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1. Introduction

Indoor positioning systems (IPS) play a crucial role in indoor
location-based service and have shown their immense potential
market values in different fields such as indoor navigation and
healthcare monitoring.[1,2] Developing efficient and accurate

positioning systems based on radio fre-
quency (RF) signals has attracted significant
attention from researchers and industrial
practitioners as a challenging and important
task.[3]

Various wireless techniques have been
investigated and deployed for localization
in indoor environments.[4–6] Among all
the techniques, Wi-Fi-based localization is
predominantly adopted in most IPS appli-
cations[2] as it can be deployed 3without
adding new infrastructure. Abundant
information can be obtained from Wi-Fi
signals, such as Channel State Information
(CSI), received signal strength (RSS) value,
and media access control (MAC) address of
access points (APs), to develop geometry-
based and data-driven positioning algo-
rithms. However, most Wi-Fi APs require
AC power. Installing a new Wi-Fi AP can
be expensive due to the high cabling cost.
Besides, it will be difficult to implement
Wi-Fi-based IPS in venues with no AC power
access. Recently, the new bluetooth low-
energy (BLE) 5.1 standard was released in
2019. It includes the direction-finding fea-
tures named constant tone extension (CTE)

for IPS.[7] Similar to the previous Bluetooth systems, the BLE
5.1 systems improve over the Wi-Fi-based systems by their low
power consumption. By switching among antennas, BLE receivers
can measure the in-phase and quadrature-phase (I/Q) values from
the CTE of BLE packets and estimate the positions of the
transmitters.[8]
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Indoor positioning system (IPS) technologies have widespread applications in
logistics, intelligent manufacturing, healthcare monitoring, etc. The recently
released Bluetooth low-energy (BLE) 5.1 specification enables in-phase and
quadrature-phase (I/Q) data measurements. It allows angle of arrival estimation
and becomes a natural choice for IPS implementation. Conventional BLE 5.1 IPSs
use multiple anchors to provide massive redundancy to improve system
robustness. It however demands effective approaches to leverage redundancy.
Besides, interference due to various environmental factors can introduce severe
errors to I/Q data and affect positioning accuracy. Facing these challenges,
herein, a novel deep learning-based multianchor BLE 5.1 IPS is proposed. The
system aggregates measurements from multiple anchors and makes them
available at regular time steps. Then, a novel attentional filtering network tailored
to infer high-quality I/Q sample data is developed and a spatial regularization loss
incorporating spatial location relationships to strengthen the feature embedding
discrimination is proposed. Two multianchor BLE 5.1 I/Q sample datasets are
developed and released for public download. Numerical experiments are carried
out to compare the proposed method with previous BLE 5.1 IPS methods and
methods utilizing other radio frequency data. Results indicate that the proposed
method consistently achieves submeter accuracy and significantly outperforms
the state-of-the-art approaches.
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While deep neural networks are successfully applied to differ-
ent application domains, it is no surprise that they are also used
in IPS design.[9–11] Recently, some efforts have been made to
develop deep learning (DL)-based models for BLE 5.1 IPS such
as using the convolutional neural network (CNN)[11] and
recurrent neural network.[10] These approaches often use the
fingerprint-based method such that object positioning is con-
verted into a classification problem of the I/Q sample finger-
prints. Despite the merits of previous research, there are still
some critical challenges in the integration of DL models with
the positioning process with multianchor BLE 5.1 I/Q sample
data. First, I/Q sample data is easily disturbed by interference
(such as object blocking, people movement, and the existence
of other RF signals) in the environment. The distorted data
can affect the constructed fingerprints and result in significant
errors in the estimation.[12] Some researchers have investigated
fitting methods for I/Q sample data.[13] They developed a phase
difference density-based classifier (PDDC) to choose the domi-
nant cluster of phase difference values calculated from I/Q sam-
ples. In other studies,[12,14] the authors used the Kalman filter to
deal with the noise and other errors in the measurements.
However, the filtering parameters are generally fixed for all loca-
tions.[15] On the one hand, different locations may have different
optimal filtering parameters (pointwise setting), which are hard
to set without (prior) knowledge of the indoor environment. On
the other hand, current filtering methods for I/Q sample data do
not well integrate into the DL-based IPS. Rather than a separate
filtering process, an integrated filtering network that can be end-
to-end trained with the position estimation network will be more
effective for both processes to approach optimality.

Second, the existing fingerprint-based solutions are developed
mainly based on the phase difference and RSS,[9,13] which are usu-
ally used for geometry-based algorithms. The I/Q sample data cal-
culated from CTE based on multiantenna switching is not fully
utilized. With the various spatial arrangements of antenna archi-
tectures (linear, rectangular, circular) and complex indoor environ-
ments, I/Q data sampled by each antenna can have different signal
gains. Such spatial correlations help construct unique features.
Besides, previous BLE 5.1 IPS research assumes that the data
are collected simultaneously from all anchors/broadcasting chan-
nels.[9,10] It is indeed not the case in practice. Anchor data present
themselves randomly within a time period. It is possible to have
multiple data received from a particular channel of one anchor in
the period. It is also possible that no data is received from an
anchor in the period due to interferences or other hardware-
related problems.[16] The irregular arrival time of the anchor data
introduces much difficulty when using them to construct input
features for the subsequent deep neural network. The utilization
of data packets frommultiple anchors for positioning has not been
well investigated in previous research.

Facing these challenges, this research develops a new DL-based
multianchor BLE 5.1 IPS and a novel positioning network
model named attentional filtering indoor positioning network
(AnFIPNet). To fully utilize the correlation in the I/Q sample data,
we extract both the phase difference and amplitude data from the
I/Q samples to form the input features. Different from the exist-
ing approach which constructs an input feature by collecting data
within a fixed time interval, we propose to collect data within a
time step in which the amount of data is guaranteed. It reinstalls

the regularity from the irregular arrival times of multiple
anchor/multiple channels data. To tackle the measurement error
problems in real-time positioning, we develop an attentional filter-
ing network to infer high-quality data and construct features by
applying a weighted combination of the data received by each
anchor. Low-quality data will be identified and given smaller
weights so that they are suppressed in the features. The features
are then fed to a position estimation network which contains a
convolutional layer and a fully connected (FC) layer to obtain
the latent feature representation for each anchor. The feature
embeddings are then classified to determine the position of the
object. Both the attentional filtering network and position estima-
tion network are trained end to end to approach optimality. To
strengthen the discrimination power among feature embeddings,
we propose a spatial regularization loss that incorporates the spa-
tial relationships of the I/Q sample data to regularize the position
estimation. This new loss function is used together with the cross-
entropy loss when training AnFIPNet. Extensive experiments were
performed to test the proposed model and other baseline methods
on two real-world datasets which we developed particularly for this
research. State-of-the-art performance is achieved consistently.

The contribution of this article can be summarized as follows.
1) We propose a new multianchor BLE 5.1 indoor positioning
system. A new approach is adopted to construct the input fea-
tures so that the redundancy in the sampled I/Q data can be fully
utilized and a steady data flow can be guaranteed to facilitate the
smooth operation of the subsequent deep neural network posi-
tioning model. 2) We propose a novel deep neural network
model, namely AnFIPNet, for realtime multi-anchor BLE 5.1
indoor positioning. We integrate data filtering operations into
the model by introducing an attentional filtering network to infer
high-quality features before feature embedding. We also propose
a new spatial regularization loss function for training the model
to enhance the discrimination ability of feature embeddings.
3) We compare AnFIPNet to previous BLE 5.1 indoor positioning
methods and other advanced IPS models based on attention
mechanism. We also compare AnFIPNet with IPSs using other
RF data such as RSS and Wi-fi CSI. Experiment results show that
AnFIPNet can consistently achieve submeter accuracy and
achieves the best performance in measurement accuracy com-
pared with all state-of-the-art methods. 4) We develop two
real-world I/Q sample datasets collected from the developed
multianchor BLE 5.1 IPS in different indoor environments.
The datasets will be made publicly available.

The remaining part of this article is organized as follows.
Section 2 reviews the literature related to indoor positioning,
BLE 5.1, and DL-based methods for IPS. Section 3 describes
the developed multianchor BLE 5.1 IPS and the details of the
proposed AnFIPNet. In Section 4, the construction of the
datasets and experimental evaluation results are discussed. We
conclude this article in Section 5.

2. Literature Review

2.1. BLE 5.1 AoA in IPS

This subsection focuses on the previous research on the BLE 5.1
angle-of-arrival (AoA) estimation system for indoor positioning.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300292 2300292 (2 of 15) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300292 by H

ong K
ong Poly U

niversity, W
iley O

nline L
ibrary on [22/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


Toasa et al.[17] implemented a BLE 5.1 AoA estimation system
and discussed the corresponding techniques at the software
and hardware level. The experimental results showed that the
proposed system could precisely estimate the angle in the lower
AoA range (�60° to 60°). Cominelli et al.[8] evaluated the position-
ing accuracy using the BLE 5.1 system and revealed the restricted
angular detection range of BLE 5.1 anchors. Ye et al.[18] investi-
gated the BLE AoA system and proposed the corresponding angle
estimation algorithm based on signal fitting and propagator
direct data acquisition (PDDA). It was shown that the PDDA
approach has a lower complexity than the traditional MUSIC
algorithm. However, the approach only considers the AoA data
from a single anchor, which is challenging when applied to com-
plex indoor environments.

The BLE 5.1 standard enables the generation of I/Q sample
data. While it is known that I/Q signals can be affected by dif-
ferent environmental factors, previous researchers also proposed
methods to filter I/Q signals. Yen et al.[13] developed the filtering
algorithm using multiple data packets for angle estimation under
an antenna array system (single anchor). They first separated the
packets within a given time window into three classes based on
the phase difference values. Then, they developed a PDDC to
choose a dominant cluster from the class with the largest number
of packets. The final angle is estimated from the mean value cal-
culated with all the phase differences within the cluster. For all
the I/Q samples within one data packet, Hajiakhondi et al.[14]

developed the nonlinear least squares curve fitting on the raw
data to reduce the noise effect. Then, the Kalman filter was
applied to the phase difference to address the phase shift prob-
lem of devices. Finally, considering the various interference
among different BLE channels, they used a Gaussian filter to
reduce the difference between ground truth angles and estimated
angles to derive the compensation value for each channel.
He et al.[12] also used the nonlinear least square method to
filter noise and a Kalman filter to reduce the antenna switching
error.

The limitation of previous I/Q sample filtering methods for
fingerprint-based IPS is that they are based on limited data
packets within a certain time window without global (prior)
knowledge. Hajiakhondi et al.[14] suggested learning the angle
compensation vectors for each channel. However, due to the
complex and dynamic indoor environment, the fixed compensa-
tion value can be greatly affected and become invalid in certain
locations and periods. In contrast to the previous methods, this
article proposes an attentional filtering layer integrated into the
IPS model to infer high-quality packets and learn prior knowl-
edge for filtering noise. As demonstrated in the experiment
results, the proposed method effectively removes the noise with
the data collected in fewer time steps compared with the tradi-
tional filtering methods. It is thus more suitable for real-time
positioning.

2.2. IPS with RF Fingerprints

This subsection reviews the related studies that use RF finger-
print data for indoor positioning. We mainly focus on Wi-Fi
and BLE data types, which are predominantly adopted in indoor
positioning applications.

Wi-Fi-based fingerprints are mainly adopted for indoor posi-
tioning in previous research. Microsoft Research proposed the
first Wi-Fi fingerprinting system named RADAR,[19] which com-
puted a user’s position with the k-nearest neighbor algorithm
and collected the RSS data from the AP side. Recently, research-
ers and practitioners have gradually adopted CSI as it can provide
more prosperous and stable information. The high-dimensional
features extracted from the CSI subcarriers can be used as
multivariate time series data and fed into machine learning
algorithms for classification tasks.[20] Guo et al.[21] developed a
Wi-Fi-based positioning system that fuses multiple fingerprints
gleaned from RSS with multiple classifiers. Experiment results
show that their method can combine multiple information well
and perform better than previous approaches. Adege et al.[2] used
a multilayer perceptron to train Wi-Fi features consisting of the
RSS and basic service set identifier values that were measured
from each AP. Wang et al.[6] presented a deep belief network
for Wi-Fi-based IPS with the CSI data. The weights of the pro-
posed model were trained layer by layer using a greedy learning
algorithm.[22] An indoor localization algorithm named
MHSA-EC is proposed which is used for solving the problem
of effective aggregation of long-distance CSI features and
mismatches of long-distance points. The proposed algorithm
combines the multihead self-attention mechanism to improve
the feature extraction ability.[23] They proposed Hi-Loc, a hybrid
indoor localization system utilizing CSI from the 5 G NR net-
work’s synchronization signal block. Hi-Loc includes a feature
enhancement module, data construction module, and a
dual-attention mechanism deep network combining CNN and
bidirectional long short-term memory (LSTM). Other stud-
ies[22,23] apply the attention mechanism after data embedding
to identify critical feature dimensions (channels) for final predic-
tion. Compared to them, our approach focuses on using the
attention mechanism to filter out low-quality data packets before
feature embedding. Another study[24] proposed an IPS model
that incorporates the self-attention mechanism to filter the
RSS, time of arrival, and angle information of the positioning
tag. However, the self-attention mechanism assigns weights to
each feature based on its similarity with other input features.
BLE packets from different anchors, advertising channels, and
directions (including reflected packets) can generate highly
diverse features. In the real-time positioning process, the limited
number of packets (especially when reflected packets dominate)
for each time of prediction can result in large variations in
features, significantly impacting the weight assignment and
the final positioning performance.

For BLE fingerprint-based IPSs, Faragher and Harle[4] used
the BLE fingerprints obtained from 19 beacons distributed in
a 600 square-meter environment for positioning and investigat-
ing key parameters, including beacon density, transmit power,
and transmit frequency. Their experiment results show higher
accuracy than the IPS based on Wi-Fi-based networks. Ishida
et al.[25] proposed a BLE-based fingerprinting localization
scheme. They measured RSS on each advertising channel with
channel mask operations and sent the advertising packets over a
specific duration. The fingerprints of each location consist of the
time-average RSS from all BLE beacons. They used one norm
distance to evaluate the calculated fingerprint and reference
fingerprints. As there is a lack of open BLE datasets, Baronti
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et al.[26] proposed an indoor BLE dataset and explored some used
cases such as localization, tracking, occupancy, and social
interaction. The above IPSs rely on BLE RSS values which are
susceptible to interference and contain limited information.
They affect the practical application of these methods.

Further, researchers also developed BLE 5.1 fingerprint-based
localization systems. Hajiakhondi et al.[11] proposed a
CNN-based AoA model for IPS with BLE 5.1. The raw AoA
measurement data are converted to spatial spectra with the
noise eigenvectors and reshaped into 2D matrices. Then the con-
structed CNN model extracts the latent features from the matri-
ces to predict the ground truth coordinates of each tag.
Babakhani et al.[10] investigated AoA estimation by combining
the spatial power spectrum information derived from PDDA
and recurrent neural network. Koutris et al.[9] developed multiple
DL model structures for AoA estimation and then used the least
squares algorithm to estimate the tag’s position. These studies,
however, do not well address the data interference problem,
which is inevitable for practical IPS.

3. Proposed Deep Learning-Based BLE 5.1
AoA IPS

3.1. Fingerprint-Based BLE 5.1 AoA IPS

The new BLE 5.1 AoA IPS was developed based on the Minew
BLE 5.1 AoA G2 system with four anchors as the receivers and
the E5 beacon tag as the transmitter, as shown in Figure 1. The
anchors are installed at various locations within the application
environment. Each BLE 5.1 tag makes known its position by peri-
odically broadcasting BLE packets on three advertising channels.
The BLE 5.1 anchors then receive these packets. Each anchor has
multiple antennas, enabling them to sample the I/Q data from
CTE (the additional field of BLE 5.1 packets following the cyclic
redundancy check[8]) through antenna switching. The collected
I/Q sample data from all anchors are then transmitted to a cen-
tral gateway. They are then used to generate the input features for
the proposed DL model AnFIPNet for estimating the position of
the tag.

Next, let us explain how we construct the input features from
the measured I/Q sample data. The feature construction process
is illustrated in Figure 2. As mentioned in Section 1, one of the
difficulties of using the I/Q sample data frommultiple anchors is

the irregular arrival time of the data packets. To solve the
problem, we construct the input features based on the position
information of the BLE packets received from the anchors at a
fixed number of “time steps” rather than a fixed time interval
as in other approaches. Specifically, within a time period, a
BLE 5.1 system can collect I/Q data sampled from a series of
BLE packets received by multiple anchors. Each received BLE
packet provides the position information of a tag at a time step,
which does not characterize the actual time but rather an event.
As shown in Figure 2, there is a varying amount of time between
two time steps. It is to ensure that a sufficient amount of data is
received for feature construction. We assume that anchors can
generate N I/Q sample pairs at each time step t ∈ f1, : : : ,Tg
(i.e., when a BLE packet is received). Then, the raw I/Q
sample data collected from T time steps is given by
R ¼ fP1,P2, : : : , PTg, where Pt ¼ fIt,1,Qt,1, : : : , It,N ,Qt,Ng. In
this way, a regular data flow is generated to the subsequent deep
neural network for position estimation.

Figure 1. IPS with BLE 5.1.

Figure 2. The feature construction process of the proposed multianchor
BLE 5.1 IPS.
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While the phase differences of I/Q samples can well capture
the signal direction information and are widely adopted by pre-
vious research,[9,13] the correlations of the amplitude (signal gain)
of I/Q data sampled by each antenna can also provide useful
information to construct unique features. Based on these
considerations, we adopt the amplitude and phase difference
of I/Q sample data to construct the features for each location.
For the amplitude feature, we calculate the amplitude of each
I/Q sample and put them into a vector with N length. Then
we generate the phase difference feature. For the I/Q samples
derived in the reference period, we directly use their phase.
For the I/Q samples derived in the switch/sample slots, under
the predefined switch pattern, we calculate the phase difference
between each I/Q sample and one predefined I/Q sample of the
reference period. Finally, we normalize the two features and con-
catenate them into a 2N length vector.

Following the above approach, the I/Q sample data collected
in T time steps is structured as a T � 2N feature matrix, which is
denoted by X ∈ ℝT�2N : Each row of X corresponds to a
BLE packet received by anchor a, where a ∈ 1, : : : ,A. Here, A
denotes the total number of deployed anchors. Then, the
anchor label for the constructed feature matrix X is denoted
by xc ¼ fxac,1, xac,2, : : : , xac,Tg ∈ ℝT , where xac,t represents the
corresponding anchor index for the t-th received BLE packet.
The ground truth position label for each location is defined by
YD ∈ ℝD, where D ¼ 1, 2, or3 refers to the number of dimen-
sions of the position label.

In summary, we mainly focus on two points to improve the
integration of BLE 5.1-based I/Q sample data with DL-based
positioning models. First, we utilize time steps rather than fixed
time intervals to control better the number of BLE packets used
in constructing input data. This helps prevent positioning insta-
bility caused by the packet scarcity that can hinder the effective-
ness of each location estimation. Second, we combined
amplitudes and phase differences as features to fully exploit
the feature extraction capabilities of DL models.

Then, the remaining research problem can be defined as
follows. Given an input feature matrix X and corresponding
anchor label xac extracted from the I/Q sample data in T time
steps, estimate ŶD ∈ ℝD for each tag location.

Remark 1

The gateway of the BLE positioning system generally collects one
processed I/Q sample data from one anchor at a time and is set
with a fixed upload interval. Due to various environmental and
hardware interferences, each anchor shows up randomly in the
anchor label xac of T time steps. Besides, the interference affects
the transmission and reception of Bluetooth signals, and the
gateway cannot perform a 100% scan which leads to packet loss.
The server may receive I/Q sample data after multiple upload
intervals. This is why we do not require a fixed time interval
between two continuous time steps.

Remark 2

To streamline the dataset construction and model training, we do
not specify the broadcasting channel information in the

constructed data feature. As the system often needs a longer
period to ensure that at least one packet is collected from each
channel and anchor, merging the data from three channels
allows us to use data of fewer time steps to build one model
input. Fewer time steps also enhance the real-time positioning
capability (use the data collected in a shorter time period) in
the actual positioning process.

Remark 3

Our data structure is different from the traditional multiple
anchors/frequency data and multiple general instances learning
data. The multiple anchors/frequency data adopted in the previ-
ous research[10,11] can be considered as one kind of multivariate
time series data,[27] in which each sensor has exactly one data
feature. Based on the anchor information, our model input data
can have multiple features from one anchor (sensor). The
“redundant” data are effectively utilized to improve the predic-
tion performance. Besides, compared with themultiple instances
learning classification,[28] our data has additional sublabel
information (anchor), which can be utilized for network learning
and feature extraction.

3.2. Proposed Indoor Positioning Model AnFIPNet

In this section, we first present the overall architecture of the
proposed deep neural network model AnFIPNet for BLE 5.1
fingerprint-based positioning. Then, the model functional blocks
are explained in detail in the following subsections.

3.2.1. Model Architecture Overview

Figure 3 illustrates the overall architecture of AnFIPNet, which
comprises two main subnetworks: attentional filtering network
and position estimation network. The input of the model is
the feature matrix X detailed in Section 3.1 and is constructed
from the BLE packets received in T time steps. As shown in
Figure 3, all features from the same anchors are separated into
different groups. An attentional filtering block is applied to filter
outliers and choose high-quality features from each anchor. They
are then sent to the position estimation network where a feature
embedding block is developed to learn embedded representa-
tions. After the feature embedding, we implement an average
pooling on the anchor dimension and derive the fusion represen-
tation for the final estimation. The model’s output is the
predicted location of the tag. The attentional filtering and feature
embedding blocks are shown in detail in Figure 4 and illustrated
next.

3.2.2. Attentional Filtering Block

With abundant training data, we propose an attentional filtering
block integrated into AnFIPNet. The design is conceived under
the consideration that traditional methods filter the noise in the
data by performing a weighted sum of the data point directly or
iteratively. The weights are determined manually or through an
optimization process. We follow this weighted sum approach but
learn an attentional filtering block, as shown in Figure 4a, to
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generate the weights dynamically based on the quality of the
input feature. Smaller weights will be applied to the features that
are predicted to be of lower quality by the attentional filtering
block. They are thus suppressed when combined with other

high-quality features. Note that the signals received by different
anchors can exhibit different erroneous behaviors.[8] Therefore,
we train a separate filtering layer for each anchor. The filtering
layer dynamically assigns weights to the features of each anchor.
Let xi represent the i-th constructed feature (the i-th row)
in X. For each xi, the trainable attention weights si can be
computed by[29]

si ¼ wT
a tanhðVaxTi Þ, i ∈ ½1,T � (1)

where a is the corresponding anchor index of the feature
xi (a ¼ xac,i). The superscript T refers to matrix transpose.
wa ∈ ℝdf �1 and Va ∈ ℝdf �2N are the trainable parameters of
the filtering layer for anchor a. df is the size of the hidden
dimension. The attentional filtering block can also stack multiple
filtering layers to obtain the final weights. Then, for all features,
the weights are normalized further via a SoftMax operation as
follows.

si ¼
expðsiÞP

xac,j¼xac,i exp sj
� � , i ∈ ½1,T � (2)

The sum of the attention weights is equal to 1. Finally, the
features of anchor a are filtered by the following normalized
weighted sum operation.

xa ¼
X
xac,i¼a

xi � si (3)

An input feature X may comprise different numbers of
features from each anchor. To enable batch handling of feature
matrices, we propose a padding-and-mask operation to allow the
features of each anchor to have the same shape. First, we separate
the input data X into A clusters according to the corresponding
anchor label xac. Next, from the dataset, hat we derive the maxi-
mum number of packets G collected from one anchor within T
time steps. Then, for each anchor cluster, we pad the correspond-
ing features with zeros to ensure it hasG rows of data. Finally, we
transform the input X from the structure ℝT�2N to ℝA�G�2N . For
example, assume that an input feature X contains the data of ten
time steps (ten packets) collected from four anchors and the

Figure 3. Overall architecture of AnFIPNet.

(a) 

(b) 

Figure 4. Detailed structures of blocks of AnFIPNet. a) Attentional
Filtering Block, b) Feature Embedding Block.
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feature dimension is 100 (2N). In the training dataset, it is deter-
mined that a feature should have a maximum of eight packets
from one anchor; thus, G ¼ 8. Assume that X has three packets
received from anchor 1. We extract these packets and pad them
with zeros to form an input feature with a shape of 8� 100. We
do the same operations for the features from other anchors.
Finally, X is transformed from ℝ10�100 to ℝ4�8�100.

When padding the data for each cluster, we simultaneously
generate a binary mask M ∈ f0, 1gA�G, where a ‘1’ indicates a
zero-padded row. Then, the model takes the padded feature
matrix X and the corresponding mask M as input pairs. The
features and mask for anchor a are denoted by xa ∈ ℝG�2N

and ma ∈ f0, 1gG. In the attentional filtering layer, the weight
for the original data dimension and padded dimension will be
calculated together. When normalizing the weight, we only con-
sider the dimension of the anchor data. Thus, the SoftMax oper-
ation is applied to the original data dimension and implemented
as follows.

Aa ¼ softmaxð½wT
a tanhðVaxTa Þ�⊙ ð1�maÞÞ (4)

where the symbol ⊙ stands for elementwise multiplication.
Finally, after filtering, we concatenate the features of all anchors
and derive the output xfilter ∈ ℝA�2N .

According to the SoftMax formulation, SoftMax can substan-
tially decrease the attention assigned to low-quality features.
Nevertheless, it remains unable to reduce these attention weights
to zero, and certain packets can still impact the outcome of fused
features and following embedding processes. To solve this prob-
lem, we use attention thresholding after Equation (4).[30]

Aa,g ¼
�
Aa,g if Aa > γ

0 else
, g ∈ 1, : : : ,G; a ∈ 1, : : : ,A

(5)

where γ is the threshold value, and g is the index of packets.

3.2.3. Feature Embedding Block

In the feature embedding part, as shown in Figure 4b, we apply
both the CNN and FC layers to learn the correlations of the anten-
nas and extract embeddings from each anchor’s features. CNN
generally pays more attention to local features, while the FC
layer can keep the global receptive field without losing sample
correlation information.

We use separate parameters for the amplitude and phase
difference features for all layers to facilitate the learning process.
Therefore, we split the filtering output feature xfilter into
amplitude and phase differences and concatenate them in the

anchor dimension as x
�
filter ∈ ℝ2A�N . Then, we input x̃filter to both

embedding layers. The CNN consists of three 1D convolutional
layers. Each convolutional layer is followed by batch normaliza-
tion and leaky rectified linear unit (leaky ReLU).[20,31] The num-
ber of filters for all convolutional layers is set to 2A (individually
for each feature). We set the kernels of the three convolutional
layers to the have the sizes of 8, 5, and 3. The output of the CNN
is xconv ∈ ℝ2A�dC , where dC is the output dimension of the final
convolutional layer. Similarly, the output of the FC layer is rep-
resented as xfc ∈ ℝ2A�dF , where dF is the corresponding output
dimension. Then we concatenate the outputs together and get
xconvþfc ∈ ℝ2A�ðdCþdFÞ. Finally, we use an FC layer to map
xconvþfc to the low-dimension feature xembed ∈ ℝ2A�de , where
de is the dimension of the final embedding.

3.2.4. Location Estimation and Loss Function

After generating the feature embeddings, we apply an average
pooling on the 2A dimensions and derive the output fusion
representation.

xfusion ¼ poolingðxembedÞ (6)

Figure 5. BLE 5.1 IPS devices.
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where xfusion ∈ ℝde . Finally, the fusion representation is fed into
an FC layer and produces the output xo ∈ ℝL, where L is the num-
ber of locations in an indoor environment. xo gives the probabili-
ties of the current tag at all grid points. We choose to train the
model with the entropy loss, which achieves better performance
than the regression loss. The entropy loss is also adopted by the
previous fingerprint-based IPS models.[16] Then, the IPS model is
trained via backpropagation by minimizing the entropy loss.

Loss ¼ � 1
M

XM
m¼1

Ym
D � logðx̂mo Þ (7)

where m is the index of the elements in a minibatch, Ym
D is the

corresponding one-hot vector of the ground truth label, and x̂mo
is the normalized one-hot vector estimated location through the
SoftMax function. M is the size of a minibatch. Furthermore,
to facilitate the evaluation with different performance metrics,
we generate an estimate of the final location through the final layer
output.

ŶD ¼ ðargmax
l∈L

xoðlÞÞ � YDðlÞ (8)

Even though entropy loss often leads to better training
performance than regression loss, it fails to consider the spatial
information of individual grid points, which may result in sub-
optimal feature learning. To further improve performance under
the entropy loss training, we propose incorporating spatial rela-
tionships between the grid points. It leverages the coordinate
information of each point to increase the discrimination among
embeddings. Let Sl represent the set of input data belonging to
grid point l and El represent the corresponding value vector
derived from the average of fusion representations.

El ¼ � 1
jSlj

X
ym¼l

xmfusion (9)

Based on the average fusion representations, we propose
the spatial regularization loss ℒsr with the radial basis kernel
function and distance among grid points

ℒsr ¼
1
L2

X
k1, k2∈½1, L�

Dk1, k2e
�jjEk1�Ek2

jj2
σ (10)

whereDk1, k2 is the norm-2 distance between the grid point k1 and
k2. σ is a scale factor and can be set to 1. For ℒsr, we assign the
loss weights based on distances, meaning that grid points located
far from each other will have greater differences between
their average fusion representations. Finally, our training loss
function becomes

Loss ¼ � 1
M

XM
m¼1

Ym
D � logðx̂mo Þ þℒsr (11)

4. Experimental Section

In this section, we first describe the experiment setup including
the details on the dataset’s construction, performance metrics,

and baseline methods. Then we evaluate the performance of
the proposed IPS model compared with the baseline approaches.
Finally, we present an ablation analysis to illustrate the effective-
ness of the proposed modules. All computations were conducted
on DGX A100 GPUs with 40 GB memory and AMD EPYC 7742
64-Core Processor.

4.1. Experimental Setup

4.1.1. Dataset Construction

As mentioned in Section 3.1, the developed IPS is based on the
Minew BLE 5.1 AoA G2 system with four anchors as receivers
and the E5 Beacons tag as the transmitter (Figure 5). Using
the I/Q sample data obtained from the system, we construct
the data features for feeding to the proposed AnFIPNet. Note that
although the proposed IPS is built on the Minew G2 system, it
can be easily extended to other BLE 5.1 hardware platforms. For
the Minew G2 system, each anchor consists of 12 antennas,
arranged into four linear antenna arrays perpendicular to each
other. The tag broadcasts BLE packets on three broadcasting
channels. The broadcasting interval was set to 100ms. The
upload interval of the gateway was set to 100ms. Under such
a setting, our system can receive about five packets per second.
By decreasing the broadcasting interval to 50 or 20ms, we can
have higher packet receiving rates.

Based on the Minew G2 system and the proposed feature con-
struction method, we created two datasets with 2D coordinates in
the laboratory and office scenarios to train and evaluate the
proposed AnFIPNet. The datasets will be released for public
download. The laboratory scenario was set up on the first floor
of Building 16W at the Hong Kong Science Park. It is a rectan-
gular area separated by cubicles, as shown in Figure 6a. The total
area covered is about 10m2 with a horizontal span of 4m and a
maximum vertical span of 2.5m. We laid down a grid of 24
(6� 4) points with 50 cm grid spacing covering the walking sur-
face of the area. We measured the coordinates of each grid point
in cm following a coordinate system starting at the bottom left in
Figure 6a. Anchors were placed at the corners, facing the ground
at 1.83m high. We collected around 2min of data at each grid
point, and four different orientations (East, South, West, and
North) were considered, as in the previous approach.[26] The
BLE tag was put on the ground, facing each of the orientations
for 30 s. Within the data collection time, four anchors collect BLE
data simultaneously and all data are sent to the server through
the gateway. All collected samples were used for model training
and testing. The office scenario was set up on the 12th floor of
Building 19W at the Hong Kong Science Park, as shown in
Figure 6b. The total area covered is about 24m2 with a maximum
horizontal span of 6m and a maximum vertical span of 4m. We
laid down a grid of 55 points with 50 cm grid spacing. Anchors
were placed at the corners, facing the ground at 1.7m high. We
also collected 2min of data at each grid point, and four different
orientations of the tag were considered. The BLE tag was placed on
a tripod 1m high, facing each of the orientations for 30 s. In both
scenarios, the anchors sent the extracted I/Q sample data to a gate-
way. Finally, the gateway uploaded the collected data to a server for
storage. Note that since the data are measured with a real-world
BLE 5.1 system, measurement errors are inherent in the samples
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obtained. They lead to the estimation errors made by different
positioning approaches, as shown in the experiment results.

Asmentioned above, each input feature is constructed by several
BLE packets. Each BLE packet is constructed by the 34 I/Q samples
obtained in an antenna switch period among the 12 antennas of the
anchor plus the 4 I/Q samples obtained from the reference period
(total 38). When constructing the two datasets, the packets received
from each grid point were grouped in time steps T ¼ 10 and 20 to
form the input features (in each time step, a BLE packet was
received). Thus, two sets of input features of different time steps
were obtained for each dataset. We choose the minimum T as 10 to
ensure that most of the input features (95%) have at least one BLE
packet received by each anchor. In the online prediction process,
with the receiving rate of 5 packets per second, using 10 or 20 BLE
data packets will require 2–4 s to obtain one predicted tag’s location.
Note that the tag broadcasting interval can be set shorter (50,
20ms). In this case, less time is required to get a positioning result.
Therefore, the BLE 5.1-based IPS can be implemented for real-time
localization. With T ¼10 (20), the 16W lab dataset contains 1509
(740) input features, and the 19W office dataset contains 3211
(1592) input features. After separation, the number of input data
for each grid point becomes less than the number of grid points
(classes). To ensure the comparison quality, we used 80% of the
input features for training and 20% for testing. This segmentation
was also adopted by previous fingerprint-based IPS studies.[32]

4.1.2. Performance Metrics

To evaluate the positioning performance of AnFIPNet and other
methods from previous research on BLE 5.1 IPS, we use two
widely adopted metrics, that is mean square error (MSE).

MSE ¼ 1
N

XN
i¼1

ðxi � x̂iÞ2 þ ðyi � ŷiÞ2 (12)

and mean distance error (MDE).

MDE ¼ 1
N

XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � x̂iÞ2 þ ðyi � ŷiÞ2

q
(13)

where ðx̂i, ŷiÞ and ðxi, yiÞ are the estimated and ground truth
coordinates, respectively; N is the total measurement number.
Moreover, we utilize the standard deviation of distance error
(SDDE) to measure the stability of positioning results.

SDDE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � x̂iÞ2 þ ðyi � ŷiÞ2

q
�MDEÞ2

vuut (14)

4.1.3. Baseline Methods

We compare the proposed AnFIPNet with the following
methods: (MUSIC) algorithm;[33] PDDA;[18] MHSA-EC;[22]

Hi-Loc;[23] attention-based IPS model by Tang et al.;[24]

Gaussian–Bernoulli restricted Boltzmann machine plus
liquid-state machine (GBRBMþ LSM);[34] time series attentional
prototype network (TapNet);[20] CNN-based joint APs model by
Koutris et al.;[9] and 2D image CNN by Hajiakhondi et al.[11]

For the MUSIC and PDDA algorithm, due to various interfer-
ence and complex indoor environments, we remove 10% maxi-
mum and minimum phase difference outliers of each anchor to
mitigate the phase difference fluctuations. After deriving the

(a)

(b)

Figure 6. Datasets collection environments. The anchor (AN) locations are circled. a) Laboratory, b) office.
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angle estimations from anchors, we use the least squares to
estimate the final 2D positions. All methods are implemented
in Python.

To implement the models MHSA-EC,[22] Hi-Loc,[23]

GBRBMþ LSM,[34] TapNet,[20] Hajiakhondi, et al.,[11] and
Koutris, et al.[9] on our datasets, we transform the data into
the default format defined in their original papers. The data
construction process is illustrated as follows. For the I/Q
samples collected in T time steps, with the anchor information,
we choose one feature from each anchor and concatenate them
into a matrix. We choose the final one when there are multiple
data points. If there is no data for an anchor, we set all the
values in the corresponding row of the input feature to zero.
Other configurations for models MHSA-EC,[22] Hi-Loc,[23]

GBRBMþ LSM,[34] TapNet,[20] Hajiakhondi, et al.,[11] and
Koutris, et al.[9] are according to their basic settings. We train
our model using the Adam optimizer with an initial learning rate
of 0.0001 and a weight decay rate of 0.001. We use a single fil-
tering layer with 128 hidden units for each anchor. The attention
threshold is set to 0.01.

The corresponding time complexity and model size compari-
son are shown in Table 1. The time complexity of the MUSIC and
PDDA algorithms depends on the number of sensors K, the
number of timesteps T, the number of anchors A, and the scan-
ning step angle δ.[9] In our scenario, A is set to 4. The BLE anchor
consists of four antennas arranged in a row, yielding K= 4, and
the scanning step angle δ is set to 1°. The time complexity of
the GBRBMþ LSM[34] depends on the number of anchors A, the
feature dimension N, the number of visible units Nv and the
number of hidden units Nh. The feature dimension N is 76
(amplitude and phase difference of I/Q sample data). The visible
and hidden units are set to 304 and 90, respectively. The time
complexity of Koutris[9] and Hajiakhondi[11] arises from the con-
volutional layers. In the study by Koutris,[9] the input data and
channel dimension correspond to the number of anchors A,
the feature dimension N, and the frequency dimension F.
BLE 5.1 uses three advertising channels, and F is set to 3. In
Hajiakhondi,[11] the data is resized to 28� 28 (NH and NW

are 28) and one input channel. Tapnet’s complexity depends
on its CNN layers and the attentional prototype learning mod-
ule.[20] The latter involves calculating a weighted sum of distances
to the prototype embedding for each class. L represents the

number of locations. Compared to other models, its larger model
size stems from establishing embedding modules for each class
(location). As the number of classes increases, the model’s scale
grows. The time complexity of Hi-Loc primarily depends on the
bidirectional LSTM (biLSTM) layer, where the hidden state
dimension dh is set to 64.[23] In the study by Tang et al.[24]

and MHSA-EC,[22] the time complexity primarily depends on
the self-attention modules. Specifically, MHSA-EC includes
three attention modules. AnFIPNet’s time complexity is influ-
enced by the preceding attentional filtering block and the
CNN blocks. G represents the maximum number of packets col-
lected from a single anchor within T time steps, as discussed in
Section 3.2.2.

We employ the early-stopping approach for all methods to
determine when to stop training. Specifically, we partition
10% of data from the training set as the validation set and define
an iteration number of 1000 to wait for the validation loss
improvement in both datasets. Training is stopped if the
validation loss does not improve within the defined iterations.
The training time and execution time for all methods are shown
in Table 2. The execution time reflects the time required for the
model to make predictions. The MUSIC and PDDA algorithms
do not require training. Their execution time includes using least
squares to estimate the final 2D positions. For the machine learn-
ing method GBRBMþ LSM, it is trained on the CPU and there
are two numbers in each cell. The first number represents the
training time for the GBRBM. We observe a continuous loss
decrease until reaching the maximum iteration limit (10 000).
The second number represents the training time for LSM.

The results show that apart from GBRBMþ LSM and Hi-Loc,
the training time of most methods can achieve convergence
within a few minutes. In all DL methods, Hi-loc consumed
the most GPU training time. The slower training in Hi-loc stems
from its biLSTM module. For each method, the differences in
training time across different datasets and time steps are attrib-
uted to variations in dataset sizes. For instance, the 19W dataset
(3211 instances when T= 10) is larger than the 16W dataset
(1509 instances when T= 10), and the datasets have more instan-
ces when T is smaller (e.g., in the 19W dataset, there are 3211
and 1592 instances when T= 10 and 20). Since we employed full-
batch training, the computation time per iteration increases with
the datasets, resulting in a longer overall convergence time. For

Table 1. Time complexity and model size of different approaches.

Methods Time complexity Model size 16W [MB] Model size 19W [MB]

MUSIC[33] OðAK2T þ AK3 þ AK2ð180=δÞÞ – –

PDDA[18] OðAKT þ AKð180=δÞÞ – –

GBRBMþ LSM[34] OðANNvNhÞ 0.03 0.03

Koutris[9] OðANFÞ 0.07 0.07

Hajiakhondi[11] OðNHNWÞ 0.05 0.06

Tapnet[20] OðLNAÞ 1.86 3.05

Hi-Loc[23] OðTd2h þ TdhNÞ 0.06 0.06

Tang et al.[24] OðT2NÞ 0.02 0.02

MHSA-EC[22] OðA2NÞ 0.07 0.07

AnFIPNet OðAGNÞ 0.17 0.18
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the execution time, it shows that somemethods (e.g., the Koutris,
Hajiakhondi, and MHSA-EC) are stable across different datasets
and time steps according to their time complexity. Some
methods exhibited variations in execution time due to their
dependence on time steps or class numbers, such as Tang
et al. and Tapnet. Most methods are within 0.01 s, which can
meet real-time indoor positioning requirements.

4.2. Positioning Performance Comparison

The performance of different methods on the two datasets is
shown in Table 3. We observe that the machine learning method
GBRBMþ LSM achieves a similar performance compared to
geometry methods MUSIC and PDDA. All DL methods with fin-
gerprinting data outperform the geometry methods, showing the
positioning ability of DL networks with I/Q sample data. We also
observe that AnFIPNet gives the best performance and can
achieve submeter-level accuracy on both datasets under different
numbers of time steps. It is also worth mentioning that other
models’ performances degrade more on the 19W office dataset,
which has more grid points and the same amount of data (2min)
for each point. For our model, a submeter-level accuracy can
still be achieved. It indicates that AnFIPNet can extract more rep-
resentative features and is robust to larger environments.
Besides, AnFIPNet performs better as the number of time steps
T increases. It shows that AnFIPNet can extract representative
information from the input data containing more packets to
improve positioning accuracy. As fingerprinting data collection
is time-consuming, in the practical application, the number of

time steps for forming the input features for training and esti-
mation should be well optimized to achieve better positioning/
tracking performance. The results also show that different meth-
ods exhibit varying levels of SDDE. For instance, in the results
using the 19W dataset with T= 10, MHSA-EC[22] outperforms
Tang et al.[24] in terms of accuracy (0.6544 vs 1.2950 in MDE)
but exhibits lower stability (1.1951 vs 0.7490 in SDDE).
Notably, AnFIPNet consistently demonstrates the lowest
SDDE in all cases, indicating its superior performance in produc-
ing reliable and stable localization results.

For the case of the 19W dataset with T= 10, we computed
distance error (m) for each test instance and plotted them as a
cumulative distribution function in Figure 7. It shows that
AnFIPNet can accurately predict the majority of test instances
to the true grid points and presents the best accuracy of all
methods. Moreover, only a small portion of the data exhibits
large distance error, indicating the robustness of the proposed
method.

4.3. Ablation Study

4.3.1. Effectiveness of the Designed Feature

To evaluate the proposed training features, we further test
the performance of the following variants of AnFIPNet:
“AnFIPNet-a”, where the model is trained with only the ampli-
tude features, and “AnFIPNet-p”, where the model is trained
with only the conventional phase differences features. The
results are shown in Table 4. It can be observed that

Table 2. Training time and execution time of different approaches. The unit is second (s).

T 10 20

Dataset Methods Training time Execution time Training time Execution time

16W MUSIC[33] – 0.1287 – 0.1689

PDDA[18] – 0.0566 – 0.1126

GBRBMþ LSM[34] 3068.9843þ 650.8704 (CPU) 0.0268 2761.6728þ 358.91361 (CPU) 0.0239

Koutris[9] 28.4096 0.0009 21.1062 0.0008

Hajiakhondi[11] 49.3352 0.0010 16.3836 0.0011

Tapnet[20] 75.1713 0.0047 40.8318 0.0048

Hi-Loc[23] 520.5738 0.0016 258.9775 0.0019

Tang et al.[24] 156.4610 0.0032 69.7960 0.0084

MHSA-EC[22] 153.4828 0.0134 133.9793 0.0135

AnFIPNet 158.7889 0.0037 126.3775 0.0038

19W MUSIC[33] – 0.1304 – 0.1654

PDDA[18] – 0.0573 – 0.1131

GBRBMþ LSM[34] 3686.7621þ 1737.7620 0.0247 3087.9884þ 1102.1073 0.0235

Koutris[9] 56.5130 0.0011 40.6431 0.0009

Hajiakhondi[11] 66.8104 0.0011 36.7363 0.0012

Tapnet[20] 94.1786 0.0063 47.0366 0.0062

Hi-Loc[23] 822.2074 0.0016 566.2631 0.0020

Tang et al.[24] 285.1081 0.0031 112.6071 0.0084

MHSA-EC[22] 452.1883 0.0133 341.4893 0.0133

AnFIPNet 409.5218 0.0036 298.3035 0.0038
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AnFIPNet, with the designed feature, achieves the best perfor-
mance in all metrics. More specifically, the performance of
AnFIPNet with the designed feature is better than the perfor-
mance with only phase differences, by an average of 41.5%
MDE reduction in all cases. The results show that useful infor-
mation can also be captured from the amplitudes to improve the
positioning performance. Both the phase and amplitude features
are essential for fingerprint-based positioning.

4.3.2. Effectiveness of the Attentional Filtering Block

To show the effectiveness of the proposed attentional filtering
block, we further test the performance of the following variants
of AnFIPNet with different filtering methods: “AnFIPNet-nf”,
“AnFIPNet-af”, and “AnFIPNet-kf”. Under “AnFIPNet-nf” (no
filtering), we remove the filtering layer and execute the same fea-
ture selection process that is implemented for other fingerprint-
based IPS methods. Under “AnFIPNet-af” (average filtering), we
use the mean value of the phase difference and amplitude fea-
tures when there are multiple data points from one anchor.
Under “AnFIPNet-kf” (Kalman filtering), we implement
Kalman filtering to the features when there are multiple data
points from one anchor.[12,14] The setting for the Kalman filters
is not specified in other studies.[12,14] We adopt the Kalman fil-
tering parameters from another study[35] for BLE signals in
indoor environments. The results are shown in Table 5. It can
be seen that the accuracy under three filtering operations is supe-
rior to the performance without filtering, indicating that the
designed modules for I/Q sample data filtering are essential
to BLE 5.1 fingerprint-based IPS. For the SDDE measurement,
AnFIPNet exhibits better performance on the 19W dataset than
other variants. Notably, when T= 20, AnFIPNet achieves an
SDDE of 0.2340, while the best-performing variants only achieve
a value of 0.5124. Besides, the AnFIPNet with the proposed atten-
tional filtering gives the best positioning accuracy on both data-
sets under different numbers of time steps (an average of 53.2%

Table 3. Performance comparison of different approaches for positioning on two datasets. The units for MSE, MDE, and SDDE are meter square (m2),
meter (m), and meter (m), respectively. Bold formatting represents the best results achieved among various algorithms/variants, and this also applies to
the subsequent tables.

T 10 20

Dataset Methods MSE MDE SDDE MSE MDE SDDE

16W MUSIC[33] 4.7961 1.4075 1.6778 3.5000 1.2394 1.4014

PDDA[18] 1.4511 1.0750 0.5436 1.3297 1.0291 0.5203

GBRBMþ LSM[34] 2.1357 1.2980 0.6716 3.1387 1.6058 0.7485

Koutris[9] 1.0946 0.9686 0.3955 1.0374 0.9443 0.3817

Hajiakhondi[11] 0.4079 0.3555 0.5306 0.2317 0.2117 0.4323

Tapnet[20] 0.0921 0.0614 0.2972 0.3010 0.2111 0.5064

Hi-Loc[23] 0.4093 0.5366 0.3485 0.3757 0.5088 0.3417

Tang et al.[24] 0.2015 0.3657 0.2603 0.1973 0.3607 0.2592

MHSA-EC[22] 0.1614 0.1301 0.3801 0.2225 0.1341 0.4522

AnFIPNet 0.0042 0.0045 0.1361 0.0021 0.0032 0.0805

19W MUSIC[33] 35.9914 3.9546 4.5114 23.4158 3.4548 3.3882

PDDA[18] 4.6088 1.9403 1.0198 4.5663 1.8778 0.9186

GBRBMþ LSM[34] 6.1779 2.1078 1.3171 6.0334 2.1544 1.1798

Koutris[9] 3.7745 1.8422 0.6173 3.9848 1.8973 0.6206

Hajiakhondi[11] 3.0687 1.3244 1.1466 2.5266 1.1745 1.0711

Tapnet[20] 2.2153 0.8130 1.2467 2.7842 1.0646 1.2848

Hi-Loc[23] 2.0719 1.2340 0.7410 2.0227 1.2047 0.7559

Tang et al.[24] 2.2379 1.2950 0.7490 2.3700 1.3201 0.7921

MHSA-EC[22] 1.8565 0.6544 1.1951 1.1451 0.3893 0.9968

AnFIPNet 0.3240 0.1349 0.5594 0.1793 0.0743 0.2340

Figure 7. Error probability versus distance error under 19W dataset with
T= 10.
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MSE and 37.3%MDE reduction in all cases compared to Kalman
filtering). We also observe that as the number of time steps
increases (more packets are used to form an input), the perform-
ances of average filtering and Kalman filtering on the two data-
sets also become better. It shows that filtering the data over a
longer period can also stabilize the derived feature for model
training and inferencing. However, using more data to form a
feature will increase the time interval of real-time positioning.
Our designed attentional filtering layer can achieve better
positioning performance with the data collected in fewer time
steps. It is thus more efficient in real-time positioning.

4.3.3. Influence of Attention Threshold and Spatial Regularization
on Positioning Performance

In this subsection, we evaluate the influence of the attention
threshold and spatial regularization on positioning accuracy.
We created several variants of AnFIPNet by removing certain
operations. These include AnFIPNet_no_ reg, which removes
the spatial regularization loss ℒsr; AnFIPNet_no_thres, which
removes the attention threshold; and AnFIPNet_no_reg_thres,
which removes both the spatial regularization loss and attention
threshold. The results are presented in Table 6.

Table 4. Performances of variants of AnFIPNet trained with different features on two datasets. The units for MSE, MDE, and SDDE are meter square (m2),
meter (m), and meter (m), respectively.

T 10 20

Dataset Methods MSE MDE SDDE MSE MDE SDDE

16W AnFIPNet-a 0.0360 0.0276 0.2878 0.0353 0.0160 0.1873

AnFIPNet-p 0.0070 0.0094 0.1643 0.0065 0.0074 0.1301

AnFIPNet 0.0042 0.0045 0.1361 0.0021 0.0032 0.0805

19W AnFIPNet-a 0.8905 0.3324 0.8832 0.4354 0.1659 0.6387

AnFIPNet-p 0.5672 0.2201 0.7203 0.2416 0.0909 0.4831

AnFIPNet 0.3240 0.1349 0.5594 0.1793 0.0743 0.2340

Table 5. Performances of variants of AnFIPNet trained with different filtering operations. The units for MSE, MDE, and SDDE are meter square (m2),
meter (m), and meter (m), respectively.

T 10 20

Dataset Methods MSE MDE SDDE MSE MDE SDDE

16W AnFIPNet-nf 0.1086 0.0843 0.4186 0.0083 0.0142 0.1900

AnFIPNet-kf 0.0223 0.0108 0.1263 0.0047 0.0044 0.0981

AnFIPNet-af 0.0253 0.0128 0.1372 0.0044 0.0050 0.1228

AnFIPNet 0.0042 0.0045 0.1361 0.0021 0.0032 0.0805

19W AnFIPNet-nf 1.8100 0.7300 1.1301 1.3066 0.4707 1.0417

AnFIPNet-kf 0.5159 0.2005 0.6397 0.2948 0.1078 0.4322

AnFIPNet-af 0.5053 0.1914 0.6846 0.2941 0.1029 0.5124

AnFIPNet 0.3240 0.1349 0.5594 0.1793 0.0743 0.2340

Table 6. Influence of the attention threshold and spatial regularization. The units for MSE, MDE, and SDDE are meter square (m2), meter (m), and meter
(m), respectively.

T 10 20

Dataset Methods MSE MDE SDDE MSE MDE SDDE

16W AnFIPNet_no_reg_thres 0.0162 0.0142 0.1502 0.0140 0.0133 0.1232

AnFIPNet_no_reg 0.0085 0.0082 0.1396 0.0064 0.0050 0.0861

AnFIPNet_no_thres 0.0145 0.0151 0.1534 0.0083 0.0076 0.1176

AnFIPNet 0.0042 0.0045 0.1361 0.0021 0.0032 0.0805

19W AnFIPNet_no_reg_thres 0.5302 0.2163 0.7039 0.2606 0.0919 0.3565

AnFIPNet_no_reg 0.5102 0.1967 0.6867 0.2471 0.0858 0.3117

AnFIPNet_no_thres 0.3501 0.1519 0.6551 0.1862 0.0772 0.2655

AnFIPNet 0.3240 0.1349 0.5594 0.1793 0.0743 0.2340
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The results show that compared to AnFIPNet_no_reg_thres,
both AnFIPNet_no_ reg and AnFIPNet_no_thres can improve
the metric performances. For example, with the attention thresh-
old, the variant AnFIPNet_no_ reg achieves 27.7%, 30.1%, and
13.0% improvements in MSE, MDE, and SDDE, respectively.
Then, for all metrics, AnFIPNet outperforms other variants on
both datasets. The results suggest that combining the spatial
regularization loss with the attention threshold can achieve better
positioning performance.

5. Conclusion

In this research, a DL-based multianchor BLE 5.1 indoor
positioning system with attentional filtering was developed.
The system features a novel deep neural network model named
AnFIPNet that effectively estimates the target object’s position
from its I/Q sample fingerprint. Compared to the existing
fingerprint-based positioning methods using BLE 5.1, we intro-
duced an attentional filtering network into AnFIPNet to filter the
data collected and extract high-quality features robust to mea-
surement errors of I/Q sample data. It is the first time that a
DL approach is used for I/Q sample filtering in IPS applications.
For increasing the discrimination among feature embeddings,
we also proposed the spatial regularization loss function that pro-
vides additional spatial information to the cross entropy-based
loss function for training the model. At the system level, we
developed a new approach to construct data features from the
I/Q sample data. We integrated amplitude features with the
phase difference features to allow their correlation to be fully
utilized. We also adopted a time-step-based approach for I/Q
sample data collection to ensure a steady data flow for the sub-
sequent deep learning operation. To facilitate the research work,
we developed two real-world indoor positioning datasets con-
structed with the developed multianchor BLE 5.1 IPS. They were
used in the evaluation of the proposed model. The evaluation
results show the following. 1) AnFIPNet achieves superior per-
formance with submeter accuracy on both datasets and signifi-
cantly outperforms the previous methods. 2) The proposed input
features, attentional filtering network, and spatial regularization
functions effectively improve positioning accuracy. These results
show that the proposed DL-based multianchor BLE 5.1 IPS is an
important contribution to the field of study.
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