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Abstract

Here, the stability region of grid-connected VSC with phase locked loop (PLL) is estimated.
First, the conservative stability region is derived via the classical Lyapunov method. Then
an energy function is constructed as the general stable condition for the VSC system. Based
on the constructed energy function, two estimation methods of the system stability region
by approximation of phase trajectory are proposed. The stability regions by the proposed
methods are less conservative than that by the classical Lyapunov method. A stability eval-
uation function for the initial states of the VSC system is further proposed based on the
estimated stability region. Time-domain simulations verify the correctness of the proposed
methods and the effectiveness of the stability evaluation function.

1 INTRODUCTION

Facing the dual pressure of the environmental problems and
the energy crisis, higher penetration of renewable energies in
modern power systems is to be framed in the foreseeable future
[1]. Unlike the traditional synchronous generators (SGs), renew-
able energy generators are interfaced with the power grid via
voltage source converters (VSCs) for maximum utilization of
wind or solar energy [2]. Generally, the grid-connected VSCs
are controlled as grid-following converters where the phase
locked loop (PLL) based vector current control (VCC) method
is adopted [3]. It has been found that such control dependent
synchronizing mechanism may fail when the system is under
large disturbances [4] or when the VSC is integrated into very
weak ac grids [5], which will greatly challenge the power system
stability. It is therefore critical to reveal the instability mecha-
nism and map the stability region of the grid-connected VSC
with PLL.

Whether the system would maintain synchronization stabil-
ity after a given disturbance can be checked by time-domain
simulation [6]. System dynamic behaviours are obtained via
numerically solving the differential algebraic equations (DAEs)
and the system stability can be evaluated by checking whether
the state variables approach to a steady state or not. In [7], it
is found with time-domain simulations that wind farm might
trip off under the severe short-circuit faults since PLL fails
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to track the grid phase. Accurate system stability region can
be mapped via the repetitive simulations. However, once sys-
tem topology and operating points change, the system stability
region needs to be re-calculated, which is ineffective and time-
consuming. Moreover, the system instability mechanism cannot
be well explained via simulation studies.

To carry out the synchronization stability analysis of VSC
with PLL, a lot of efforts have been devoted into the mod-
elling of grid-connected VSCs. In [8], a unified impedance
model of grid-connected VSC is proposed considering the
dynamic influences of PLL and current control and the stability
impact of PLL and its frequency coupling effect are revealed.
However, the second-order PLL model in [8] neglects the
non-linear dynamic behaviours of PLL and its instability mech-
anism cannot be fully investigated. [9–11] focus on developing
reduced-order nonlinear models of the system with PLL-based
VSC. In [9], a reduced second-order model with high accuracy
for the synchronization stability analysis of grid-connected VSC
with PLL is proposed. Further, [10] and [11] show that when
analyzing the synchronization stability of the PLL-based VSC,
the dynamics of the inner current loop can be overlooked since
the bandwidth of the PLL is designed much lower than that of
the inner current loop.

Lots of stability analysis methods are applied based on the
second-order model of PLL-based VSC to reveal the system
instability mechanism. The equal area criterion (EAC), which is
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a traditional straightforward method for synchronization stabil-
ity analysis of SG dominated system, are often considered as an
extended approach for the stability analysis of VSC interfaced
system [12, 13]. In [14, 15], EAC is applied in the synchroniza-
tion stability analysis of the VSC with PLL. Ref. [14] provides
a clear understanding of the system instability mechanism that
synchronization instability may be caused by insufficient equiva-
lent decelerating area. Even though the analytical stability region
can be obtained by EAC, the damping effect in the reduced
model is overlooked when calculating the maximum decelera-
tion area and its impact on system stability cannot be analyzed
by EAC. Ref. [16] points out that the conclusion based on
the EAC will be inaccurate when the transient stability effect
of the real applicable PLL is fully considered. Moreover, Ref.
[17] proposes an improved equal area criterion considering the
uncertainty of damping while the derived stability region is
rather conservative.

Lyapunov method, on the other hand, is deemed as one
effective analytical method to analyze the nonlinear system [18],
where the conservative stability region can be derived by con-
structing proper Lyapunov function. For traditional ac system,
[19] has proved that EAC and Lyapunov method are identical
for the two-machine system ignoring the damping effect. How-
ever, for the stability analysis of the grid-connected VSC with
PLL, how to construct a proper Lyapunov function for the
second-order model with nonlinear damping term poses a big
challenge. In [20], a proper Lyapunov function V(x) is designed
for PLL based grid-following VSCs and the stability region is
derived. However, the derived stability region is rather conser-
vative for real industry application due to the harsh conditions
of the Lyapunov theorem. In [21], the energy function model
of the grid-forming and grid-following controlled converters
are proposed, and the stability boundary for the grid-following
controlled converters is derived under positive damping condi-
tion. Yet the system stability when the system state lies inside
the negative damping region cannot be evaluated.

Compared with the direct methods of the EAC method and
the Lyapunov’s method, phase portrait method is an effective
method to analyze the second-order nonlinear system. The sys-
tem state variables are plotted as system trajectory on the phase
plane and the system stability can be easily evaluated by check-
ing whether the trajectory deviates the stable equilibrium point
(SEP) or not [15, 22]. The impacts of the VSC controller settings
on system stability are analyzed in [22] by comparing the phase
trajectories of the system under certain disturbances and it is
revealed that increasing the damping ratio or the settling time of
the PLL can enhance the transient stability of the VSC system.
But the critical damping ratio still needs to be obtained via an
iterative calculation procedure and the geometric characteristics
of system trajectory are not fully considered.

Based on the geometric characteristic of the phase trajectory
of grid-connected VSC with PLL, two stability region estima-
tion methods using piece-wise lines to approximate the stable
system trajectories are proposed here. The conservation of the
proposed estimations is guaranteed since the energy change of
stable system trajectories over one cycle is less than that of
the constructed curves. Unlike the EAC method that fails to

FIGURE 1 Scheme of one VSC connected to the infinite bus

FIGURE 2 Control scheme of PLL

analyze the system damping effect, both the positive damping
effect and the negative damping effect of PLL are thoroughly
considered by the proposed methods. Accordingly, the stabil-
ity region derived by the proposed methods is more reliable
than that by the EAC method. The derived analytical stabil-
ity region by the proposed method is proved to be larger than
that by Lyapunov method. Then, the energy function-based sta-
bility evaluation is further proposed. The effectiveness of the
calculation of stable regions and the correctness of the evalu-
ation of system stability are well demonstrated and verified via
time-domain simulation results.

2 SYSTEM MODELLING

As shown in Figure 1, the studied power system consists of one
VSC connected to the infinite bus through the transmission line.
uabc

p is the voltage of the point of common coupling (PCC) and

iabc
c is the current flowing through the converter. Rl and Ll are
the line resistance and inductance, respectively. uabc

s is the voltage
of the infinite source with the fixed angular speed of 𝜔s .

2.1 Dynamic modelling

Normally, the grid-connected VSC relies on PLL to keep the
synchronism with the infinite system. As shown in Figure 2, this
is achieved by sustaining the q-axis voltage of the PCC as zero
during the disturbances. The rotating speed of the dq reference
frame is 𝜔, and the d-axis leads uabc

s with the phase of 𝜃. Using
the power invariant Park Transformation, uabc

s , uabc
p and iabc

c are

transferred in dq-axis reference frame as u
dq
s , u

dq
p and i

dq
c .

ud
s = UsL cos𝜃, u

q
s = −UsLsin𝜃 (1)

where UsL is the rms value of the line-to-line voltage of uabc
s .

Generally, dynamics of inner current control are much faster
than PLL. As a result, when analysing the large disturbance
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732 TANG ET AL.

stability of VSC embedded power system, the state variables
of inner current control are reduced to their steady-state val-

ues, id
c ≡ i

dre f
c , i

q
c ≡ i

qre f
c . Accordingly, the model of the studied

system is described as follows.

⎧⎪⎪⎨⎪⎪⎩

d𝜃

dt
= 𝜔 − 𝜔s

d𝜔

dt
= K PLL

P

du
q
p

dt
+ K PLL

I u
q
p

(2)

where,

u
q
p − u

q
s = Rl i

qre f
c + 𝜔Ll i

dre f
c (3)

Substituting (1) and (3) into (2), the dynamic model of the
studied system can be expressed as:

⎧⎪⎪⎨⎪⎪⎩
d𝜃

dt
= �̄�

d �̄�

dt
=

C

M
−

UsL

M
sin𝜃 −

D (𝜃)
M

�̄�

(4)

where,

�̄� = 𝜔 − 𝜔s , M =
1 − K PLL

P Ll i
dre f
c

K PLL
I

, D (𝜃) = C2 cos𝜃 −C1

C = 𝜔s Ll i
dre f
c + Rl i

qre f
c , C1 = Ll i

dre f
c , C2 =

K PLL
P

K PLL
I

UsL

2.2 Stable equilibrium point of system

One equilibrium point of the final system after large distur-
bances is obtained from (4).

𝜃s = arcsin
C

UsL
, �̄� = 0 (5)

Without losing generality, the equilibrium point (𝜃s , 0) is
shifted to the origin with a change of variables as follows.

x = 𝜃 − 𝜃s , y = �̄� (6)

Accordingly, system model (4) is rewritten as:

⎧⎪⎪⎨⎪⎪⎩
dx

dt
= y

dy

dt
= −g (x ) − f (x ) y

(7)

where,

g (x ) = −
C

M
+

UsL

M
sin (x + 𝜃s ) , f (x )

=
C2cos (x + 𝜃s )

M
−

C1

M

Equation (7) is the classical Liénard System. Moreover, the
term f (x ) is considered as the equivalent damping for the sys-
tem. To ensure the origin as one stable equilibrium point (SEP),
small-signal stability of the studied system at the origin should
be satisfied. Linearizing the system model of (7) around the
origin, [

d (Δx ) ∕dt

d (Δy) ∕dt

]
=

[
0 1

−g′ (0) − f (0)

] [
Δx

Δy

]
(8)

The characteristic function of (8) is obtained as follows:

s2 + f (0) s + g′ (0) = 0 (9)

Accordingly, the condition that ensures the small signal
stability of the origin is derived as follows:

f (0) > 0, g′ (0) > 0 (10)

3 GENERALIZED ENERGY
FUNCTION AND GENERAL STABLE
CONDITION

The generalized energy function for system (7) is defined in this
section. Then the domain where the defined energy function
can be deemed as a Lyapunov function is derived. Then, the
general stable condition based on trajectory energy is proposed.

3.1 Generalized energy function and the
domain by Lyapunov’s method

One energy function for the second-order Liénard System of
(7) is defined as follows:

E (x, y) =
y2

2
+

x

∫
0

g (s) ds = F (y) + G (x ) (11)

where the first term F (y) = y2 ∕2 corresponds to the system
kinetic energy and the second term G (x ) = ∫ x

0
g(s)ds relates

to the system potential energy.
The generalized energy function in (11) is a natural Lyapunov

function candidate for system (7). Clearly, E (0, 0) = 0. Based
on Lyapunov’s second theorem, a domain DLy ⊂ ℝ2 around the
origin needs to be defined such that,

E (x, y) > 0, ∀ (x, y) ∈ D − {0} (12)
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TANG ET AL. 733

dE

dt
= g (x ) y + y ⋅

[
−g (x ) − f (x ) y

]
= − f (x ) y2 ≤ 0,

∀ (x, y) ∈ D
(13)

Considering that F (y) is always nonnegative, for the integral
form G (x ) = ∫ x

0
g(s)ds to be positive definite, there is:

xg (x ) > 0 ⇒ (−𝜋 − 2𝜃s ) < x < (𝜋 − 2𝜃s ) (14)

Then in the domain of {(x, y)| − 𝜋 − 2𝜃s < x < 𝜋 −

2𝜃s , y ∈ ℝ}, E (x, y) is ensured to be positive-definite for all
(x, y) ≠ (0, 0). Moreover, the condition of (13) implies,

f (x ) ≥ 0

⇒
(
−arccos

(
C1

C2

)
− 𝜃s

) ≤ x ≤ (
arccos

(
C1

C2

)
− 𝜃s

) (15)

Namely, in DLy, the equivalent damping f (x ) should be non-
negative.

Taking the intersection of the domains in (14) and (15), the
domain DLy is derived as:

DLy = {(x, y) |x1 ≤ x ≤ x2, y ∈ ℝ} (16)

where x1 = −arccos(C1∕C2) − 𝜃s and x2 = arccos(C1∕C2) −
𝜃s .

Accordingly, within the defined domain DLy, the general
energy function E (x, y) is a valid Lyapunov function and by
the Lyapunov’s second theorem we conclude that the origin is
asymptotically stable.

3.2 General stable condition

Since the system energy is defined in (11), consider one sys-

tem trajectory
⌢

PQ from Point P (xP , yP ) at time tP to Point
Q(xQ , yQ ) at time tQ , the energy of Point Q can be calculated

by the integration of (13) along
⌢

PQ:

EQ = EP + ∫⌢
PQ

dE (x, y)

dt
dt = EP − ∫

tQ

tP

f (x ) y2dt (17)

where EP and EQ are the energy of Point P and Point Q, respec-

tively. Accordingly, the trajectory energy change along
⌢

PQ is
given by:

E⌢
PQ
= EQ − EP = −∫

tQ

tP

f (x ) y2dt (18)

For any trajectory starting inside the system stability region
with an initial energy E (x, y), it will finally converge to the ori-
gin and its energy will accordingly approach to zero, E (0, 0) =
0. In domain DLy defined by Lyapunov’s method, the trajec-
tory energy is always decreasing based on (13). However, for
a trajectory moves in and out of domain DLy, there is an
energy exchange with the trajectory losing energy inside DLy

and gaining energy outside DLy.

FIGURE 3 System trajectory Γ that overrides DLy

In fact, as shown in Figure 3, if the net energy change for
a trajectory Γ from Point A(0, yA ) to Point A′(0, yA′ ) over one
cycle after the quasi-period denoted as T is negative,

∫
tA+T

tA

dE

dt
dt = EA′ − EA = E ⌢

AA′
< 0 (19)

then the trajectory Γ is ensured to be inside the actual stability
region.

Proof.

E ⌢

AA′
= EA′ − EA =

y2
A′

2
−

y2
A

2
< 0 (20)

⇒ ||yA′ || < ||yA
|| (21)

Since a trajectory of an autonomous planar system that is not
a closed orbit won’t intersect, the trajectory Γ is ensured to con-
verge to the origin and the system maintains stable. Accordingly,
Γ is identified to be inside the actual stability region. End

Divide the energy change in (19) into two parts,

∫
tA+T

tA

dE

dt
dt = ΔE+ + ΔE− (22)

where,

⎧⎪⎪⎨⎪⎪⎩
Δ E− = ∫

tM

tA

[
− f (x ) y2

]
dt + ∫

tP

tN

[
− f (x ) y2

]
dt

+∫
tA+T

tQ

[
− f (x ) y2

]
dt } < 0

Δ E+ =

{
∫

tN

tM

[
− f (x ) y2

]
dt + ∫

tQ

tP

[
− f (x ) y2

]
dt

}
> 0.
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734 TANG ET AL.

FIGURE 4 Approximation of
⌢

AA′ with horizontal lines

ΔE+ denotes the increase of the trajectory energy and ΔE−

denotes the decrease of the trajectory energy. In the area of
ΔE−, the equivalent damping f (x ) > 0 always holds and as for
the area of ΔE+, f (x ) > 0. It is indicated that ΔE− and ΔE+

denote the positive and negative damping effect on the sys-
tem stability, respectively. If ΔE− + ΔE+ ≤ 0, the total system
damping presents positive, and the system is stable.

The condition of (19) reveals the general property of any
stable trajectory Γ. Obviously, it does not require the whole tra-
jectory Γ lies inside the positive damping area where f (x ) ≥ 0.

4 ESTIMATION OF THE DOMAIN
SATISFYING THE GENERAL STABLE
CONDITION BY TRAJECTORY
APPROXIMATION

In order to find the domain satisfying the condition of (19), two
estimation methods are proposed by constructing lines Li to

approximate any system trajectory
⌢

AA′ over one cycle. Accord-
ing to the generalized stable condition of (19), if the energy
change of the constructed lines Li satisfies:

∫ ⌢

AA′

(dE∕dt ) ⋅ dt ≤
n∑

i = 1
∫

Li

(dE∕dt ) ⋅ dt ≤ 0 (23)

then the approximated trajectory
⌢

AA′ is ensured to be inside the
system stability region. Accordingly, the dynamic characteristics
of system (7) shown as the geometric properties in its phase por-
trait are captured by the constructed lines Li , and the analytical
stability domain with less conservation can be derived from:

n∑
i = 1

∫
Li

(dE∕dt ) ⋅ dt = 0 (24)

4.1 Trajectory approximation by horizontal
lines

As shown in Figure 4, one system trajectory
⌢

AA′ over one cycle
in solid blue is divided into four separated parts, namely arc

⌢

AMB , arc
⌢

BNC , arc
⌢

CPD, and arc
⌢

DQA′, where Point M ,
Point N , Point P and Point Q are the four intersect points of

the trajectory
⌢

AA′ and the positive damping area [x1, x2].

xM ,N = x2 , xP ,Q = x1 , f
(
xM ,N ,P ,Q

)
= 0 (25)

The energy change for system trajectory
⌢

AA′ over one cycle
satisfies,

E ⌢

AA′
= EA′ − EA

= E ⌢
AMB

+ E ⌢
BNC

+ E ⌢
CPD

+ E ⌢

DQA′
(26)

We first consider the arc
⌢

AMB. As demonstrated in Figure 4,
one simple horizontal line LEF in black solid is constructed

passing Point M to approximated the arc
⌢

AMB,

LEF ∶ ỹ = yM (0 < x < xB ) (27)

where yM is value of y for Point M . Point E is the intersect point
of LEF and y-axis. Point F is the intersect point of LEF and line
x = xB .

Next, we prove that the energy change of arc
⌢

AMB is less
than that of the constructed LEF irrespective of yM , namely,

E ⌢
AMB

< ELEF
, ∀yM ∈ ℝ (28)

Proof. E ⌢
AMB

can be re-written as:

E ⌢
AMB

= E ⌢
AM

+ E ⌢
MB

= ∫ ⌢
AM

dE

dt
dt+∫ ⌢

MB

dE

dt
dt (29)

Making substitutions from (13), E ⌢
AM

and E ⌢
MB

in (29) can be
expressed as follows based on the relation of ydt = x.

E ⌢
AM

= −∫ ⌢
AM

f (x ) y2dt = −∫
x2

0
f (x ) ydx, f (x ) > 0

(30)

E ⌢
MB

= −∫ ⌢
MB

f (x ) y2dt = − ∫
xB

x2

f (x ) ydx, f (x ) < 0

(31)
The following Inequalities naturally hold.

⎧⎪⎪⎨⎪⎪⎩
E ⌢

AM
< −yM ∫

x2

0
f (x ) dx = ELEM

( f (x ) > 0)

E ⌢
MB

< −yM ∫
xB

x2

f (x ) dx = ELMF
( f (x ) < 0)

(32)
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TANG ET AL. 735

Combining the two Inequalities in (36), the value of E ⌢
AMB

satisfies,

E ⌢
AMB

= E ⌢
AM

+ E ⌢
MB

< −yM ∫
xB

0
f (x ) dx = ELEM

+ ELMF
= ELEF

(33)

End

Using the similar technique, Line GH , Line IJ and Line LK

are constructed to approximate arc
⌢

BNC , arc
⌢

CPD, and arc
⌢

DQA′. As a result, the following inequalities hold.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

E ⌢
BNC

< yN ∫
xB

0
f (x ) dx

E ⌢
CPD

< yP ∫
0

xD

f (x ) dx

E ⌢

DQA′
< −yQ ∫

0

xD

f (x ) dx

(34)

Based on (33) and (34), the value of E ⌢

AA′
satisfies:

E ⌢

AA′
= E ⌢

AMB
+ E ⌢

BNC
+ E ⌢

CPD
+ E ⌢

DQA′

< ELEF
+ ELGH

+ ELIJ
+ ELLK

= (yN − yM )∫
xB

0
f (x ) dx +

(
yP − yQ

)
∫

0

xD

f (x ) dx

(35)

Obviously, in (35), (yN − yM ) < 0 and (yP − yQ ) < 0 always
hold. Hence, if the following Inequality holds,

∫
xB

0
f (x ) dx ≥ 0, ∫

0

xD

f (x ) dx ≥ 0 (36)

then the energy change of the constructed lines is negative. As

a result, E ⌢

AA′
< 0 and

⌢

AA′ is inside the stability region.

The intersect points of the approximated stability system tra-

jectory
⌢

AA′ and the x-axis (namely, Point B and Point D) can
be directly obtained based on the condition (24).

∫
xB,D

0
f (x ) dx = 0 ⇒ x = xB,D (37)

Accordingly, the energy change over a cycle for any trajectory
within the domain:

Dh = {(x, y) |xh
D
≤ x ≤ xh

B
} (38)

is ensured to be negative, where the superscript h denotes the
horizontal line approximation method.

FIGURE 5 Approximation of
⌢

AA′ with tangent lines

4.2 Trajectory approximation by tangent
lines

As shown in Figure 5, one tangent Line MF is utilized to

approximate the arc
⌢

MB instead of the horizontal line such that
a larger conservative stability region can be obtained. Point F is
the intersection of tangent Line MF and Line x = xB .

The constructed function of Line EM and Line MF is:

ỹ =

⎧⎪⎨⎪⎩
yM (0 < x < xM )

−
g (x2)

yM

(x − x2) + yM (x2 < x < xB )
(39)

where −g(x2)∕yM is the slope of arc
⌢

MB at Point M . Due to
the convexity of the system trajectory, Line MF is above the arc
⌢

MB, and it implies,

E ⌢
MB

= ∫
xB

x2

− f (x ) ydx

< ∫
xB

x2

− f (x )
[
−

g (x2)

yM

(x − x2) + yM

]
dx

(40)

Combining (30) and (40):

E ⌢
AMB

< yM

[
−∫

xB

0

f (x ) dx +
g (x2 )

y2
M

∫
xB

x2

f (x ) (x − x2 ) dx

]
(41)

Due to the negative damping effect in the region of [x2, xB],

the trajectory energy increases along arc
⌢

MB. It follows:

EM =
y2
M

2
+ G (x2) < EB = G (xB )

⇒ y2
M
< 2

[
G (xB ) − G (x2)]

(42)
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736 TANG ET AL.

Moreover, since f (x ) < 0 within [x2, xB],

∫
xB

x2

f (x ) (x − x2) dx < 0 (43)

Based on (42) and (43), it holds that:

g(x2 )

y2
M

∫
xB

x2

f (x ) (x − x2) dx

<
g (x2)

2
[
G (xB ) − G (x2)] ∫

xB

x2

f (x ) (x − x2) dx

(44)

Combining (41) and (44), the value of E ⌢
AMB

satisfies:

E ⌢
AMB

<

[
yM − ∫

xB

0
f (x ) dx

+
g (x2)

2
[
G (xB ) − G (x2)] ∫

xB

x2

f (x ) (x − x2) dx

] (45)

Using the similar technique, the horizontal Line GN and the

tangent Line LH are constructed to approximate the arc
⌢

BNC .
According to (41), the following Inequality holds,

E ⌢
BNC

< yN

[
−∫

0

xB

f (x ) dx +
g (x2 )

y2
N

∫
x2

xB

f (x ) (x − x2 ) dx

]
(46)

Considering that the energy of Point N can be calculated
from the energy of Point B,

EN = EB − ∫
xN

xB

f (x ) ydx (47)

the following Inequalities are derived.

y2
N

2
+ G (xN ) > G (xB ) − yN ∫

xN

xB

f (x ) dx

⇒ y2
N
+ 2

[
∫

xN

xB

f (x ) dx

]
yN + 2

[
G (x2) − G (xB )] > 0

⇒ yN

⟨
kN

⟨
0 ⇒ y2

N

⟩
k2

N

⟩
0

(48)
where,

kN = ∫
xB

x2

f (x ) dx

−

√√√√√[
∫

xB

x2

f (x ) dx

]2

+ 2
[
G (xB ) − G (x2)]

Substituting the y2
N

in (46) with k2
N

,

E ⌢

BNC
< yN

[
−∫

0

xB

f (x ) dx +
g (x2)

k2
N

∫
x2

xB

f (x ) (x − x2) dx

]
(49)

Obviously,

k2
N
> 2

[
G (xB ) − G (x2)]

Combing (45) and (49), the energy change over the right part
of the system trajectory denoted as E ⌢

ABC
satisfies,

E ⌢
ABC

= E ⌢
AMB

+ E ⌢
BNC

< (yM − yN )

[
∫

0

xB

f (x ) dx +
g (x2 )

k2
N

∫
xB

x2

f (x ) (x − x2 ) dx

]
(50)

Similarly, the energy change over the left part of the system
trajectory denoted as E ⌢

CDA′
satisfies,

E ⌢

CDA′
= E ⌢

CPD
+ E ⌢

DQA′

<
(
yQ − yP

)[
∫

xD

0

f (x ) dx +
g (x1)

k2
Q

∫
x1

xD

f (x ) (x − x1) dx

]
(51)

where,

0 < yQ < kQ

kQ = ∫
xD

x1

f (x ) dx+

√√√√√[
∫

x1

xD

f (x ) dx

]2

+ 2 [G (xD ) − G (x1)]

According to (50) and (51), if the following Inequalities hold:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[
∫

xB

0
f (x ) dx −

g (x2)

k2
N

∫
xB

x2

f (x ) (x − x2) dx

]
≥ 0

[
∫

0

xD

f (x ) dx −
g (x1)

k2
Q

∫
x1

xD

f (x ) (x − x1) dx

]
≥ 0

(52)

Then E ⌢

AA′
< 0 and trajectory

⌢

AA′ is inside the stability
region.
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TANG ET AL. 737

FIGURE 6 Stability regions by Lyapunov method and horizontal line
approximation

Therefore, the derived analytical conservative domain satisfy-
ing the condition of (19) is obtained as:

∫
xB,D

0
f (x ) dx −

g (x2)

k2
N

∫
xB,D

x2

f (x ) (x − x2) dx = 0

⇒ x = xB,D

(53)

Similarly, the energy change over a cycle for any trajectory
within the domain:

Dt = {(x, y) |xt
D
≤ x ≤ xt

B
} (54)

is ensured to be negative, where the superscript t denotes the
tangent line approximation method.

4.3 Comparison of DLy, Dh and Dt

The domain DLy = {(x, y)|x1 ≤ x ≤ x2} by Lyapunov’s
method requires the equivalent damping f (x ) to be positive.
As shown in Figure 6, this requirement is relaxed by the pro-
posed horizontal line approximation method. In the domain
of Dh = {(x, y)|xh

D
≤ x ≤ xh

B
}, only the total damping effect,

namely the integral of f (x ) over a cycle, is required to be
positive.

f (x ) ≥ 0

⇒

⇐

⎧⎪⎪⎨⎪⎪⎩
∫

xB

0
f (x ) dx ≥ 0

∫
0

xD

f (x ) dx ≥ 0

(55)

Accordingly, the derived region Dh is less conservative than
DLy, namely, DLy ⊂ Dh.

Moreover, since:

−
g (x2)

k2
N

∫
xB

x2

f (x ) (x − x2) dx > 0,

−
g (x1)

k2
Q

∫
x1

xD

f (x ) (x − x1) dx > 0

always hold, it follows:

⎧⎪⎪⎨⎪⎪⎩
∫

xB

0
f (x ) dx ≥ 0

∫
0

xD

f (x ) dx ≥ 0

⇒

⇐

⎧⎪⎪⎨⎪⎪⎩
∫

xB

0
f (x ) dx −

g (x2)

k2
N

∫
xB

x2

f (x ) (x − x2) dx ≥ 0

∫
0

xD

f (x ) dx −
g (x1)

k2
Q

∫
x1

xD

f (x ) (x − x1) dx ≥ 0

(56)

Accordingly, the region Dt by tangent line approximation
method further reduces the conservation of Dh.

5 STABILITY REGION ESTIMATION
BY THE GENERALIZED ENERGY
FUNCTION

Based on the generalized energy function, the actual system sta-
bility region is estimated in this section using the domain DLy by
Lyapunov’s method and the domain Dh and Dt by the proposed
trajectory approximation methods.

5.1 Stability region estimation with
Lyapunov’s method

Denote the actual stability region of the origin for system (7) as
RA. It should be noted that DLy is not an estimate of RA since
DLy is unbounded. Using LaSalle’s Theorem, one Lyapunov sur-
face ΩLy, which is a compact positively invariant subset of DLy,
is chosen as an estimate of RA.

�Ly = {x, y ∈ ℝ|E (x, y) ≤ E (x2, 0)} (57)

where E (x2,0) is the defined generalized trajectory energy of
Point (x2,0). It can be seen that once the value of energy surface
E (x2,0) is rather small, the estimateΩLy will be too conservative
for realistic application.

5.2 Stability region estimation with
trajectory approximation

A trajectory initially starting from the region of Dh,t =

{x, y ∈ ℝ|xD ≤ x ≤ xB} might move from one energy surface
E (x, y) = c1 to a higher energy surface E (x, y) = c2 where
c2 > c1 since Dh or Dt consists the negative damping area. This
problem does not arise when the stability region is estimated by
a compact positively invariant subset of Dh,t ; that is, a compact
set Ω ⊂ Dh,t such that every trajectory starting in Ω stays in Ω
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738 TANG ET AL.

for all future time. The simplest such estimation is the set:

� =
{

(x, y) ∈ Dh,t
|| E (x, y) ≤ c

}
(58)

Normally, the disturbances or the initial values for the studied
dynamic system appear in the first quadrant in the phase plane.
Therefore, the estimate of the actual stability region is chosen
as:

� =
{

x ∈
[
0, xB]||| E (x, y) ≤ Ẽ

}
(59)

where the energy boundary Ẽ can be derived from the minimal
energy of the system over the region [0, xB].

According to (13), the minimal energy in the first quadrant of
the phase plane is the energy of Point M . Since

EM =
y2
M

2
+ G (x2) = G (xB ) + ∫

xB

x2

f (x ) ydx

> G (xB ) + yM ∫
xB

xM

f (x ) dx

(60)

It implies:

yM > kM > 0 (61)

where,

kM = ∫
x2

xB

f (x ) dx

+

√√√√√[
∫

xB

x2

f (x ) dx

]2

+ 2
[
G (xB ) − G (x2)] (62)

Combing (60) and (61):

EM > k2
M
+ G (x2) (63)

Accordingly, the energy boundary in (59) is chosen as:

Ẽ =
k2

M

2
+ G (x2) (64)

It should be noted that the kM in (62) is a function of xB

obtained from (37) or (53), and as a result, the energy boundary
Ẽ is calculated by xh

B
or xt

B
.

Ẽxh
B
=

1

2
k2

M

|||xh
B

+ G (x2)

or Ẽxt
B
=

1

2
k2

M

|||xt
B

+ G (x2)
(65)

Moreover, the stability of the system can be judged without
further point-to-point calculations of the swing curves. If the

energy of the final system state is less than Ẽ , then system is
ensured to maintain stability. The stability region estimation and
the stability judgment by the proposed method is demonstrated
in Figure 7.

6 VALIDATION AND CASE ANALYSIS

To validate the stability regions by the proposed estimation
methods, the case of one VSC connected to the infinite bus
through transmission line is applied. The voltage of infinite
source UsL is 110 kV and other related parameters for the case
study are listed in Table 1. The large disturbances applied in the
case study are set as the infinite source UsL suddenly dropping to
0.3 p.u. at time t f = 0.01s and returning to UsL after tc seconds.

6.1 Comparison of the boundary x2, xh
B

and

xt
B

In the first quadratic of the phase plane, the boundary x = x2
by Lyapunov’s method and the boundaries x = xh

B
and x =

xt
B

by the proposed trajectory approximation methods are cal-
culated with different PI settings of PLL. The calculation results
are shown in Tables 2 and 3. For comparison, the exact stability
boundary x = xe

B
obtained by increasing tc until the simulation

shows the instability is also listed in Tables 2 and 3.
Take the case of K PLL

P = 0.10, K PLL
I = 20 for elaboration,

where 𝜃s = 0.3697 rad, the system trajectories with different
fault duration time are plotted in Figure 8a–c. It can be seen
from Figure 8a that the trajectory in solid black with tc =

55.9 ms is inside the stability boundary x = x2 = 0.9689 rad
by Lyapunov’s method and the system stability is maintained.
With the increase of the fault duration time, the trajectories
shown in Figure 8b override the positive damping area (the
shaded area) and still converge to the origin.

It can be seen that the trajectory in solid blue with tc =

82.4 ms is within the boundary of x = xh
B
= 1.8617 rad (blue

dashed line) and the trajectory in solid red with tc = 84.9 ms is
within the boundary of x = xt

B
= 2.0365 rad (red dashed line),

verifying the correctness of the two proposed phase portrait
based estimation methods well. It also shows that the proposed
methods can highly reduce the conservativeness of Lyapunov’s
method since the estimated boundary by the horizontal line
approximation method (xh

B
) is almost twice as much as the

region by the direct method of Lyapunov (x2).
In Figure 8c the trajectory in solid yellow with tc = 86.9 ms

reaches the exact stability boundary x = xe
B
= 2.3404 rad (yel-

low dashed line). While with tc = 87.0 ms, the trajectory in solid
green overrides the boundary of x = xe

B
and the system is

unstable. It should be noticed that the tangent line estimation
(xt

B
) further improves the horizontal line estimation (xh

B
) by 0.1–

0.2 rads. That is because the constructed approximation lines by
the tangent line method vary with the slope of the actual trajec-
tories and as a result, xt

B
is closer to the exact boundary xe

B
than

xh
B

.
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TANG ET AL. 739

FIGURE 7 The block diagram of the proposed method

TABLE 1 Parameters of the grid-connected VSC

Symbol Item Value

UB Base value of ac line voltage 110 (kV)

SB Base capacity of system 100 (MVA)

Ll Inductance of transmission line 0.5 (p.u.)

Rl Resistance of transmission line 0.05 (p.u.)

𝜔s Fixed system angular speed 100𝜋 (rad/s)

i
dre f
c d-axis current reference 0.6570 (kA)

i
qre f
c q-axis current reference 0 (kA)

6.2 Energy boundaries by Lyapunov’s
method and the proposed method

The energy boundaries by E (x2,0), Ẽxh
B

and Ẽxt
B

with different
control parameters of PLL are calculated and listed in Tables 4
and 5.

Take the case of K PLL
P = 0.10, K PLL

I = 20 for elaboration.
Figure 9 shows the energy change of the system trajectories
with respect to time. The energy boundary E (x2,0) = 784.9
by Lyapunov’s method is plotted as the black dashed line in

Figure 9a. Ẽxh
B
= 2174.2 by horizontal line approximation and

= 2441.7 by tangent line approximation are plotted as the bule
dashed line and the red dashed line in Figure 9b, respectively. It
can be seen that under tc = 55.9 ms (solid black), the energy of
Point S1(781.422) is within the boundary E (x2,0) and the sys-
tem trajectory energy is monotonically decreasing with respect
to time, ensuring the system stability. It verifies the effective-
ness of E (x2,0) in (57), showing that when the system energy is
less than the Lyapunov’s energy boundary after the final distur-
bance, the system trajectory will be kept in the positive damp-
ing area and the system energy will monotonically decrease
to zero.

As for tc = 82.4 ms (solid blue), the energy of Point
S2(1882.3) exceeds E (x2,0) and is still within Ẽxh

B
, showing

the conservativeness of the judgement by Lyapunov’s method.
Meanwhile, it matches well with the result in Figure 8b that the
trajectory in solid blue is within the boundary x = xh

B
, verify-

ing the effectiveness of stability energy boundary Ẽxh
B

. Similarly,
with tc = 84.9 ms (solid red), the energy of Point S3(2000.2)
exceeds Ẽxh

B
and is within the range of Ẽxt

B
. It can be seen that

in this case, both the Lyapunov’s method and the horizontal line
method fail to judge the system stability, while the tangent line

TABLE 2 Values of the estimated and the exact stability boundaries under the different K PLL
P

Control Parameters

KPLL
P

( KPLL
I

= 20)

Lyapunov’s

method x2

Proposed method

xh
B

xt
B

Exact

boundary xe
B

0.03 0.3272 0.6158 0.6557 1.2442

0.10 0.9689 1.8617 2.0365 2.3404

0.17 1.0653 2.0746 2.2545 2.3738

TABLE 3 Values of the estimated and the exact stability boundaries under the different K PLL
I

Control Parameters

KPLL
I

( KPLL
P

= 0.10)

Lyapunov’s

method x2

Proposed method

xh
B

xt
B

Exact

boundary xe
B

30 0.8488 1.6109 1.7461 2.3726

40 0.7230 1.3605 1.4642 2.3768

50 0.5883 1.1019 1.1795 2.1109

 17518695, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/gtd2.12701 by H

ong K
ong Poly U

niversity, W
iley O

nline L
ibrary on [23/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



740 TANG ET AL.

FIGURE 8 System trajectories with different fault duration time

TABLE 4 Values of the estimated energy boundaries under the different
K PLL

P

Control parameters Lyapunov’s method Proposed method

KPLL
P

( KPLL
I

= 20) E(x2, 0) Ẽxh
B

Ẽxt
B

0.03 104.6 349.9 393.4

0.10 784.9 2174.2 2441.7

0.17 926.6 2684.4 3034.2

TABLE 5 Values of the estimated energy boundaries under the different
K PLL

I

Control parameters Lyapunov’s method Proposed method

KPLL
I

( KPLL
P

= 0.10) E(x2, 0) Ẽxh
B

Ẽxt
B

30 938.0 2690.0 3023.1

40 940.6 2803.6 3151.4

50 806.1 2501.3 2811.4

FIGURE 9 Trajectory energy with different fault duration time

method can still tell that the system would maintain stable. It
is again proved the conservativeness of the Lyapunov’s method
and the horizontal line approximation method.

In Figure 9c, with the critical fault duration time tc = 86.9 ms
(solid yellow), the energy decreasing property still holds even
though the energy of Point S4(2095.2) exceeds Ẽxt

B
, verifying

the conservativeness of the tangent line approximation method.
It can be seen that with tc = 87.0 ms, the system energy crosses
the energy boundary and increases rapidly to the infinite as
shown the solid green line in Figure 9c.

7 CONCLUSION

Here, two estimation methods based on approximating the
system trajectories according to their geometric property are
proposed and verified. Moreover, the derived analytical stable
regions by the two proposed methods are proved to be larger
than that by Lyapunov method. The conservation of the derived
system stable region is guaranteed since the energy change of
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TANG ET AL. 741

stable system trajectories over one cycle is less than that of the
constructed curves. The evaluation result can be applied in the
early-stage stability analysis of grid-connected VSC system with
PLL.
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