level affect the changes in objective function value and have a certain degree
of risk. From the above analysis, it can be seen that the cost (i.e., cost) is highest when the
accuracy probability of the estimated results is required to reach 100%. On the contrary, the
cost is lowest when the accuracy probability is 0%. At this point, a 50% confidence level is
the midpoint of balancing the two, and its corresponding solution is also a commonly used
and balanced decision for decision-makers.

Based on the findings revealed as a result of the conducted analysis for confidence
interval values, the managers of tugboat enterprises need to carefully analyze and predict
changes in the port environment to determine the intensity of port auxiliary operations,
that is, choose an appropriate confidence level and bear the corresponding risk level to
scientifically arrange tugboat scheduling plans.
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6. Conclusions

This study focuses on the tugboat assignment problem and considers a variety of
important operational attributes, including multiple berthing bases, time windows, and
various sources of uncertainty. In particular, the uncertainties in the required number of
tugboats, the earliest start time, the latest start time, the processing time, and the start
and end locations of each task were directly captured in the proposed fuzzy optimization
model. The objective of the presented formulation was to minimize the total cost of fuel and
delay costs. A set of fuzzy programming techniques were used to defuzzify the original
fuzzy optimization model and transform this model into the equivalent deterministic
optimization model. Considering the characteristics of the decision problem, a Grey Wolf
Optimization (GWO) algorithm based on random probability encoding and custom genetic
operators (pgGWO) was proposed. The genetic operators deployed within pgGWO aimed
to facilitate its explorative and exploitative capabilities.

A set of computational experiments were performed to evaluate the pgGWO algo-
rithm. In particular, the pgGWO algorithm was compared against the exact optimization
method (LINGO), the canonical GWO algorithm, and particle swarm optimization (PSO). It
was found that pgGWO yielded global optimal solutions for small-scale problem instances.
Moreover, the LINGO performance substantially declined with increasing problem size.
No feasible solutions could be obtained using LINGO for large-scale problem instances. On
the other hand, the pgGWO algorithm obtained good-quality solutions in a reasonable com-
putational time for all the considered problem instances. Furthermore, pgGWO showcased
its superiority against the canonical GWO algorithm and PSO. Last but not least, this study
presented a sensitivity analysis aiming to investigate the impact of the confidence level on
the performance of the proposed optimization model. It was found that tugboat schedules
were substantially affected with changing confidence levels. An increase in confidence
level improved the robustness of tugboat schedules but incurred higher costs.

There are several areas of this research that can be further explored with future
studies. First, the water depth varies over time, which may affect port operations [35].
If the water depth does not meet the requirements for ship operations within a certain
period, tugboats need to stop operations. Such an important operational feature can be
further investigated as a part of future research. Second, the uncertainties can be caused
by different factors, including natural hazards, man-made hazards, political tensions, etc.
All of these factors may have different effects on tugboat operations and can be further
investigated in the future. Third, the tugboat scheduling problem has high computational
complexity; future research can explore the potential of alternative solution approaches
for this decision problem, including hybrid heuristics and metaheuristics [36], island
algorithms [37], polyploid algorithms [38], and hyperheuristics [39,40].
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