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Abstract: The fabrication method plays a key role in the performance of lead magnesium niobate–lead
titanate-based ceramics. (1 − w)[Pb(Mg1/3Nb2/3)0.67Ti0.33O3]-w[Pb1−1.5xSmx(Mg1/3Nb2/3)yTi1−yO3]
piezoelectric ceramics were prepared by sintering the mixture of two different crystalline phases in
which two pre-sintered precursor powders were mixed and co-fired at designated ratios (w = 0.3,
0.4, 0.5, 0.6). The X-ray diffraction results show that all the ceramics presented a pure perovskite
structure. The grains were closely packed and the average size was ~5.18 µm based on observations
from scanning electron microscopy images, making the ceramics have a high density that is 97.8%
of the theoretical one. The piezoelectric, dielectric, and ferroelectric properties of the ceramics were
investigated systematically. It was found that the properties of the ceramics were significantly
enhanced when compared to the ceramics fabricated using the conventional one-step approach. An
outstanding piezoelectric coefficient d33 of 1103 pC/N and relative dielectric permittivity ε33/ε0 of
9154 was achieved for the ceramics with w = 0.5.

Keywords: two different crystalline phases; PMNT-PSMNT; piezoelectric properties; dielectric properties

1. Introduction

Piezoelectric ceramics are functional ceramics that can transform mechanical en-
ergy and electrical energy into each other. Perovskite (1 − x)Pb(Mg1/3Nb2/3)O3-xPbTiO3
(PMN-PT), one of the typical ferroelectrics among the perovskite-type ferroelectrics, tung-
sten bronze type ferroelectrics, bismuth-layer-type ferroelectrics, lithium niobate-type
ferroelectrics, and pyrochlore-type ferroelectrics, features excellent piezoelectric, dielectric,
pyroelectric, and electrostrictive properties [1] due to its unique crystal structure. The
dipole alignment caused by the movement of A-site and B-site ions plays a critical role in
ferroelectricity. In detail, the A-site ions are occupied by Pb2+ ions and are located at eight
vertices of the cube, while the B-site ions are disorderly dominated by Mg2+, Nb5+, and
Ti4+ in the center of the cube, presenting a disordered distribution macroscopically [2]. The
mechanism of relaxor ferroelectrics can be explained as follows: (1) Due to the difference in
ionic radius and the repulsion against the adjacent electron clouds, the arrangement of ions
is loosely bonded. (2) Under an external electric field, the disordered B-site lattice favors
larger ions such that smaller ions retain more free space, assisting the movement in oxygen
octahedrons [3–5].
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The fabrication method plays a key role in the performance of ceramics. The common
issue of preparing PMN-PT-based materials using the conventional one-step mixed oxide
sintering method is the formation of the pyrochlore phase, which significantly deterio-
rates the properties of the PMN-PT-based ceramics [6–8]. Various preparation methods
have been studied to avoid the appearance of the pyrochlore phase and to improve the
properties of PMN-PT-based ceramics. Guha et al. prepared 0.92PMN-0.08PT ceramics by
the excess PbO method, avoiding the pyrochlore phase due to lead oxide volatilization [9].
Liou obtained PMN-PT ceramics with pure dense perovskite structures by the reaction-
sintering process [10]. Jayasingh et al. eliminated the formation of the pyrochlore phase
and improved the homogeneity of the precursor of PMN-PT ceramics by using a par-
tial oxalate process route [11]. Kong et al. synthesized single-phase perovskite PMN-PT
nano-powders via a high-energy ball milling process [12]. Chu et al. found that the particle-
coating method was a low-cost and simple process to prepare pyrochlore-free PMN-PT
powders [13]. Ghasemifard et al. obtained pyrochlore-free 0.65PMN-0.35PT nano-powders
through the auto-combustion method [14]. Ravindranathan et al. developed the sol–gel
method to prepare 0.9PMN-0.1PT powders with an almost 100% pure perovskite phase [15].

Doping modification is one of the crucial ways to improve the performance of PMN-PT ce-
ramics. Kobor et al. studied the dielectric and mechanical behaviors of 1%Mn-0.65PMN-0.35PT
ceramics and found the Mn2+-doped ceramics offered a reduction in dielectric permittiv-
ity (3800 to 2074) and an enhanced mechanical quality factor (78 to 317) [16]. Li et al.
investigated the relaxor behavior of CuO-0.94 PMN-0.06 PT ceramics and revealed a
strongly correlation between phase transition dispersity and B-site order degree [17]. Re-
cently, Li et al. reported a PMN-PT ceramic with ultrahigh piezoelectric coefficients (d33)
of up to 1500 pC/N and dielectric permittivity (ε33/ε0) of above 13,000 via the doping of
samarium [18]. Due to the unexpectedly high piezoelectric response in Pb-based ferro-
electrics, rare earth element doping modification has recently attracted much attention in
modifying piezoelectric ceramics [19–24].

It is generally recognized that ceramics exhibit outstanding piezoelectric properties at
the morphotropic phase boundary (MPB) [25]. For PMN-PT ceramics, when the PT content
reaches 33–35% in moles, the crystal structure is a mixture of the rhombohedral phase and
tetragonal phase in the vicinity of phase boundaries, denoting the MPB. However, it is not
possible to precisely control the ratio of the two crystalline phases at the MPB. Moreover, the
pyrochlore phase could be easily induced by the doping of rare earth elements in the PMN-
PT system [19,26] due to the high melting point of Sm2O3 [27] and the poor diffusion ability
of Sm3+ at high temperatures. In this study, sintering the mixture of two different crystalline
phases is proposed to prepare (1 − w)PMNT-wPSMNT (PMNT-PSMNT) ceramics with the
same chemical composition but in different mixing ratios, w. The major merits of this newly
proposed method are the accurate control of the crystal phase proportion and the reduction
or even prevention of the formation of the pyrochlore, resulting in the enhancement of the
piezoelectric and dielectric properties. It was found that the overall performance of the
PMNT-PSMNT ceramics prepared using the proposed method was significantly improved
when compared to those prepared by the conventional method.

2. Preparation and Characterizations
2.1. Ceramic Preparation

The target formula composition Pb0.9625Sm0.025(Mg1/3Nb2/3)0.72Ti0.28O3 was deter-
mined. Using the lever principle in the phase equilibrium calculation method, the chemical
components on both sides of the target formula Ti = 0.28 were selected, and one component
was doped with Sm. Two components with different crystal phases were pre-synthesized
and then mixed, formed, and sintered according to the design proportion to prepare the
non-uniform doped ceramic system. To avoid the formation of the pyrochlore phase, nio-
bium and titanium compounds (Nb2O5, TiO2) with poor sintering activity were mixed with
strong sintering active Mg2(OH)2CO3, and a small amount of lead oxide was used as a
diffusion promoter to synthesize two kinds of pre-sintered powders in advance. Analytical-
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grade chemicals, Pb3O4 (Aladdin, 99.95% purity), Sm2O3 (Aladdin, 99.99% purity), TiO2
(Aladdin, 99.99% purity), Mg2(OH)2CO3 (Aladdin, 99.99% purity), and Nb2O5 (Aladdin,
99.99% purity), were used as raw materials to synthesize Pb(Mg1/3Nb2/3)0.67Ti0.33O3
(Component A) and Pb1−1.5xSmx(Mg1/3Nb2/3)yTi1−yO3 (Component B, B1: x1 = 0.0833,
y1 = 0.8367; B2: x2 = 0.0625, y2 = 0.7950; B3, x3 = 0.0500, y3 = 0.7700; B4: x4 = 0.0417,
y4 = 0.7533) ceramic powders. In Component B, Mg2(OH)2CO3, Nb2O5, Sm2O3, and TiO2
were evenly ground and pre-sintered at 880 ◦C for 4 h, then crushed and Pb3O4 was added.
Pb0.9625Sm0.025(Mg1/3Nb2/3)0.72Ti0.28O3 piezoelectric ceramics with the nominal composition
were prepared by mixing Component A and Component B according to the chemical for-
mula of (1 − 0.025/x)[Pb(Mg1/3Nb2/3)0.67Ti0.33O3]-0.025/x[Pb1−1.5xSmx(Mg1/3Nb2/3)yTi1−yO3]
(0.025/x = 0.3, 0.4, 0.5, 0.6), followed by ball milling, granulation, molding, and sintering
processes. The preparation process is shown in Figure 1. To simplify the analysis, we denote
w as 0.025/x. The sintering conditions were 1250 ◦C for 1.5 h. After grinding and polishing,
the ceramics were coated with silver paste on both surfaces, and sintered at 650 ◦C for
30 min to form silver electrodes. The ceramic discs were poled at 3 kV/mm for 1 min in
silicone oil at room temperature, aged and short-circuited for 24 h, and then the electrical
properties were measured. For comparison, Pb0.9625Sm0.025(Mg1/3Nb2/3)0.72Ti0.28O3 was
prepared by the traditional mixed oxide sintering process as a reference sample.
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2.2. Characterizations

D/max-2500/PC X-ray powder diffraction (XRD, Rigaku, Tokyo, Japan) with Cu Kα

radiation and JSM-6510 scanning electron microscopy (SEM, JEOL, Tokyo, Japan) were per-
formed to characterize the crystal structures and morphologies of the ceramics, respectively.
The Raman spectra of bulk ceramics were measured using a DXR2 laser confocal microscopy
Raman spectrometer (Raman, Thermo Fisher, Waltham, MA, USA) with an argon-ion laser
excitation line of 532 nm and a laser power of 1 mW. The piezoelectric coefficient d33 was
measured using a quasi-static d33 tester (ZJ-6A, Chinese Academy of Science, Beijing, China).
The relative dielectric permittivity ε33/ε0, dielectric loss tangent tanδ, and the resonance
and anti-resonance frequencies of the ceramics were acquired using a precise impedance
analyzer (HP4294A, Agilent, Santa Clara, CA, USA). The temperature-dependent dielec-
tric characteristics were measured by a high-temperature dielectric measurement system
(DMS-1000, Partulab, Wuhan, China). The electric hysteresis loop and field-induced strain
of the ceramics were also investigated using the Radiant Precision Premier ferroelectric
material test system (LCII, Radiant, Redmond, WA, USA).
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3. Results and Discussion
3.1. Phase Structure

The XRD patterns for Component A, Component B, (1 − w)PMNT-wPSMNT (w = 0.3,
0.4, 0.5, 0.6) ceramics, and the reference sample are shown in Figure 2a. As expected,
the pyrochlore phase Pb2Nb2O7 (PDF card No. 40-0828) was formed with the featured
diffraction peaks at 14.32◦ and 30.36◦ in the reference sample. Component A exhibited
a pure perovskite tetragonal phase structure with no obvious impurities. Component B
exhibited a rhombohedral phase structure; however, a traceable pyrochlore phase with
a rhombohedral structure in Component B was detected. And, with increasing w, the
pyrochlore phase first decreased and then increased, indicating the challenge in eliminating
the pyrochlore phase, even though the contents were still far below that of the reference
sample. The aggregation of Sm is the main reason for the formation of the pyrochlore phase.
The formation of the pyrochlore phase can be inhibited by pre-sintering the mixed oxide
of Sm, Mg, Nb, and Ti to fully diffuse Sm3+, and the main crystal phase could be formed
by pre-sintering the mixture with PbO. In this study, niobium oxide, magnesium oxide,
titanium oxide, and samarium oxide were pre-sintered at 880 ◦C for 4 h, promoting the
homogenization of the system and minimizing the pyrochlore phase induced by the local
excessive samarium concentration [18]. The ceramics prepared by sintering the mixture of
two different crystalline phases displayed a higher crystal purity (99.62–99.89% perovskite
structure), which is much better than the ceramics prepared by the conventional sintering
method (98.64% perovskite structure).

By fitting the diffraction peaks of the (1 − w)PMNT-wPSMNT at 44–46◦, Figure 2b
shows that the overlapping degree of the diffraction peaks increased gradually with w.
With the increase in w, the tetragonal phase Component A decreased and the rhombohedral
phase Component B increased such that the ceramics would gradually transform from
the tetragonal phase to the rhombohedral phase. Consequently, double diffraction peaks
of (002) and (200) transformed into a single peak of (200). When w = 0.6, the (002) and
(200) diffraction peaks overlapped completely. Rietveld refinement was performed for
(1 − w)PMNT-wPSMNT (w = 0.3, 0.4, 0.5, 0.6) ceramics by GSAS software (4262) [28] and
the results are shown in Figure 2c–f. Compared with Component A, the symmetry of the
diffraction peaks of the (1 − w)PMNT-wPSMNT ceramics became worse in the tetragonal
phase (111) at 2θ = 31.44◦. To avoid excessive grain growth, the sintering time at 1250 ◦C
was only 1.5 h such that Component A with the tetragonal phase and Component B with
the rhombohedral phase cannot be completely homogenized, resulting in the distortion of
diffraction peaks to some extent [18,26]. The lattice parameters, cell volume, and density
of Component A, Component B, and (1 − w)PMNT-wPSMNT ceramics are shown in
Table 1. It can be seen that with the increase in w, the cell parameter a (=b = c) of the
rhombohedral phase increased gradually, and the cell parameter c of the tetragonal phase
decreased gradually. The phenomenon could be explained as follows: (1) the chemical
composition of crystal particles had a gradient change when the ceramic samples with
identical chemical compositions and different mixing ratios were prepared by sintering
the mixture of two different crystalline phases, resulting in the change in cell parameters;
(2) the cell parameters a and b of the ceramics with more pyrochlore content (w = 0.3 and
w = 0.6) were relatively large, which indicates that the generation of the pyrochlore phase
would alter the chemical composition of the main phase, resulting in a change in the crystal
lattice. In addition, the c/a ratios of the (1 − w)PMNT-wPSMNT (w = 0.3, 0.4, 0.5, 0.6)
ceramics were 1.0035, 1.0032, 1.0027, and 1.0017, respectively. It can be seen that the c/a of
the ceramics was closer to 1 with a higher w because the phase structure of the ceramics
tended to the cubic phase, which agreed well with the overlapping degree of diffraction
peaks in Figure 2b. Compared with Sm-doped Pb(ZrxTi1−x)O3 (Sm-PZT) ceramics, the
c/a of Sm-PMN-PT ceramics was much closer to 1 [26,29], such that the internal stress
caused by domain switching was smaller, the octahedral gap formed by oxygen atoms was
relatively loose, and the micro-displacement of B-site ions was relatively easy.
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Figure 2. XRD patterns of (a) Component A, Component B, (1 − w)PMNT-wPSMNT (w = 0.3, 0.4,
0.5, 0.6) ceramics, and reference sample (the crystallographic index was calibrated according to the
tetragonal phase). (b) Fitting peaks of (1 − w)PMNT-wPSMNT ceramics at 2θ = 44–46◦. Rietveld
refinement results of (c) w = 0.3, (d) w = 0.4, (e) w = 0.5, (f) w = 0.6.

Table 1. Lattice parameters, cell volume, and density of Component A, Component B, and (1 − w)PMNT-
wPSMNT ceramics.

Sample
Lattice

Parameters (Å)
Phase 2, P4mm

Lattice
Parameters (Å)
Phase 2, R3m

Weight
Fraction (%)

Fitting
Parameters

Density
(%)

w = 0.3

a = b = 4.0129, c = 4.0275
α = β = γ = 90

volume = 64.8563
c/a = 1.0036

a = b = c = 4.1628
α = β = γ = 82.5990

volume = 70.479
c/a = 1

P4mm = 75.44
R3m = 25.56

χ2 = 11.00
wRp = 0.0866
Rp = 0.0495

96.6673

w = 0.4

a = b = 4.0115, c = 4.0250
α = β = γ = 90

volume = 64.7708
c/a = 1.0034

a = b = c = 4.0020
α = β = γ = 89.3080
volume = 64.0800

c/a = 1

P4mm = 64.55
R3m = 35.45

χ2 = 8.121
wRp = 0.0822
Rp = 0.0522

96.9128



Materials 2023, 16, 6781 6 of 13

Table 1. Cont.

Sample
Lattice

Parameters (Å)
Phase 2, P4mm

Lattice
Parameters (Å)
Phase 2, R3m

Weight
Fraction (%)

Fitting
Parameters

Density
(%)

w = 0.5

a = b = 4.0126, c = 4.0243
α = β = γ = 90

volume = 64.7951
c/a = 1.0029

a = b = c = 3.9872
α = β = γ = 88.1280

volume = 63.290
c/a = 1

P4mm = 40.98
R3m = 59.0200

χ2 = 7.2861
wRp = 0.0782
Rp = 0.0506

97.8874

w = 0.6

a = b = 4.0146, c = 4.0279
α = β = γ = 90

volume = 64.9177
c/a = 1.0033

a = b = c = 4.1650
α = β = γ = 82.7190
volume = 70.6420

c/a = 1

P4mm = 11.58
R3m = 88.42

χ2 = 11.85
wRp = 0.0945
Rp = 0.0528

95.4639

A

a = b = 4.0143, c = 4.0329
α = β = γ = 90

volume = 64.9886
c/a = 1.0046

P4mm = 100
χ2 = 2.7817

wRp = 0.0502
Rp = 0.0411

96.2847

B

a = b = c = 4.025
α = β = γ = 88.5180

volume = 66.488
c/a = 1

R3m = 100
χ2 = 3.9104

wRp = 0.0590
Rp = 0.0407

95.7749

Note: the content of the pyrochlore phase is ignored.

3.2. Raman Spectra

The Raman peaks of lead-based ferroelectric materials with the ABO3 perovskite
structure are divided into three categories: the Raman mode with a wavenumber less
than 150 cm−1 belongs to the Pb-BO6 stretching mode, the one between 150 cm−1 and
500 cm−1 is a mixture of the B-O-B bending mode and O-B-O stretching mode, and the
one between 500 cm−1 and 800 cm−1 is related to the B-O-B stretching mode [30,31]. Ac-
cording to the lattice dynamics, group theory, and Raman studies of other ferroelectrics
with the ABO3 structure, the number of Raman modes can be used to determine the phase
structure of ferroelectrics. The rhombohedral phase (R3m) has seven Raman active modes
and the tetragonal phase (P4mm) has eight Raman active modes. The room-temperature
Raman spectra of the (1 − w)PMNT-wPSMNT ceramics and the deconvolution of multiple
Lorentzian/Gaussian peaks are shown in Figure 3, in which the fitting results agree well
with the measured Raman spectra. Among the vibrational bands, the mode located at
~800 cm–1 can be assigned to the stretching vibration of Nb-O-Mg and B-site cations; the
band at 580 cm–1 originates from the oxygen bending vibration; the band 500 cm–1 is
attributed to the stretching vibration of Nb-O-Nb; the band at 433 cm–1 arises from the
stretching vibration of the Mg-O-Mg mode; and the most intense band at 270 cm–1 is con-
tributed by B site ions acting against O stretching vibration inside the octahedron [32]. The
Raman spectra of ceramics with w = 0.3 and w = 0.4 can be deconvoluted into seven Raman
modes using the Lorentzian/Gaussian fitting in the wavenumber range of 180–840 cm−1,
while the ceramics with w = 0.5 and w = 0.6 have six Raman modes, which is related to the
ratio of tetragonal Component A and rhombohedral Component B in the ceramics. Based
on the characteristics of the Raman spectra, the ceramics with w = 0.3 and w = 0.4 were
with the tetragonal phase, while those with w = 0.5 and w = 0.6 ceramics were with the
rhombohedral phase. Due to the detection limit of our Raman spectrometer, the Raman
modes below 99 cm−1 could not be accurately evaluated.



Materials 2023, 16, 6781 7 of 13

Materials 2023, 16, x FOR PEER REVIEW 7 of 13 
 

 

tetragonal Component A and rhombohedral Component B in the ceramics. Based on the 
characteristics of the Raman spectra, the ceramics with w = 0.3 and w = 0.4 were with the 
tetragonal phase, while those with w = 0.5 and w = 0.6 ceramics were with the rhombohe-
dral phase. Due to the detection limit of our Raman spectrometer, the Raman modes be-
low 99 cm−1 could not be accurately evaluated. 

 

  

  
Figure 3. Raman spectra of (a) (1 − w)PMNT-wPSMNT (w = 0.3, 0.4, 0.5, 0.6) ceramics at room tem-
perature; Deconvolution of multiple Lorentzian/Gaussian peaks at 180–840 cm−1 of (b) w = 0.3, (c) w 
= 0.4, (d) w = 0.5, (e) w = 0.6. 

3.3. Microstructure 
The surface of the ceramic samples was polished and etched at 1000 °C for 1 h before 

the morphological characterizations. Figure 4 shows that the grain size was relatively uni-
form in the range of 4–6 µm with an average size of 5.18 µm. It was found that a smaller 
grain size induced smaller domain sizes, leading to a superior piezoelectric mechanism 
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(c) w = 0.4, (d) w = 0.5, (e) w = 0.6.

3.3. Microstructure

The surface of the ceramic samples was polished and etched at 1000 ◦C for 1 h before
the morphological characterizations. Figure 4 shows that the grain size was relatively
uniform in the range of 4–6 µm with an average size of 5.18 µm. It was found that a smaller
grain size induced smaller domain sizes, leading to a superior piezoelectric mechanism
via the clamping effect during the polarization flip [33,34]. Moreover, the ceramic grains
were well-developed with clear grain boundaries and no visible precipitates presented at
the grain boundaries. To some extent, the size and distribution of grains determine the
properties of crystal structures [35]. The SEM images of the fresh section of the sample show
both transgranular fracture and intergranular fracture mechanisms that may contribute to
the comparative bonding strength between grains and grain boundaries. Moreover, the
grain boundaries are angular, revealing that no glass phase remained. The grains of the
ceramics were closely packed with very few pores, which agrees with the high density
(95.4–97.8%) of the ceramics listed in Table 1. The higher density and fewer pores and
impurities inside the ceramics contribute to higher breakdown field strengths and thus
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higher electrostrictive strains especially in the high electric field region [36], and reduce the
absorption of light and increase the light transmission rate [37,38].
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Figure 4. SEM images and grain size statistics chart of the (a) surface and (b) cross-section of the
w = 0.5 ceramics.

3.4. Dielectric Properties

Figure 5a–d show the temperature-dependent dielectric spectra of the (1 − w)PMNT-
wPSMNT ceramics. The characteristic temperatures Tm (temperature of phase transition
from a low-temperature ferroelectric phase to a high-temperature paraelectric phase) of
the (1 − w)PMNT-wPSMNT ceramics with w = 0.3, 0.4, 0.5 and 0.6 were 79 ◦C, 79 ◦C,
81 ◦C and 86 ◦C, respectively, and the corresponding peak values of permittivity were
23,789, 30,190, 30,192, and 27,656. Above Tm, both the permittivity and loss tangent
peaks shifted along with the temperature and frequency. The results show an obvious
frequency dispersion characteristic, indicating a diffusive phase transition and relaxor
ferroelectric property. The dielectric spectra of the (1 − w)PMNT-wPSMNT ceramics and
the reference sample at 1 kHz are shown in Figure 5e. The characteristic temperature of
the reference sample was 82.2 ◦C, and the corresponding permittivity peak value was
19,373. The sample prepared by sintering the mixture of two different crystalline phases
exhibited significantly improved permittivity. However, the Curie temperature of the PMN-
PT ceramics decreased when doped with Sm. The Pb(ZrxTi1−x)O3 (PZT) ceramics (from
385 ◦C to 335 ◦C [39,40]) and Pb(Mg1/3Nb2/3)-PbZrO3-PbTiO3 (PMN-PZ-PT) ceramics
(from 230 ◦C to 184 ◦C [41,42]) also had these characteristics after being doped with Sm.
The Curie point decreased whereas resistivity increased with increasing oxygen deficit [43],
which is also the reason for the low Curie temperature of the ceramic sample. The dielectric
behavior of ferroelectrics above Tm can be fitted by the quadratic law [44] for typical relaxor
ferroelectrics and normal ferroelectrics.

1
ε
=

1
εmax

+
(T − Tmax)

γ

C′
(1)

where γ is the degree of diffuseness, and C′ is a constant. γ approaches 2 for an ideal
relaxor ferroelectric, while γ approaches 1 for a normal ferroelectric [45]. The dielectric
behavior of the (1 − w)PMNT-wPSMNT ceramics above Tm at 1 kHz was linearly fitted
according to Equation (1). An example of the sample with w = 0.5 is shown in Figure 5f. The
relaxation indexes were 1.72, 1.74, 1.83, and 1.75, respectively, showing obvious relaxation.
The dielectric loss tangent was below 2% for all samples and decreased rapidly above
Tm, which is related to the transition from a tetragonal ferroelectric phase to a cubic
paraelectric phase.
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behavior of (1 − w)PMNT-wPSMNT ceramics with w = 0.5 at 1 kHz according to Equation (1).

3.5. Piezoelectric Properties

The piezoelectric and dielectric properties of the (1 − w)PMNT-wPSMNT ceramics
are shown in Figure 6 and Table 2. It can be seen that d33, ε33/ε0, and electromechanical
coupling factors kp (planar vibration mode) and kt (thickness vibration mode) increased
along with w and reached the maximum when w = 0.5. Compared to the reference sample,
d33 and ε33/ε0 of the (1 − w)PMNT-wPSMNT ceramics were greatly improved. From the
viewpoints of preparation process, sintering the mixture of two different crystalline phases
results in a crystalline structure with the coexistence of rhombohedral and tetragonal
phases, similar to the MPB, which provides more polarization directions and facilitates the
reduction of domain wall energies, thus favoring the domain flipping and offering good
piezoelectric performance [39,46]. In addition, a mixture of two different crystalline phases
significantly enhances the disorder degree of A-site cations (Pb2+, Sm3+) and B-site cations
(Mg2+, Nb5+, Ti4+) of the perovskite structure, which is responsible for the formation of
polar-nano regions (PNRs) [22,47]. PNRs are widely considered a key signature of relaxor–
ferroelectric solid solutions, which displays ultra-high piezoelectricity [48] and enhances
the corresponding device performance [49]. Moreover, the dielectric loss tangent of all
ceramics varied slightly while the mechanical quality factor dropped for the (1 − w)PMNT-
wPSMNT ceramics. This could be attributed to the formation of a Pb vacancy at the A-site
after being doped with Sm3+ such that the directional activation energy of the domain
decreases. As the domain walls in the grains move easily, the coercive field reduces and
makes the ceramics more easily polarized, thus improving the piezoelectric properties.
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At the same time, due to the easy movement of domain walls, the internal loss would
inevitably increase, resulting in a decrease in mechanical quality factor Qm and increase in
the dielectric loss tangent [41].
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Table 2. Piezoelectric and dielectric properties of (1− w)PMNT-wPSMNT ceramics and reference sample.

Sample d33 (pC/N) kp kt ε33/ε0 tanδ

w = 0.3 1046 ± 24 0.62 ± 0.003 0.54 ± 0.004 8068 ± 166 0.039
w = 0.4 1099 ± 23 0.65 ± 0.002 0.53 ± 0.003 8520 ± 159 0.041
w = 0.5 1103 ± 16 0.66 ± 0.002 0.53 ± 0.002 9154 ± 167 0.044
w = 0.6 929 ± 22 0.64 ± 0.002 0.54 ± 0.002 7102 ± 165 0.037

ref 850 ± 29 0.55 ± 0.004 0.42 ± 0.003 5631 ± 216 0.041

3.6. Ferroelectric Properties

The hysteresis loops and field-induced strain plots of the (1 − w)PMNT-wPSMNT
ceramics are shown in Figure 7. It can be seen that the loops had good rectangularity and
symmetry, indicating that the materials have good ferroelectric properties. The coercive
fields Ec varied slightly among ceramics, giving ~0.26 kV/mm. The remanent polarization
Pr reached the maximum value of 34 µC/cm2 when w = 0.5, which is consistent with
the piezoelectric and dielectric performance. Similarly, the sample with w = 0.5 exhibited
the largest field-induced strain of 0.22%, as shown in Figure 7b. This is attributed to the
equal ratio of the rhombohedral and tetragonal phases in the ceramic structure so that the
domain structure exhibits a mixture of microdomains and macrodomains. It is of great
significance to regulate the relationship between macrodomains and microdomains to
enhance the performance of ceramics [50]. The butterfly curve is relatively thin, which
indicates the small field-induced strain hysteresis, good repeatability, and fast response
of the (1 − w)PMNT-wPSMNT ceramics [51]. This is very beneficial to the application of
large displacement devices, such as atomic force microscopy, long-distance laser ranging
calibration, submarine passive sonar, large displacement jacquard driver [52], and so on.
The proposed method could precisely control the ratio of the two crystalline phases, and
thus enhance the properties of the ceramics. Nevertheless, the process of this method is
complex with a long experimental period, which needs to be modified for commercializa-
tion, e.g., to simplify the process for Component B. Moreover, as the low relative dielectric
permittivity and high dielectric loss tangent of the materials are not suitable for miniature
high-frequency devices [53], the formulation design and performance of the ceramics need
to be further refined.
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4. Conclusions

The (1− w)[Pb(Mg1/3Nb2/3)0.67Ti0.33O3]-w[Pb1−1.5xSmx(Mg1/3Nb2/3)yTi1−yO3] piezo-
electric ceramics with identical stoichiometric chemical compositions and pure perovskite
structures were successfully prepared by sintering the mixture of two different crystalline
phases. The effects of mixing ratio w on the crystal structure, micromorphology, and
piezoelectric, dielectric, and ferroelectric properties of ceramics were studied. The results
showed that sintering the mixture of two different crystalline phases allows for precise
control of the crystalline phase ratio, resulting in improved piezoelectric and dielectric
properties. The electrical properties varied with w of Component A and Component B.
When w = 0.5, the piezoelectric and dielectric properties reached the optimal level in which
d33 = 1103 pC/N, kp = 0.66, and ε33/ε0 = 9154. This process could also be applied to the
synthesis of other series of piezoelectric ceramics such as Pb(Zr0.5Ti0.5)O3-based ceramics,
Pb(Ni1/3Nb2/3)O3-based ceramics, (Bi0.5Na0.5)TiO3-based ceramics, and K0.5Na0.5(NbO3)-
based ceramics. The proposed method is promising but complex, so process simplification
will be one of the future works to enhance the repeatability and show the potential of mass
production. Moreover, as the relative clamped permittivity of the material is related to the
configuration of high-frequency devices [54,55], the correlation between compositions and
clamped properties of ceramics will be studied.
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