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Simple Summary: Our study aims to understand the impact of acetate intervention at the systemic
level before a short period of cold exposure on brown adipose tissue in mice. The results show
that acetate may demonstrate a synergistic effect with cold exposure to induce obvious transcrip-
tional changes in brown adipose tissue. These analyses provided novel evidence for understanding
the regulatory effects of acetate on brown adipose tissue and highlighted its potential for obesity
treatment.

Abstract: Brown adipose tissue (BAT) exhibits remarkable morphological and functional plasticity
in response to environmental (e.g., cold exposure) and nutrient (e.g., high-fat diet) stimuli. Notably,
a number of studies have showed that acetate, the main fermentation product of dietary fiber in
gut, profoundly influences the differentiation and activity of BAT. However, the potential synergic
or antagonistic effects of acetate and cold exposure on BAT have not been well examined. In the
present study, the C57BL/6J mice were treated with acetate at the systemic level before a short period
of cold exposure. Physiological parameters including body weight, blood glucose, and Respiratory
Exchange Ratio (RER) were monitored, and thermal imaging of body surface temperature was
captured. Moreover, the transcriptome profiles of interscapular BAT were also determined and
analyzed afterwards. The obtained results showed that acetate treatment prior to cold exposure
could alter the gene expression profile, as evidenced by significant differential clusters between the
two groups. GO analysis and KEGG analysis further identified differentially expressed genes being
mainly enriched for a number of biological terms and pathways related to lipid metabolism and
brown adipose activity such as “G-protein-coupled receptor activity”, “cAMP metabolic process”,
“PPAR signaling pathway”, and “FoxO signaling pathway”. GSEA analysis further suggested that
activation status of key pathways including “PPAR signaling pathway” and “TCA cycle” were altered
upon acetate treatment. Taken together, our study identified the potential synergistic effect of acetic
acid with cold exposure on BAT, which highlighted the positive dietary and therapeutic aspects
of acetate.

Keywords: acetate; cold exposure; brown adipose tissue; RNA-seq analysis

1. Introduction

Obesity has emerged as a pressing public health concern, with 39% and 13% of
adults being classified as overweight and obese, respectively. Moreover, obesity has been
identified as a major contributor to the development of type 2 diabetes [1], dyslipidemia,
hypertension, coronary heart disease, stroke, and many types of cancer.
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Notably, major characteristics of obesity include hyperplasia and hypertrophy of
adipocytes in white adipose tissue, which has the capacity to store excessive energy. In-
terestingly, unlike well-known white adipose tissue, there exists another type of adipose
tissue in the human body known as brown adipose tissue, consisting mainly of brown
adipocytes [2]. Brown adipocytes are distinguished by their unique uncoupling capacity
mediated by mitochondrial brown fat uncoupling protein 1 (UCP-1). Increasing evidence
has revealed that brown adipose tissue is the most efficient energy-dissipating tissue, which
could produce 300 watts/kg of heat compared to 1 watt/kg in all other tissues [3]. There-
fore, increasing brown adipose tissue mass and/or its activity is expected to be a promising
strategy to relieve metabolic disorders and combat obesity [4]. Several transcriptional
factors (and co-factors) and pathways such as PPARs, C/EBPs, PGC-1, and cAMP sig-
naling have been identified as key regulators for activation and differentiation of brown
adipocytes [5–8].

Short-chain fatty acids (SCFAs) are organic acids containing 1–6 carbon atoms, which
are mainly produced by the fermentation of indigestible carbohydrates by colonic anaero-
bic bacteria, with acetic acid being the most abundant in circulation [9]. Studies already
revealed that acetate plays important roles such as regulating energy homeostasis, con-
trolling appetite, and improving obesity. However, there still lacks a universally accepted
consensus on the regulatory roles of acetate on brown adipose tissue [10]. For example, a
number of studies showed acetate intervention at the systemic level led to increased brown
adipose tissue content and activity. Sahuri-Arisoylu et al. demonstrated that intraperitoneal
injection of acetate could induce browning of the inguinal white adipose tissue and thus
enhance energy expenditure in diet-induced obesity [11]. H Yamashita et al. also found
that acetate may improve glucose tolerance and insulin resistance in mice via the AMPK
pathway [12]. These results suggest that acetate may promote the differentiation of brown
adipocytes and increase their thermogenic efficiency. However, there were certain studies
that reported the opposite findings that acetate may reduce the thermogenic capacity of
brown adipose tissue and inhibit the browning of adipose tissue. For example, Sun et al. re-
ported local acetate administration at the interscapular brown adipose tissue using a pump
implantation that reduced the activity of the brown adipose tissue and caused its whitening
in C57B6 mice [13]. The same group also identified a subpopulation of adipocytes in brown
adipose tissue that could hamper thermogenesis activity in a paracrine way by releasing
acetate [14].

Notably, cold exposure has been identified as a well-studied means to activate brown adi-
pose tissue and stimulate its glucose and lipid uptake through mitochondrial uncoupling [15–17].
The underlying mechanisms mainly involve the activation of the sympathetic nervous
system upon cold exposure, which activates the β-adrenergic receptor [18] and stimulates
the cAMP-dependent signaling pathways in brown adipocytes [19]. However, the potential
synergic or antagonistic effects of acetate and cold exposure (a well-known physiological
stimulus) on brown adipose tissue have not been well examined. Therefore, in the present
study, we determined the regulatory effects of acetate administration before a short period
of cold exposure on the interscapular brown adipose tissue in C57BL/6J mice.

2. Materials and Methods
2.1. Materials and Reagents

C57BL/6J mice and rodent diet with 10% kcal% fat (ND diet) was purchased from
Wu experiment Animal Co., Ltd. (Fuzhou, China). Sodium acetate was purchased from
Pharmaceutical Group Chemical Reagent Co., Ltd. (Shanghai, China). QIAzol Lysis
Reagent was purchased from QIAGEN (Hilden, Germany). Phosphate-buffered saline (PBS)
and normal saline were obtained from Servicebio (Wuhan, China). Hydrogen peroxide
(3%) was bought from the China National Pharmaceutical Group Chemical Reagent Co.,
Ltd. (Shanghai, China).
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2.2. Animals

After 7 days of acclimation, 5-week-old male C57BL/6J mice were divided into two
groups with 5 mice in each group and received the following intervention for 35 days:
(1) Cold Exposure (CE) group: mice with free access to normal drinking water and treated
with cold exposure (8 ◦C) for 5 days (Day 28–32, 8 h daily, 12:00–20:00); (2) Acetate_Per
Oral+Cold Exposure (Ace_po+CE) group: mice with free access to drinking water con-
taining 5% acetate and treated with cold exposure (8 ◦C) for 5 days (Day 28–32, 8 h daily,
12:00–20:00) (Figure 1). All mice were housed with a 12 h/12 h light/dark cycle (lights on
at 8:00~20:00) and free access to food. During the feeding period, the body weight, food
intake, and water intake of mice were monitored weekly.
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2.3. Metabolic Caging Analysis

On day 33, the mice were transferred into the metabolic cages for a 22 h metabolic
experiment (14:15~12:15) to measure O2 consumption and CO2 production in individ-
ual mice and calculate the corresponding Respiratory Exchange Ratio (RER) to reflect
energy expenditure.

2.4. Oral Glucose Tolerance Test (OGTT)

All mice were fasted overnight before blood was taken from the tail-end vein. During
OGTT, the fasting blood glucose of the mice was measured as the starting value (0 min),
and then a 10% glucose solution was administered orally. The blood glucose values of the
mice were recorded at 15 min, 30 min, 60 min, and 120 min. Glucose was measured by a
OneTouch Ultra blood glucose meter (Sinocare Inc., Changsha, China).

2.5. Measurement of Serum Lipid Profiles

Blood was collected by eyeball removal before cervical dislocation. After resting for
30 min, the serum was separated by centrifugation at 3000 rpm for 10 min. The obtained
serum was used to measure total triglycerides (TG), total cholesterol (TCHO), high-density
lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) using a
Hitachi 7600-110 automatic biochemical analyzer (Tokyo, Japan).

2.6. Dissection of Interscapular Brown Adipose Tissue (iBAT)

After CO2 anesthesia, mice were euthanized by cervical dislocation. The iBAT were dis-
sected and washed with phosphate-buffered saline (PBS) according to published guideline [20].
The tissues were transferred into cryogenic tubes and snap-frozen in liquid nitrogen, then
stored at −80 ◦C for subsequent analysis.
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2.7. Infrared Imaging

The mice were subjected to a 3 h exposure to a low-temperature environment (8 ◦C),
during which the mice had unrestricted access to food and water. After the exposure, the
mice were placed on a flat surface, and the thermal imaging of body surface temperature
was captured by a FLIR ONE Pro LT infrared thermal imaging camera (Teledyne FLIR LLC,
Wilsonville, OR, USA) and analyzed by FLIR Tools 2.2.2 software (Teledyne FLIR LLC,
Wilsonville, OR, USA).

2.8. RNA-Seq

The total RNA was extracted from adipose tissue using QIAzol Lysis Reagent. The
integrity of the RNA was confirmed using a Bioanalyzer 2100 (Agilent Technologies, Santa
Clara, CA, USA). Then, the cDNA library was constructed according to the procedures of
TruSeq RNA Library Prep Kit (Illumina, San Diego, CA, USA). RNA-seq was performed
on the Illumina HiSeq 1500 platform. For statistical analysis of differentially expressed
genes (DEGs), TPM was used for data normalization, the BH (FDR) method was applied
for multiple testing correction, and the DESeq2 was used for calculations. Genes that had a
corrected p-value < 0.05 and |log2FC| > 1 were considered as DEGs. A volcano plot was
used to visually display the distribution of the differential expression and p values of all
statistically tested genes, and the plot was constructed with the log2FC values on the x-axis
and −log10 (p-value) on the y-axis. The TBtools software (v1.120) was used to perform
gene clustering analysis and generate the heatmap of the DEGs. GO enrichment analysis
was conducted using the GO database, and only pathways with a p-value < 0.05 were
selected. KEGG Pathway enrichment analysis was performed by KOBAS. GSEA analysis
was performed using GSEA4.0.

2.9. Statistical Analysis

The experimental data were presented as mean ± Standard Deviation (SD). Normality
of the data was confirmed by the Kolmogorov–Smirnov test. The student’s t test or ANOVA
with Tukey post hoc tests were used for statistical analysis between groups. p < 0.05 was
considered as statistically significant. Microsoft Excel 2021 and Graphpad Prism 9 were
used for statistical analysis and data graphing.

3. Results
3.1. The Effects of Acetate Treatment on Physiological and Metabolic Characteristics of
Cold-Stimulated Mice

First, to confirm the cold-exposure murine model was established successfully, the
elevation of characteristic BAT gene (Ucp1) was determined and compared with normal
mice without cold exposure according to previous literature [21,22]. As expected, the char-
acteristic BAT gene Ucp1 significantly upregulated during cold exposure (Supplementary
Figure S1).

Next, as shown in Figure 2a, the treatment of acetate solution showed little impact on
body weight gain since the growth curves of body weight in both groups were almost iden-
tical before cold exposure. Consistently, as shown in Figure 2b, no significant differences
in food intake were observed between the two groups, indicating that the intervention of
acetate showed little impact on the appetite of mice. Notably, after cold exposure, the mice
body weight showed a significant decrease in Ace_po+CE group (p = 0.0229, b.w. at day
32 compared to b.w. at 28). Although a similar declining trend was also observed in the CE
group at day 32, however, the decrease did not reach statistical significance compared to
day 28 (p = 0.2110), suggesting the acetate pre-treatment may enhance energy expenditure
during cold exposure, thus resulting in more obvious body weight loss.

Next, the potential impact of acetate treatment on blood glucose level was determined.
As depicted in Figure 3a,b, the mice with acetate treatment exhibited a slight reduction
in blood glucose levels after glucose challenge both before and after cold exposure. The
analysis of the area under the curve (AUC) derived from the OGTT data also confirmed
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that the Ace_po+CE group had a significantly lower rise in blood glucose during the OGTT
(p < 0.05) when compared to CE group. In addition, the analysis also revealed that no
significant difference was found between the AUC values determined on day 25 (before
cold exposure) and on day 35 (after cold exposure) in both the control and treated groups
(Figure 3c).
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Notably, no significant difference in blood lipid levels was observed between these
two groups as shown in Figure 3d. Considering the mice in the current experiments were
fed with an ND diet, and all tested blood lipids were within the normal range [23], this
might be the reason that the acetate treatment before cold exposure showed no obvious
impact on the serum lipid profile.

To further explore the acetate treatment before cold exposure on the metabolic char-
acteristics of mice, the carbon dioxide production, oxygen consumption, and correspond-
ing Respiratory Exchange Ratio were measured by respiration chamber. As shown in
Figure 4a,b, the mice with both acetate treatment and cold exposure showed a higher peak
of V(CO2) and V(O2) during 19:15~5:45; moreover, the comparison of AUC shows that the
rate of carbon dioxide production and oxygen consumption in the Ace_po+CE group are
significantly higher than those in the CE group, indicating the mice in Ace_po+CE group
had higher levels of carbon dioxide production and oxygen consumption (i.e., higher levels
of total metabolic rate). Accordingly, the Respiratory Exchange Ratio (RER) level, which
reflected the metabolic substrate used, showed that the Ace_po+CE group had a lower RER
level than the CE group, suggesting more fat being used as metabolic substrates in the mice
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of the Ace_po+CE group. Taken together, the results indicate that acetate treatment before
cold exposure enhanced the metabolic activity of mice, which might be attributed to the
regulatory effects on BAT.
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To further determine the difference in thermogenesis ability between two groups, the
thermal imaging of body surface temperature was captured. As shown in Figure 5, the
body surface temperature of the Ace_po+CE group mice was higher than that of the CE
group, also indicating a possible increase in thermogenesis ability upon treatment.
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3.2. Transcripts Regulated by Acetate Treatment in Interscapular Brown Adipose Tissue

As shown in the volcanic plot (Figure 6a), 485 differentially expressed genes (DEGs)
(268 upregulated genes and 217 downregulated genes) were identified between iBAT sam-
ples isolated from the CE group and Ace_po+CE group based on the criteria of padjust < 0.05
and |log2FC| > 1. It is worth noting that several key genes involved in adipocyte differen-
tiation and metabolism were identified as DEGs, including Ucp1 (|log2FC| = 2.5), Pla2g2e
(|log2FC| = 3.4), Dbp (|log2FC| = 4.7), Aspg (|log2FC| = 2.4), and Nr1d (|log2FC| = 2.2).
Furthermore, cluster analysis of DEGs also clearly presented the distinct gene expression
profiling existing between two groups (Figure 6b), showing the obtained gene expression
profiles were highly divergent between two groups. Taken together, these results clearly
indicate that the acetate treatment may demonstrated a synergistic effect with cold ex-
posure to regulate the iBAT functions via influencing the gene expression profile at the
transcriptional level.
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Ace_po+CE group. (b) Cluster analysis of DEGs in each group of mice base on Deseq2. DEGs
with significantly downregulation (padjust < 0.05 and log2 FC > 1) was marked green; DEGs with
significantly upregulation (padjust < 0.05 and log2 FC < −1) was marked red. Dbp: D site-binding
protein; Ucp1: uncoupling protein 1; Aspg: asparaginase; Nr1d1: nuclear receptor subfamily 1,
group D, member 1; Pla2g2e: phospholipase A2, group IIE.

3.3. Gene Ontology Analysis and KEGG Enrichment of the Differentially Expressed Genes

Next, the identified DEGs were subjected to Gene Ontology (GO) analysis for func-
tional annotation. As shown in Figure 7a, the obtained results showed that among
the 491 significantly enriched GO terms, 23 GO terms were found to be related to lipid
metabolism and brown adipose activity. Among these terms, the “G-protein-coupled recep-
tor activity pathway and the lipid binding pathway” were classified as molecular function
(MF) pathways, while the remaining 21 pathways were biological process (BP) pathways.
Particularly, “long-chain fatty acid biosynthetic process”, “G-protein-coupled receptor
activity”, “cAMP metabolic process”, “lipid storage”, “response to fatty acid”, and “fat cell
differentiation” showed Rich factor > 0.1, suggesting that acetate may perform its function
mainly through these pathways. Only the G-protein-coupled receptor activity pathway
and the lipid binding pathway were classified as molecular function (MF) pathways, while
the remaining 21 pathways were biological process (BP) pathways.
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The KEGG pathway enrichment was next performed using KOBAS. As shown in
Figure 7b, between the CE group and Ace_po+CE groups, a total of 279 pathways were
enriched under the condition of p < 0.05, of which 13 pathways were related to lipid
metabolism, iBAT activity, and iBAT differentiation, including the classical pathways
like the “cAMP signaling pathway”, “FoxO signaling pathway”, and “PPAR signaling
pathway”, etc.

3.4. Gene Set Enrichment Analysis of the Differentially Expressed Genes

To further gain biological insight regarding the DEGs, gene set enrichment analysis
(GSEA) was also performed on the DEGs. As shown in Figure 8a–d, the analysis revealed
that four pathways closely associated with lipid metabolism and brown adipose activity
were significantly upregulated, including the Tricarboxylic acid (TCA) cycle digestion and
absorption of fatty acids, the Peroxisome proliferator-activated receptor (PPAR) signaling
pathway, and fatty acid degradation.
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(b) The enrichment result of fat digestion and absorption. (c) The enrichment result of the PPAR signal
pathway. (d) The enrichment result of fatty acid degradation. The colors (red to blue) represent the
decreasing trend of log2FC of genes. GSEA: Gene Set Enrichment Analysis; TCA cycle: tricarboxylic
acid cycle; PPAR: Peroxisome proliferator-activated receptor.

4. Discussion

Brown adipose tissue (BAT), as a specialized tissue dissipates energy into heat by
non-shivering thermogenesis, displays morphological and functional plasticity in response
to environment and pharmaceutical compounds stimulations. Recently, increasing number
of bioactive compounds were reported to possess the capability to enhance brown adipoge-
nesis. For instance, the activating effects of β3-adrenergic receptor agonists, rosiglitazone,
corticosteroids, atrial natriuretic peptide, nitric oxide, as well as cold exposure on BAT dif-
ferentiation and activation have been well-documented [18,24–27]. However, the potential
crosstalk between these stimuli was often overlooked.

In mammals, acetate is the most abundant short chain fatty acid (SCFA) in the colon
and systemic circulation. Notably, the health properties of acetate on body weight control
and energy homeostasis have been extensively studied in the last decades [28]. Studies
showed that acetate may prevent diet-induced body weight gain, counteracts adiposity,
improves glucose homeostasis, and enhances insulin sensitivity [29]. However, there also
exists evidence from animal studies showing that acetate promotes the development of
obesity and insulin resistance [30]. Indeed, the controversies in the outcomes regarding to
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role of acetate in the metabolic health have drawn great attention, which has been referred
to as ‘acetate discrepancies’ by some scholars [10].

Interestingly, these controversies were also found in studies regarding the role of
acetate intervention on brown adipose tissue/brown adipocytes. For instance, abun-
dant animal and limited human in vivo data suggest increasing the acetate availability
via dietary sources may promote brown adipogenesis [31]. Several animal studies also
highlighted the potential enhancing effects of oral acetate supplementation on energy
expenditure via BAT [29]. Here, our study also suggested that that pre-treatment of acetate
via drinking water may further enhance the effects of cold exposure on BAT, suggest that
acetate intervention at the systemic level may promote the activation of BAT.

However, recently convincing evidence obtained from single-cell sequencing data
suggested that the direct impact of acetate on brown adipocytes and brown adipose tissue
is opposite. Local acetate administration at the interscapular brown adipose tissue even re-
duced the activity of the brown adipose tissue and caused its whitening [13]. Therefore, it is
reasonable to presume the observation in our study that acetate administration via drinking
water further enhanced the characteristic BAT gene upon cold exposure may mainly result
from the overall impact of acetate on the whole body. Notably, it is plausible that acetate
administration at the systemic level or gut microbially-derived acetate could affect host
metabolism via a wide range of organs such as the central nervous system [32], liver [33],
skeletal muscle [34], pancreas [35], and adipose tissue, and regulate a variety of physiologi-
cal processes such as appetite regulation [36], lipid and glucose metabolism (e.g., glucose
uptake, glycogen synthesis, lipogenesis and lipolysis, etc.) [37], insulin secretion [38], and
adipokine secretion, etc. Indeed, as the important metabolites of anaerobic bacteria in gut,
the acetate was also implied as a key regulator of intestinal homeostasis [39], intestinal
barrier integrity [40], intestinal inflammation [41], etc. All these impacts could profoundly
affect the body’s metabolism and thus influence the function of brown adipose tissue.
Therefore, acetate intervention at the systemic level may exert different or even opposite
functions compared to direct administration of acetate at specific organ. Indeed, a determi-
nation of local acetate level (e.g., at BAT) upon acetate intervention at the systemic level
could provide useful information to understand its regulatory functions.

Notably, during the differentiation of preadipocytes into brown adipocytes, PPARs
and C/EBPs are key activators of adipogenesis [5,42]. For instance, PPARγ could serve
as a decisive factor in adipocyte differentiation [43] by regulating the expression of lipid
metabolism-related genes and promoting the accumulation of triglycerides [7]. Meanwhile,
C/EBPs regulate adipocyte differentiation by affecting glucose uptake and controlling the
expression of lipogenic genes [6]. In addition, cAMP signaling networks (e.g., involving
cAMP-dependent protein kinase, cAMP-responsive element-binding protein, etc.) also
play crucial roles in stimulating adipogenesis and thermogenesis of brown adipocytes [44],
while Foxo1 was also found to exert an important role in coupling insulin signaling to
adipocyte differentiation [29]. Here, our GO analysis, KEGG pathway enrichment analysis,
and GSEA analysis also highlighted that DEGs in BAT upon acetate treatment were closely
related to these key pathways for brown adipocytes differentiation.

5. Conclusions

In summary, our study showed that acetate treatment via drinking water prior to a
short period of cold exposure could induce obvious transcriptional changes in BAT. Particu-
larly, the identified DEGs included a number of BAT-characteristic genes, suggesting there
might be a potential synergistic effect between acetate pre-treatment and cold exposure
regarding BAT activation. The underlying mechanisms may involve the upregulating
signaling pathways governing adipogenic differentiation such as the cAMP signaling path-
way, PPAR signaling pathway, etc. This finding may provide novel evidence for further
understanding the roles of acetate intervention on BAT.
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