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The autonomous distribution systems used in smart parks against the background of Industry 5.0 require
not only the consideration of the single goal of the economic benefits of enterprises, but also the fulfill-
ment of their social responsibilities. Consequently, the scheduling of autonomous distribution systems
and the trajectory planning of intelligent logistics vehicles have become increasingly more complex.
Although technologies such as swarm intelligence have gradually been applied to the solution of inde-
pendent distribution systems, there remain challenges in how to ensure that the production enterprises
bear their responsibility to the public and consumers. Parallel system theory provides theoretical support
for the concrete embodiment of people-oriented values in the smart park environment. In this work,
based on parallel system theory, a parallel autonomous driving system is established. The system is
mainly used for the autonomous transportation of finished products and materials in smart parks. The
goal is to enhance the flexibility and efficiency of the distribution system in the park, and to highlight
the people-oriented goal. Based on swarm intelligence theory and the A* algorithm, an improved swarm
search optimization algorithm called IGSO-A* is developed to support the scheduling of parallel distribu-
tion systems and the trajectory planning of intelligent logistics vehicles. In two types of simulation exper-
iments, compared with three other cutting-edge algorithms, the performance of the designed IGSO
algorithm is improved by 4.6% on average. Moreover, compared with the A* algorithm, the performance
of the proposed IGSO-A* algorithm is improved by 11.49%. The results prove the effectiveness of the pro-
posed parallel autonomous distribution system in the distribution of finished products and materials in
smart parks.
� 2023 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

As a new concept launched by the European Union in 2021,
Industry 5.0 has been widely discussed by relevant researchers
(Breque et al., 2021). It is a consensus of researchers that, in the
context of Industry 5.0, society and the manufacturing industry
are more sustainable, people-oriented, and flexible (Ahmed et al.,
2022; Xu et al., 2021). At this stage, some research efforts are also
devoted to the reduction of the environmental impact of industry
(Hartel and Ghosh, 2022; Li et al., 2022; Sherazi et al., 2021), which
provides some reference for the establishment of a sustainability
model of the manufacturing industry. As a typical solution of Man-
ufacturing 4.0, smart parks will continue to play an important role
in the era of Industry 5.0. Different from the efforts made by smart
parks to improve production economic benefits at this stage, the
impact of production processes on the ecological environment
and society will be more strongly considered for smart parks in
the context of Industry 5.0 (Breque et al., 2021). However, it is
worth noting that the people-oriented goal of the manufacturing
industry has not been well-reflected. Therefore, it is necessary to
focus on the construction of sustainable and people-oriented smart
parks, especially the autonomous distribution system of smart
parks, in the context of Industry 5.0. If enterprises wish to reflect
the people-oriented enterprise value in the factory or industrial
park environment of the manufacturing industry, they must deter-
mine the specific embodiment of people-oriented values in factory
or industrial park scenes.
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The embodiment of people-oriented values in enterprise man-
agement is to ensure that employees have higher welfare, a better
working environment, more dignity, etc. (de Souza João-Roland
and Granados, 2023). However, it is evident that in the specific sce-
nes of factories or industrial parks, this is just the basic ‘‘bottom
line” of people-oriented values. Therefore, this study focuses on
the specific embodiment of people-oriented values in the environ-
ment of factories or industrial parks, and preliminarily determines
that the people-oriented values and sustainability of smart parks
must not only protect the welfare, power, and dignity of enterprise
employees in the parks; it is more necessary to improve the pro-
duction efficiency and timeliness of distribution. The goal is for
manufacturing enterprises to better fulfill their social responsibil-
ities and to be responsible for people in society, thus ultimately
better reflecting people-oriented values, rather than taking eco-
nomic benefits as a single goal.

1.1. Motivation and contribution

At this stage, the relevant solutions of the independent distribu-
tion system in smart parks are aimed at maximizing the interests
of the production enterprises, and ignore the impacts of the emis-
sions and production efficiency of the distribution system in smart
parks on consumers and the public; this is contrary to the industry
requirements of Industry 5.0. Determining how to quantify the
impact of smart parks on the environment and society is a major
challenge when considering how to make the production enter-
prises in the parks better perform their social responsibilities. In
addition, the social responsibility of production enterprises is con-
sidered in the independent distribution system, which increases
the complexity of the problem and directly leads to the difficulty
of solving it. In view of the problems existing in the scheduling
of autonomous distribution systems and the track planning of
intelligent logistics vehicles, based on parallel system theory, the
social responsibility of the manufacturing enterprises in smart
parks is introduced into the parallel autonomous driving system.
A two-level mathematical model is established, and a digital twin
model of non-person flow vehicles is designed. Furthermore, the
IGSO and IGSO-A* algorithms are developed to improve the accu-
racy of solving the problem. Specifically, this work focuses on the
autonomous distribution system of finished products and materi-
als in smart parks to improve their production efficiency and
increase their flexibility. The main contributions of this research
are summarized as follows:

(1) This study discusses the specific embodiment of the people-
oriented value goal in the smart park environment. Increas-
ing the efficiency of the distribution of finished products and
materials in the park is the key to improving the production
efficiency of production enterprises, and is also the core con-
tent of the production enterprises to fulfill their social
responsibilities.

(2) A parallel autonomous driving system for the distribution of
finished products and materials in a smart park is estab-
lished, and a two-level mathematical model for the path
planning of unmanned logistics vehicles (ULVs) is devel-
oped. The first layer aims to plan the distribution sequence
according to the materials sought by different stations in
the park, and the second layer mainly plans the driving path
of ULVs.

(3) To overcome the long search time of the A* and Group
Search Optimizer algorithms when solving the problem of
ULV routing, many strategies, such as follower selection,
are introduced to improve the GSO algorithm. On this basis,
the improved GSO (IGSO) algorithm is proposed to solve the
problem.
2

(4) Finally, the results of a simulation experiment prove that the
proposed IGSO and IGSO-A* algorithms are effective in deal-
ing with the autonomous distribution of ULVs as compared
with other algorithms. The findings provide theoretical sup-
port for the construction of intelligent parks with fully
autonomous computing against the background of Industry
5.0.

The remainder of this paper is structured as follows. In Section 2,
the research work related to Industry 5.0 and autonomous vehicle
route planning is reviewed. Section 3 establishes a parallel system,
and a new algorithm is designed in Section 4. Section 5 reports the
simulation experiments. Finally, Section 6 summarizes the full text
and discusses future research directions.
2. Related work

2.1. Industry 5.0

The proposition of Industry 5.0 provides a basis for the future
development of industry and intelligent industrial equipment.
Based on this, (Sharma and Arya, 2022) studied the application of
unmanned aerial vehicles (UAVs) to the air quality detection of
landfills against the background of Industry 5.0. (Yao et al., 2022)
proposed a social-cyber-physical system (SCPS) paradigm based
on the cyber-physical system (CPS). (Yin and Yu, 2022) focused
on the green manufacturing of the manufacturing industry to high-
light the green innovation of Industry 5.0. (Wang et al., 2023) also
conducted research based on manufacturing in Industry 5.0.
Different from (Yin and Yu, 2022), they mainly discussed the safety
management of the manufacturing industry to highlight the
people-oriented goal of Industry 5.0. (Hein-Pensel et al., 2023) also
studied the value of being people-oriented in the context of Indus-
try 5.0, but, different from the safety management of the manufac-
turing industry, they focused on the application of the refined
model in the Industry 5.0 evaluation of small and medium-sized
enterprises. (Qahtan et al., 2022) carried out research on sustain-
able transportation in the Industry 5.0 context. While their
research on Industry 5.0 was more specific, they did not study a
people-oriented transportation system in Transportation 5.0
(Qahtan et al., 2022). Furthermore, (Nayeri et al., 2023) studied
supply chain planning in the era of the fifth industrial revolution
and defined the main dimensions of Supply Chain 5.0 ().
2.2. Autonomous vehicle trajectory planning

AutoX’s ULVs have been used in corresponding smart parks, and
provided a hardware basis for the present research. At this stage,
with the maturity of autonomous driving technology, a large num-
ber of unmanned vehicles and research on autonomous robot path
planning have emerged (Guo et al., 2022; Li and Li, 2022). (Gu et al.,
2022) studied the turning trajectory planning of autonomous min-
ing vehicles. Similarly, (Tian et al., 2021) conducted research based
on the trajectory planning problem of autonomous mining vehicles
and established a multi-objective mathematical model for opti-
mization. Liu et al. (Liu et al., 2017) considered constraints such
as the turning angle of the vehicle body, and studied the turning
path planning of autonomous vehicles while parking. (Wang
et al., 2020) focused on a vehicle path planning method for auton-
omous vehicles at intersections, and essentially studied the vehicle
turning problem. It is evident from the preceding literature review
that, at this stage, relevant researchers have conducted in-depth
research on the details of autonomous driving vehicle trajectory
planning, such as vehicle turning, vehicle overtaking, and other
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issues; however, there is a lack of research on the global path plan-
ning of autonomous driving vehicles.

The research on the trajectory planning of autonomous robots,
such as unmanned vehicles, unmanned ships, and UAVs, focuses
on global path planning. (Zhou et al., 2021) solved the problem
of global path planning for unmanned vehicles based on an artifi-
cial fish swarm algorithm. (Letizia et al., 2021) developed a recur-
sive smooth trajectory generation algorithm to generate the global
path of an unmanned vehicle. The research by (Josef and Degani,
2020) was based on the reinforcement learning method to study
the vehicle path planning problem in environments with complex
obstacles, which has a certain reference significance. The develop-
ment of swarm intelligence technology provides a potential
research direction for the global path planning of ULVs in the smart
park environment.
3. System model

3.1. Parallel autonomous driving system

The specific embodiment of people-oriented values in the fac-
tory or industrial park environment is that production enterprises
in the smart park earnestly fulfill their social responsibilities under
the condition of ensuring the health and welfare of employees. To
put it simply, the responsibility of production enterprises to soci-
ety is to be responsible for all people in society, including the pub-
lic, consumers, and employees. The determination of how to
establish a CPS system to ensure the health and well-being of
employees in the factory has been fully discussed in the extant lit-
erature (Adel, 2022; Leng et al., 2022). Thus, the present work
focuses on the responsibility of manufacturers to the public and
consumers. Specifically, the following two points are summarized.

(1) Manufacturers must be responsible for consumers who buy
products. Thus, the flexibility of the production process, the
faster production and transport of products, and the delivery
of products to consumers within the expected time window
must be ensured.

(2) Production enterprises must be responsible for the living
environment of the public, including via the use of clean
energy, to make the production process less energy-
consuming and more sustainable.

These two points place higher requirements on the production
and distribution of production enterprises. Due to space con-
straints, this study only discusses how the production links of
enterprises are responsible for society. First, production enter-
prises should make the whole production process more unmanned
to ensure that it is more flexible. In addition, production enter-
prises should optimize the production process to increase the col-
laboration of the work between each station. This places higher
requirements on the unmanned transportation of materials and
finished products between stations in smart parks, the key to
which is the autonomous driving trajectory planning system of
ULVs.

Both the human-cyber-physical system (HCPS) technology used
by (Leng et al., 2022) and the cyber-physical cohesive systems
(CPCS) mentioned by (Adel, 2022) protect the welfare of employees
in the factory to achieve the goal of employee orientation. These
two technologies do not have the universality of people-oriented
values. It is worth noting that the cyber-physical-social systems
(CPSS) and parallel system theory used by (Wang, 2010) and (Liu
et al., 2022) consider the impact of the whole system on society.
Therefore, parallel system theory pays more attention to the posi-
tive impact of the whole system on all people in society. In view of
3

this advantage, reference is made to the strategic roadmap of
Industry 5.0 formulated by (Ghobakhloo et al., 2022), and combi-
nes the digital twin technology (Li et al., 2023; Liu et al., 2023a,
2023b, 2023c, Zheng, 2023a, 2023b) to establish a parallel autono-
mous driving system of ULVs in a smart park. The specific architec-
ture is shown in Fig. 1.

The parallel autonomous driving system presented in Fig. 1 is
mainly composed of three parts, namely a physical system, a social
system, and an artificial system. The automatic generator (includ-
ing the scene generator, model generator, and algorithm generator)
is responsible for inputting the contents of the social and physical
systems into the artificial system in digital form. Specifically, the
scene generator generates scene information according to the
buildings in the smart park. The model generator generates a dig-
ital twin model according to the vehicle specification information.
The algorithm generator calls algorithms in the algorithm library to
solve the problem and to ultimately select the best algorithm to
download on the ULV.

3.2. Double-layer mathematical model

To meet the requirements of the unmanned transportation of
materials and finished products between stations in a smart park,
as well as the requirements of human society for the autonomous
driving trajectory planning of ULVs, a multi-objective and double-
layer mathematical model is established. The model reduces the
energy consumption of ULVs in the driving process and improves
the vehicle operating efficiency, while also meeting the soft and
hard time window constraints of each station on the arrival time.
The purpose of improving the distribution efficiency is to reduce
the waiting time of manufacturing workshops, increase the coordi-
nation of various manufacturing workshops, improve the produc-
tion efficiency, and make the production process responsible for
consumers. From the sustainability perspective, to reduce energy
consumption is to reduce greenhouse gas emissions, and to ulti-
mately be responsible for the living environment of the public.

Fig. 2 presents the schematic diagram of autonomous driving
trajectory planning for ULVs. The different stations in the smart
park are mainly divided into manufacturing workshops, ware-
houses, and parking lots. A park with six stations is considered in
this work. Stations 2, 3, and 4 are the manufacturing workshops,
and the order of warehousing is 2 ? 3 ? 4. Station 5 serves as a
temporary warehouse to store materials, semi-finished products,
and finished products. Station 6 is the finished product warehouse.
The topological relationship between stations is shown in Fig. 3,
and Table 1 defines some parameters used in this article.

The first-level model is similar to the vehicle routing problem
(VRP). The soft and hard time window constraints of the station,
the speed constraints of the vehicle, and other constraints are con-
sidered. With the shortest path as the goal, the distribution
sequence of ULVs is planned by constructing the distance matrix
between stations. The specific model is as follows.

min f 1 ¼
X
si¼S

lij � wum;ij

� � ð1Þ

wum ;ij 2 0;1f g;8um 2 U ð2Þ

8si 2 S; l62 R L

8si 2 S; l63 R L

8si 2 S; l64 R L

8si 2 S; l65 R L

8>>><
>>>: ð3Þ

X
8si2S

wIni � wum;ij

� �
6 Wumax ð4Þ



Fig. 1. The framework of a parallel autonomous driving system of ULVs for smart parks.

Fig. 2. The schematic diagram of autonomous driving path planning for ULVs.

Fig. 3. The topological relationships between stations in the smart park.

Table 1
The definitions of parameters.

Parameter Definition

S Set of stations, S ¼ s0; s1; s2; � � �; snf g, where s0 is the parking lot
U Set of ULVs, U ¼ u1;u2; � � �;umf g
L 8lij 2 L, where lij is the distance between stations si and sj

v
� Average speed of ULVs

wOui Weight of materials/finished products for ex-warehouse
operation at station si

wIni Weight of materials/finished products for in-warehouse
operation at station si

Numax Maximum number of ULVs
Wumax Maximum load of ULVs
K Set of trajectory points of ULVs, K ¼ 1;2;3; � � �; kf g
R Set of path segments included in the trajectory of ULVs,

R ¼ r1;2; r2;3; � � �; rp;q
� �

;8p; q 2 K

p0p
�! Track segment vector of a ULV from node p0 to node p, where

p0p
�! ¼ xp; yp; zp

� �
bp;q Slope of path segment rp;q
TOui Latest time of departure from station si
TIni Latest time of warehousing in station si
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X
8um2U

wum ;ij 6 Numax ð5Þ
X
8sj2S

ljj0 � wum;jj0
� �

v
� 6 min TOui; TInif g;8si 2 S ð6Þ

Eq. (1) is an objective function that minimizes the global path of
ULVs. The result of Eq. (2) is a 0–1 variable. When ULV um travels
from station si to station sj, wum ;ij is 1; otherwise, wum ;ij is 0. Eq. (3)
4

reflects the topological relationships between stations in the smart
park. Eq. (4) is the maximum load constraint of ULVs, and Eq. (5) is
the maximum number constraint of ULVs. Finally, Eq. (6) is the
time window constraint of the station on the arrival time of ULVs.

The second-level mathematical model considers the kinematic
constraints of the ULV, including the body turning angle, front
wheel turning angle, vehicle length and width, etc. The specific
schematic diagram is shown in Fig. 4. Furthermore, a multi-
objective function is established to minimize the energy consump-
tion and distribution time of the planned track. The details are as
follows.

min f 2 ¼
X

8p;q2K

rp;q
v
� �

X
8p;q2K

Ep;q ð7Þ

Fp;q ¼
sin bp;q

� �� Gu þ q� A� Cd � v!þ v!wind

� �2
þ Cr � cos bp;q

� �� Gu; zp P 0

q� A� Cd � v!þ v!wind

� �2
þ Cr � cos bp;q

� �� Gu � sin bp;q

� �� Gu; zp < 0

8><
>:

ð8Þ

Ep;q ¼ Fp;q � rpq ð9Þ



Fig. 4. The kinematic constraint diagram of the ULV.
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cos hp
� � ¼ p00p0��! � p0p

�!
p00p0��!			 			 � p0p

�!			 			 ;8p0;p; p00 2 K ð10Þ
hmin 6 hp 6 hmax;8p 2 K ð11Þ
ap ¼
hp�1 þ hp;0 6 hp 6 p

2

hp � hp�1;
p
2 6 hp 6 p

(
ð12Þ
amin 6 ap 6 amax;8p 2 K ð13Þ
Eq. (7) is the objective function of the second-level mathemat-

ical model, and Ep;q is the energy consumption of ULVs in route sec-
tion rp;q. Eq. (8) describes the force on the ULV at route section rp;q,
where Cd and Cr are respectively the air resistance coefficient and
road friction resistance coefficient of the ULV. Moreover, Gu is the
gravity of the ULV, q is the air density, A is the cross-sectional area
of the ULV, v! is the speed of the ULV, and v!wind is the wind speed.
Eq. (9) is the calculation method of energy consumption. Eqs. (10)
and (11) are the body turning angle constraints of the ULV, where
hp is the body turning angle of the ULV at point p, and hmax and hmin

are respectively the maximum and minimum turning angles of the
body of the ULV. Eqs. (12) and (13) are the front wheel turning
angle limit of the ULV, where ap is the front wheel turning angle
of the ULV at point p, and amin and amax are respectively the max-
imum and minimum turning angles of the front wheel of the ULV.
4. Algorithm design

To provide the algorithm library in the parallel autonomous
driving system with more high-performance algorithms, a new
algorithm is designed. In view of the low convergence accuracy
of the GSO algorithm when dealing with optimization problems
with high complexity, as well as its ease of falling into local opti-
mal solutions (Liu et al., 2022), the algorithm is improved accord-
ing to the search strategies of the artificial bee colony (ABC)
algorithm (Rambabu et al., 2022) and the sparrow search algorithm
(SSA) (Kathiroli and Selvadurai, 2022). The IGSO algorithm is ulti-
mately developed to solve the first-level model. On this basis, in
view of the shortcomings of the A* algorithm in dealing with the
vehicle trajectory planning problem in three-dimensional (3D)
space, such as unsatisfactory results and redundant trajectories,
the IGSO algorithm is introduced to the trajectory planning prob-
lem of ULVs according to the search framework of the A* algorithm
to solve the problem.
5

4.1. Algorithm introduction

As a novel heuristic algorithm, the GSO algorithm has been
widely used in optimization problems (Liu et al., 2022). The algo-
rithm was inspired by the foraging behavior of social animals,
according to which the individuals in the whole population are
divided into discoverers, joiners (also called followers), and wan-
derers. A discoverer is an individual who finds food, and the fitness
function value of the discoverer is optimal. During the search pro-
cess, the discoverer searches around itself. When the discoverer
finds food, the discoverer has a certain attraction to other individ-
uals, and the joiner is attracted by it and searches in the direction
of the discoverer. Wanderers are not affected by the attractiveness
of the discoverer and search in their own direction. The existence
of wanderers is the key for the GSO algorithm to jump out of the
local optimal solution.

The ABC algorithm was designed by Karaboga et al. (Kathiroli
and Selvadurai, 2022) to solve multivariable optimization prob-
lems. Inspired by the honey-gathering behavior of bees, it has
the advantages of a simple structure and few parameters. In the
process of algorithm optimization, the whole artificial bee colony
is divided into three kinds of individual bees, namely leading bees
(also known as hiring individual bees), following bees, and detect-
ing bees. Among them, leader have the solution vector in the prob-
lem solution space, and search near the solution vector in the
iterative process. Leader attract a certain number of following bees
according to the fitness function value corresponding to their solu-
tion vector; if the following bee does not find a solution vector with
a better fitness function value during multiple iterations, it will
turn to the reconnaissance peak to search the solution space.

Different from the GSO algorithm, the role conversion among
the three individual bees in the ABC algorithm has certain regular-
ity; the role conversion among the three individuals in the GSO
algorithm is more random. The SSA is similar to the GSO and
ABC algorithms, and is generated by imitating the feeding behavior
of sparrows. The whole sparrow population is divided into three
kinds of individuals, namely finders, joiners, and watchers. How-
ever, different from these algorithms, the SSA includes the addition
of a sparrow to avoid the strategy of hunters, which greatly
increases the ability of the algorithm to jump out of the local opti-
mal solution.

4.2. IGSO algorithm

Step 1. Initialize the dimensions of the problem D, including the
number of individuals H, the maximum number of iterations kmax,
the Euclidean distance between the upper and lower bounds of the
solution space vmax, the maximum steering angle dmax, and the
maximum evaluation algebra nmax.

Step 2. Calculate the angle and direction of the head of the indi-
vidual in the solution space.

X ¼

x11 x21 � � � xD1

x12 x22 � � � xD2

..

. ..
. ..

. ..
.

x1H x2H � � � xDH

2
66666664

3
77777775

ð14Þ

d ¼

d11 d21 � � � dD�1
1

d12 d22 � � � dD�1
2

..

. ..
. ..

. ..
.

d1H d2H � � � dD�1
H

2
66666664

3
77777775

ð15Þ



Table 2
The outbound and inbound requirements of each station in the smart park.

Station Outbound demand(unit: tons) Inbound demand(unit: tons)

1 0.0 0.0
2 0.3 0.1
3 0.0 0.4
4 0.2 0.1
5 0.6 0.0
6 0.0 0.5

Table 3
The optimal results of the four algorithms during 20 runs.

Algorithm Route Path length
(unit: meters)

Driving time
(unit: seconds)

GSO 1–5–3–5–2–3–4–6 9537 1718
ABC 1–5–2–5–3–4–5–6 9309 1677
SSA 1–5–3–5–2–3-4–6 8924 1608
IGSO 1–5–2–3–4–5–6 8847 1594

Fig. 5. The optimal iteration curves of the four algorithms during 20 runs.
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B ¼

B1
1 B2

1 � � � BD
1

B1
2 B2

2 � � � BD
2

..

. ..
. ..

. ..
.

B1
H B2

H � � � BD
H

2
666664

3
777775 ð16Þ

Eq. (14) is the position of each individual in the solution space,
the dimension of which is D. Eq. (15) is the head angle of each indi-
vidual, the dimension of which is D-1. Eq. (16) is the forward direc-
tion of each individual in the solution space, the dimension of
which is D. The forward direction is calculated from the head angle,
and the specific calculation method can be found in the publication
by (Liu et al., 2022).

Step 3. Divide the roles of individuals according to their
positions.

Step 4. Execute the finder search strategy. As the individual
with the best fitness function value in the population, the discov-
erer searches near its own solution vector. The specific formula is
as follows:

Xp� ¼
Xp þ r1 � vmax � Bp dð Þ
Xp þ r1 � vmax � Bp dþ r2 � dmax

2

� �
Xp þ r1 � vmax � Bp d� r2 � dmax

2

� �
8><
>: ð17Þ

where Xp is the current position vector of the discoverer, Xp� is the
position vector of the discoverer in the next generation, r1 is a ran-
dom number conforming to the standard normal distribution, and
r2 is a random number within the interval (0,1). In the three vectors
of Xp�, if 9fit Xp�

� �
6 fit Xp

� �
, Xp moves to the best position min Xp�

� �
among the three positions; otherwise, it will not move, but will only
turn its head. The specific formula is given by Eq. (18). fit Xp

� �
is the

fitness function value of solution vector Xp.

dkþ1 ¼ dk þ r2 � dmax

2
ð18Þ

After the maximum evaluation algebra nmax, the current posi-
tion of the discoverer is evaluated. If the discoverer does not find
a better position after the iteration of generation nmax, the head
angle is restored to that before generation nmax, as given by Eq. (19).

dkþnmax ¼ dk ð19Þ
Step 5. The followers choose strategies. Some individuals in the

group become followers according to a certain probability, thus
allowing for updating according to the behavior of followers. Refer-
ring to the formula of the probability of observer bees choosing to
follow other individuals in the ABC algorithm, a follower selection
strategy is designed:

Pi ¼
fit Xk

i

� �
fit Xk

p

� � ð20Þ

Xkþ1
i ¼ Xk

i þ r3 Xk
p � Xk

i

� �
ð21Þ

where Pi is the probability of the individual becoming a follower in
the solution space, r3 is a random number generated in the interval
(0,1), Xk

p is the solution vector of the optimal fitness function value

generated in the iteration process of generation k, and Xk
i is the solu-

tion vector of individual i in the iteration process of generation k.
Step 6. Execute the wanderer location update strategy. Individ-

uals in the population become wanderers with 1� Pi probability.
Referring to the location update strategy of the discoverer in the
SSA, the wandering search strategy in the GSO algorithm is
improved, as given by Eq. (22):
6

Xkþ1
i ¼

Xk
i þ nmax � r1 � vmax � Bp dkþ1� �

; r1 6 r4

Xk
i � exp � i

nmax

� �
; r1 > r4

8<
: ð22Þ

where r4 is a random number in the interval [0.5,1].
Step 7. Judge whether the maximum number of iterations is

reached. If the maximum number of iterations is reached, end
the cycle and output the results; if not, return to Step 3 to continue
the cycle.

In the process of ULV trajectory planning, the IGSO-A* algorithm
is developed by using the path search method of the A* algorithm
as a reference, namely that it can move in eight directions. This
minimizes the objective function value of the second-level model,
thus completing the trajectory optimization process.

5. Simulation experiments

To verify the effectiveness of the established parallel system, a
3D environment model of the smart park was established and ver-
ified via a simulation example. The simulation experiments
were conducted with MATLAB R2017a with Windows 10 as the
operating system, 16G of computer memory, and Intel i7-8750H
as the CPU. The details are as follows: dimension of the problem
D ¼ 33; number of individuals H ¼ 50; maximum number of iter-
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ations kmax ¼ 150; Euclidean distance of the upper and lower
bounds of the solution space vmax ¼ 5; maximum steering angle

dmax ¼ p= nmaxð Þ2; maximum evaluation algebra nmax ¼ 5.
Table 2 lists the outbound and inbound requirements of each

station in the smart park.
In the process of solving the first-level model, the GSO (Liu et al.,

2022), ABS (Cui et al., 2023; Rambabu et al., 2022), and SSA
(Kathiroli and Selvadurai, 2022; Zhang and Han, 2022), which are
more advanced algorithms used in robot scheduling and planning,
were selected for comparison with the designed IGSO algorithm.
The minimum and maximum turning angles of the body of the
ULV were respectively 20� and 120�, and the vehicle body width
was 3 m. The minimum and maximum turning angles of the tire
were respectively 10� and 140�. In the process of solving the
Fig. 6. The average iteration curves of the four algorithms during 20 runs.

Table 4
The optimal, worst, and average objective function values of the four algorithms
during 20 runs when solving the first-level mathematical model.

Algorithm Index

Optimal value Worst value Average value

GSO 9.537 9.552 9.551
ABC 9.309 9.550 9.380
SSA 8.924 9.438 9.251
IGSO 8.847 9.270 9.097

Fig. 7. The track of a ULV planne
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first-level model, for the convenience of calculation, the global
map is rasterized.

In the process of solving the first-level model, the four algo-
rithms were respectively run 20 times. The best running result
among the 20 running processes was selected. The specific routes
and driving time are shown in Table 3, and the iteration curves
are shown in Fig. 5. Further, Fig. 6 presents the average conver-
gence curves of the four algorithms during the 20 runs. The average
values, the worst values, and the best values of the objective func-
tions during the 20 runs of the four algorithms when solving the
first-level mathematical model are reported in Table 4.

It can be seen from Table 3 that the ULV scheduling problem in
the smart park is different from the general VRP. The ULVs can
return to the warehouse from any point to pick up materials and
then distribute them again. From the path length reported in
Table 3 and the convergence curve presented in Fig. 5, it can be
seen that the IGSO algorithm achieved higher convergence accu-
racy and a stronger ability to jump out of the local extremum in
dealing with ULV scheduling problems as compared with the other
three algorithms. The data exhibited in Fig. 6 and Table 4 prove
that the IGSO algorithm is more robust than the other three
algorithms.

In the planning process of the second-level mathematical
model, based on the results of the first-level model planning the
arrival sequence between stations, the distribution scheme
planned by the IGSO algorithm was selected for use in the IGSO-
A* algorithm to further plan the 3D trajectory of ULVs. The A* algo-
rithm used by (Lian et al., 2021) was selected for comparison with
the proposed IGSO-A* algorithm. The 2D and 3D views of the ULV
trajectories planned by the IGSO-A* algorithm are respectively
shown in Fig. 7 (a) and (b). The 2D and 3D views of the ULV trajec-
tories planned by the A* algorithm are respectively shown in Fig. 8
(a) and (b). The various indicators of the 3D trajectory planned by
IGSO-A * and A * algorithms when solving the second-level math-
ematical model are shown in Table 5.

From Figs. 7 and 8, it can be seen that the A* algorithm gener-
ated a large number of redundant tracks as compared with the
IGSO-A* algorithm when planning the trajectories of ULVs. It can
be seen from Table 5 that the track length of the IGSO-A* algorithm
was 9064.07 m, and that of the A* algorithm was 9670.79 m.
According to the planning results, the energy consumption of the
trajectory planned by the A* algorithm was 11.49% greater than
that of the IGSO-A* algorithm, and the travel time of the trajectory
planned by A* algorithm was 6.68% greater than that of the IGSO-
A* algorithm. Therefore, it can be concluded that the proposed
IGSO-A* algorithm is superior to the A* algorithm in solving the
3D trajectory of ULVs.
d by the IGSO-A* algorithm.



Fig. 8. The track of a ULV planned by the A* algorithm.

Table 5
The comparison results of various indicators between A * and IGSO-A * algorithms
when solving the second-level mathematical model.

Algorithm Path length(unit:
meters)

Driving time(unit:
seconds)

Energy consumption
(unit: kw�h)

IGSO-A* 9064.07 1633.17 1.95
A* 9670.79 1742.48 2.17
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6. Conclusion

In response to the requirements of Industry 5.0 for autonomous
distribution systems in smart parks, parallel autonomous driving
systems for material distribution in smart parks were researched
in this study. For a parallel autonomous driving system based on
parallel system theory, a high-precision digital twin model of ULVs
was developed based on the physical performance constraints of
real ULVs. In addition, a two-layer mathematical model for auton-
omous material distribution in smart parks was designed with the
goal of ensuring the productivity of enterprises and making their
production processes more energy-efficient and sustainable. Fur-
thermore, to improve the solution accuracy of the algorithms in
the algorithm library of the parallel automated driving system
when solving complex optimization problems, the IGSO and
IGSO-A* algorithms were proposed. The results of simulations
demonstrated that, during 20 runs, the average fitness function
value of the IGSO algorithm was reduced by 1.69–4.55%, and the
optimal fitness function value was reduced by 0.87–7.80%, as com-
pared with the scheduling solutions of ULVs solved by the GSO,
ABS, and SSA algorithms. The worst fitness function value of the
IGSO algorithm was reduced by values ranging from 1.69% to
3.07%. In the trajectory planning process of ULVs, the energy con-
sumption of the trajectory planned by the A* algorithm was
11.49% greater than that of the IGSO-A* algorithm, and the travel
time of the trajectory planned by the A* algorithm was 6.68%
greater than that of the IGSO-A* algorithm. In future work, focus
will be placed on the dynamic obstacle avoidance problem of ULVs
to smoothly realize vehicle-human obstacle avoidance and
increase the safety of the system.
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