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Abstract

Incorporating the advantages of line commutated converters (LCCs) and voltage-source converters (VSCs), hybrid high
oltage DC (HVDC) links have bright prospects in bulk power transmission. For this new technique, however, there is a risk
f oscillatory instability in the DC link, and the mechanism behind the instability is still unclear. This paper derives analytical
C-side stabilizing conditions for hybrid HVDC links by using dominant frequency model reduction. The small-signal model
f the LCC-VSC link is first truncated by reserving only the state variables highly relevant to the dominant mode so that
he expression of the dominant oscillation frequency can be obtained. Dynamics of other state variables are reintroduced and
hen simplified while leaving their properties nearby the dominant frequency intact. Based on the reduced model, an analytical
tability criterion is obtained, which reveals that the DC-side stability of hybrid HVDC links will deteriorate with reduced
C voltage operation, a heavy load, a small DC-link capacitor, slow inner loop dynamics, a small proportional and a large

ntegral gain of the DC voltage regulator. In addition, simplified sufficient stabilizing conditions of hybrid HVDC links are
urther derived for control parameter design. Case studies validate the accuracy of dominant frequency model reduction and
he derived stabilizing conditions.

2023 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).

eer-review under responsibility of the scientific committee of the 2022 International Conference on Frontiers of Energy and Environment
ngineering, CFEEE, 2022.
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1. Introduction

Born in the 1960s, the line commutated converter (LCC) has gradually become the most widely used converter
n high voltage DC (HVDC) projects for the low cost and large capacity [1]. However, the LCC has drawbacks of
ommutation failure risks when operating as an inverter and the inability to supply weak AC systems [2]. Recently,
he voltage source converter (VSC) has become prevailing in DC power transmission. Due to the use of full-
ontrolled insulated gate bipolar transistors (IGBTs) or gate turn-off (GTO) thyristors, the VSC distinguishes itself
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with the decoupling control of active and reactive power, needlessness of AC system supports, and commutation
failure elimination [3]. Despite these, the cost and power loss of VSC are relatively higher than those of the LCC.
The hybrid HVDC transmission that employs the LCC based rectifier(s) and the VSC based inverter(s) was first
proposed in 1992 to incorporate the advantages of the two types of converters [4]. For its wider applications in
renewable resources integration, substantial researches have been done concerning the operation [5], control [6–9],
and protection [10,11] of the hybrid HVDC system. However, few works concentrate on its small-signal stability,
fundamentally hindering its broader applications.

To date, existing works mainly focus on the small-signal stability discrimination for hybrid HVDC links based
n the classic modal analysis. The small-signal model of the hybrid LCC-VSC HVDC link is first established in
12]. Based on eigenvalue and participation factor analysis, it is unveiled that improper system parameters will
ause oscillatory instability in the hybrid HVDC link. [13] reports the relationships between stability properties
nd controller parameters in hybrid HVDC systems by using the segmented LaGrange quadratic interpolation.
he eigen analysis shows that the DC-side stability can be enhanced by choosing a large proportional gain or
small integral gain of the DC voltage regulator. In [14], the feasible region of DC voltage controller parameters

s further determined based on stability analysis of hybrid HVDC systems. Nevertheless, the modal analysis relies
n relatively complicated eigenvalue calculations, which fails to derive an analytical stability criterion based on key
ystem parameters. As a result, repeated eigenvalue calculations are required once the system operating point or a
ontroller parameter changes.

Complicated eigenvalues calculations can be avoided, provided that the analytical stability criterion of the system
nder study is obtained. In view of the complexity of the studied system, model reduction is critical to simplify the
nalysis. In singular perturbation theory (SPT), the original system is decomposed into reduced-order and boundary-
ayer subsystems [15]. The reduced-order subsystem expresses slow dynamics, while the fast dynamics impacts
re regarded as boundary-layer corrections computed in separated time scales [16]. Despite the clear physical
eaning of the reduction process, SPT may not be accurate enough to analyze the system properties within specified

requency bands. Selective modal analysis (SMA) is widely adopted in power system low-frequency oscillation
nalysis [17,18]. Unlike SPT, SMA can accurately retain the properties of selected modes after the reduction.
evertheless, the reduced model is obtained via iterative numerical calculations, which must be regenerated once

ny system parameter varies. Balanced truncation theory (BRT) is another effective model reduction method with
airly high accuracy [19]. In this method, system state variables are reconstructed via matrix transformation such
hat the transformed controllability Grammian is diagonal and equals the observability Grammian, which is known
s balanced realization [20]. Model reduction is then achieved by omitting those less controllable or observable state
ariables. Unfortunately, these reformed state variables lack clear physical meaning, resulting in poor interpretability
f the reduced-order model.

Existing works on the small-signal stability of the hybrid HVDC system fail to establish mathematical relations
etween the stability properties and the influential factors, resulting in a relatively heavy computation burden for
tability discrimination. In this paper, dominant frequency mode reduction is utilized to derive analytical stabilizing
onditions for the hybrid LCC-VSC HVDC system under DC-side perturbations. Focusing on the properties nearby
he dominant frequency, the proposed model reduction stands out for its good interpretability, analytic form, and
igh accuracy in expressing the dominant mode. An analytical stability criterion for hybrid HVDC links is further
erived based on the reduced model, which well indicates that the system stability will deteriorate with reduced
C voltage operation, a heavy load, a small DC-link capacitor, slow inner loop dynamics, a small proportional

nd a large integral gain of the DC voltage regulator. The derived analytical stability criterion facilitates the online
tability assessment and guides in designing the control parameters.

. Modeling of the hybrid LCC-VSC HVDC link

.1. System description

Fig. 1 depicts the typical topology of a hybrid two-terminal HVDC system, where one LCC-based rectifier and
ne VSC-based inverter are connected by a DC transmission line. The DC-link voltage of the rectifier and the
nverter are marked as udcr and udci , respectively. The DC-link current is idc, whose positive direction is defined as

from the rectifier to the inverter. To suppress DC-link current harmonics and limit current surges during DC faults,
smoothing reactors Ld and Lt are implemented. The transmitted active power through the VSC-based inverter is
denoted by Pc. Normally, the LCC-based rectifier regulates the DC-link current, while the VSC-based inverter

controls the DC-link voltage.
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Fig. 1. Schematic of the two-terminal hybrid HVDC system.

2.2. Dynamics of the hybrid LCC-VSC HVDC system

(1) LCC-based rectifier: Fig. 2 shows the topology and the equivalent circuit of the LCC-based rectifier. Vo
s the ideal no-load voltage of the LCC and Vo = 3

√
2E/π , in which E is the root-mean-square line voltage of

the LCC-connected AC source. α is the firing angle of the LCC. dγ is the equivalent commutation resistance and
dγ = 3ωsLγ /π , in which ωs is the frequency of the LCC-connected AC source and Lγ is the inductance of the
commutation reactor. The dynamics of the LCC-based rectifier can be described as,

udcr = Vo cos α − dγ idc (1)

Fig. 2. Topology and equivalent circuit of the LCC-based rectifier.

As shown in Fig. 3, the LCC regulates the DC-link current by tuning the firing angle α with a proportional–
ntegral (PI) controller, which is expressed as,

α = π − K Pc

(
i re f
dc − idc

)
− xc, xc = K I c

∫ (
i re f
dc − idc

)
dt (2)

here i re f
dc is the reference DC-link current. KPc and KI c are the proportional and integral (PI) gains of the constant

urrent controller. xc is the integral part of the PI current controller. The PI controller is assumed not to saturate
nder DC-side perturbations.

Fig. 3. DC current control of the LCC.

To solely and fully investigate the DC-side stability of hybrid HVDC links, the AC system supplying the LCC
is assumed to be ideal, implying the dynamics of the PLL of the LCC-based rectifier are neglected.

(2) VSC-based inverter: Fig. 4 shows the equivalent circuit of the VSC-based inverter. Cdc is the DC-link
apacitor of the VSC. ic and id are the capacitor current and the DC-side injected current of the converter,

respectively. Ls and Rs are the inductance and the resistance of the phase reactor, respectively. is is the AC-side
urrent of the VSC. uc and us are the converter and the AC source voltage, respectively. The dynamics of the
SC-based inverter can be described as,

ic = Cdc
dudci

, idc = ic + id , uc − us = Ls
dis

+ Rs is (3)

dt dt
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Fig. 4. Equivalent circuit of the VSC-based inverter.

The power balance equation holds when ignoring the loss of the converter,

Pc = udci id ≈ ucis ≈ us is (4)

To achieve the decoupling active and reactive power control, the classic vector control based on dq-coordinates
is widely used in VSC-based converters. As shown in Fig. 5, the vector control comprises inner and outer loops.
The inner current loop enables the AC output current to fast track its reference value.

ud
c = K Pin

(
idre f
s − id

s

)
+ K I in

∫ (
idre f
s − id

s

)
dt + ud

s − ωs Ls iq
s (5)

here KPin and KI in are the PI gains of the inner current control, respectively. The d- and q-axis components are
epresented by superscripts d and q, respectively, while the superscript ref denotes the reference value. Considering
he d-axis components are closely associated with the active power of the converter, only the d-axis dynamic
quation is presented in (5).

Fig. 5. Vector control of the VSC-based inverter.

The outer loop of the VSC-based inverter regulates the DC-link voltage and its control equations are expressed
as,

idre f
s = K Pv

(
udci − ure f

dc

)
+ xv, xv = K Iv

∫ (
udci − ure f

dc

)
dt (6)

here KPv and KIv are the PI gains of the outer voltage loop. xv is the integral part.
Analogous to the LCC, the dynamics of the PLL of the VSC-based inverter are also neglected when studying

he DC-side stability of hybrid LCC-VSC HVDC systems [21–23].
(3) DC transmission line: To simplify the analysis, the classic RL line model is adopted in this paper. This is

ecause the DC-side oscillation frequencies are within the feasible frequency range of the RL model. The dynamics
f the DC transmission line are expressed as,

udcr − udci = Ldc
didc

dt
+ Rl idc (7)

here Ldc is the DC transmission inductance and Ldc = Ll + Ld + Lt , in which Ll and Rl are the equivalent
nductance and resistance of the DC transmission line.

.3. Small-signal model of the hybrid HVDC link

Linearizing (4) around one equilibrium, it yields that,

∆Pc = udci0∆id + id0∆udci = 3ud
s ∆id

s /2 ⇒ ∆id + g0∆udci = k0∆id
s , g0 = id0/udci0, k0 = 3ud

s /2udci0
(8)
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where ∆ represents a generic small deviation from the equilibrium. The subscript 0 represents the initial steady-
state value. ud

s is the d-axis AC source voltage. g0 and k0 are the equivalent conductance and the concerning voltage
coefficient of the VSC.

Combining (3) and (8), it provides that,

d∆udci

dt
=

g0

Cdc
∆udci −

k0

Cdc
∆id

s +
1

Cdc
∆idc (9)

As for the VSC’s inner current loop, (10) holds by applying Laplace transformation on (3) and (5),

(sLs + Rs + K Pin + K I in/s)∆id
s = (K Pin + K I in/s)∆idre f

s (10)

According to [24], the inner current dynamics are normally configured as first-order processes by choosing the
PI gains as follows,

∆id
s = ∆idre f

s / (sσin + 1) , (Ls/K Pin = Rs/K I in = σin) (11)

The reference DC-link voltage is regarded as constant during normal operation. Based on (6) and (11), yields,

d∆id
s

dt
=

K Pv

σin
∆udci −

1
σin

∆id
s +

1
σin

∆xv (12)

(12) provides the linearized model of the VSC-based inverter. Similarly, the small-signal model of the LCC-based
ectifier is obtained based on (1) and (2),

∆udcr = −
(
K PcVo sin α0 + dγ

)
∆idc + Vo sin α0∆xc (13)

Combining (7) and (13), it provides that,

d∆idc

dt
= −

1
Ldc

∆udci −
Req0

Ldc
∆idc +

Vo sin α0

Ldc
∆xc (14)

here Req0 is the equivalent resistance of the HVDC transmission link and Req0 = Rl + dγ + KPcVo sin α0. Note
hat Req0 also varies with the initial operating point.

Based on (2) and (6), the following equations hold,

d∆xv

dt
= K Iv∆udci ,

d∆xc

dt
= −K I c∆idc (15)

(9), (12), (14), and (15) constitute the small-signal model of the studied hybrid HVDC system, which is rewritten
in a compact form as,

∆ẋ = A∆x, ∆x =

⎡⎢⎢⎢⎢⎣
∆udci

∆id
s

∆idc

∆xv

∆xc

⎤⎥⎥⎥⎥⎦ , A =

⎡⎢⎢⎢⎢⎣
g0/Cdc −k0/Cdc 1/Cdc 0 0
K Pv/σin −1/σin 0 1/σin 0
−1/Ldc 0 −Req0/Ldc 0 Vo sin α0/Ldc

K Iv 0 0 0 0
0 0 −K I c 0 0

⎤⎥⎥⎥⎥⎦ (16)

2.4. Verification of the hybrid HVDC model

To verify the proposed model expressed by (16), a hybrid HVDC link is established in detail based on
PSCAD/EMTDC. In the simulation, the converters adopt the full-switching model [25], while the DC transmission
lines adopt the frequency-dependent model [26]. Table 1 presents the main parameters of the test system.

Fig. 6 compares the system dynamics with the detailed simulation model and those with the proposed model.
Fig. 6(a), (c), and (e) show the dynamics of DC-link current, DC-link voltage, and d-axis current of the VSC under
the sudden change of i re f

dc from 2 kA to 1.6 kA, while Fig. 6(b), (d), and (e) show the system dynamics under the
dip of ure f

dc from 500 kV to 475 kV. It is observed from Fig. 6 that the step responses with the proposed model
are aligned with those with the detailed simulation model under different DC-side perturbations, which verifies the

accuracy of the proposed small-signal model of the LCC-VSC system.
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Table 1. Main parameters of the test system.

Symbol Item Value

un
dc Nominal DC-link voltage 500 kV

in
dc Nominal DC-link current 2 kA
E Nominal voltage of LCC-tied AC source 450 kV
ωs Nominal frequency of AC grids 50 Hz
dγ Equivalent commutation resistance 41 �

Ld LCC-side smoothing reactor 200 mH
(KPc , KI c) PI gains of constant current controller of LCC (1, 100)
us Nominal voltage of VSC-connected AC source 220 kV
Cdc DC-link capacitance of VSC 100 µF
σin Time constant of inner loop 4 ms
(KPv , KIv) PI gains of DC voltage controller of VSC (5, 125)
Lt VSC-side supplementary reactor 50 mH
R0 Resistance of DC line (per kilometer) 0.015 �

L0 Inductance of DC line (per kilometer) 1.4 mH
l DC line length 100 km

Fig. 6. Comparison between the detailed model and the proposed model: (a) DC current with the variation of ire f
dc from 2 kA to 1.6 kA;

(b) DC current with the variation of ure f
dc from 500 kV to 475 kV; (c) DC voltage with the variation of ire f

dc from 2 kA to 1.6 kA; (d) DC
voltage with the variation of ure f

dc from 500 kV to 475 kV; (e) d-axis component current with the variation of ire f
dc from 2 kA to 1.6 kA;

(f) d-axis component current with the variation of ure f
dc from 500 kV to 475 kV.

3. Stability analysis of the hybrid HVDC link from DC-side perturbations

3.1. Dominant mode analysis

The small-signal stability discrimination of the studied hybrid HVDC system is achieved by examining the
eigenvalues of the state matrix A, i.e., the system modes. The modes with small damping ratios dominate stability
properties, which is known as the dominant modes. To find the influential factors on the dominant mode, the
participation factor can be utilized. The participation factor of the kth state variable in the i th mode marked as
pki is calculated as follows,

pki = vki uki/vi
Tui (17)

here vi and ui are the ith left eigenvector and right eigenvector of A, respectively. vki and uki are the kth element
of vi and ui , respectively.

Fig. 7 depicts the damping ratio and the participation factors of each mode. It is indicated that s1 and s2 have a
much smaller damping ratio than other modes and thus are more influential to the system stability. In addition, it
811
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Fig. 7. Dominant mode analysis based on the state matrix.

is shown that the dominant mode (s1 and s2) is highly relevant to the DC-link voltage and the d-axis current of the
VSC-based inverter.

By dividing the state variables into those with high and those with low participation in the dominant mode, (16)
can be partitioned as,[

∆ẋ1
∆ẋ2

]
=

[
A11 A12
A21 A22

] [
∆x1
∆x2

]
, ∆x1 =

[
∆udci ∆id

s

]T
, ∆x2 =

[
∆idc ∆xv ∆xc

]T (18)

here A11, A12, A21, and A22 are the partitioned matrices of A dividing at the second rows and columns.
Omitting the states less relevant to the dominant mode yields the characteristic equation of the truncated system,

Fd (s) = det (sI11 − A11) = s2
+ s (1/σin − g0/Cdc) + (k0 K Pv − g0) /σinCdc (19)

here I11 is the identity matrix of the same size as A11. Considering the small value of g0 for HVDC converters,
he dominant oscillation frequency of the studied system denoted by ωd is obtained based on (19),

ωd =
√

(k0 K Pv − g0) /σinCdc ≈
√

k0 K Pv/σinCdc (20)

.2. Dominant frequency model reduction

Due to the relatively high order of the state matrix, it is hard to directly derive the analytical stability criterion
ased on the classic modal analysis. To tackle that, a dominant frequency model reduction is proposed in this
aper. By constructing a reduced-order model to approximate the system behaviors nearby the dominant oscillation
requency, the original state matrix can be significantly simplified without losing principal stability properties.

By applying Laplace transformation on (18), it provides that,

sI11∆x1 = A11∆x1 + A12∆x2, sI22∆x2 = A21∆x1 + A22∆x2 (21)

here I22 is the identity matrix of the same size as A22. Combining the two equations in (21) yields,

sI11∆x1 =
(
A11 + A12 (sI22 − A22)

−1 A21
)
∆x1 (22)

Based on (22), the characteristic equation of the original system can be written as,

F(s) = det
(
(sI11 − A11) − A12 (sI22 − A22)

−1 A21
)

(23)

In (23), the first term (sI11 − A11) corresponds to the truncated system, while the second term (A12(sI22 −
−1
22) A21) reflects the effects of state variables less relevant to the dominant mode.
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Considering the damping ratio of the dominant mode is rather small, the following equation holds nearby the
ominant frequency,

sid = σid + jωid =

√
σid

2 + ωid
2
(
σid /

√
σ 2

id
+ ω2

id
+ jωid /

√
σ 2

id
+ ω2

id

)
= ωd

(
−ζd + j

√
1 − ζd

2
)

≈ jωd

(24)

here sid denotes the dominant mode. σid and ωid are the real part and the imaginary part of sid , respectively. ζ is
he damping ratio of the dominant mode.

By substituting (24) into (23), the system characteristic equation is reduced in the neighborhood of the dominant
requency as,

Fr (s) = det
(
sI11 − A11 − A12 (sI22 − A22)

−1 A21
)

= det (sI11 − A11 − MR − jMI)

≈ det (sI11 − A11 − MR − sMI/ωd) = det (s (I11 − MI/ωd) − (A11 + MR))
(25)

here MR and MI are supplementary matrices defined as,

MR = Re
{
A12 (sI22 − A22)

−1 A21
}
, MI = Im

{
A12 (sI22 − A22)

−1 A21
}

Based on (25), dynamics of the state variables less relevant to the dominant mode can be expressed by using
wo supplementary matrices with the same size of the truncated system. Since the reduced model approaches the
riginal system model at the dominant frequency, the properties of the dominant mode can remain intact during the
eduction.

.3. Reduced model of the hybrid HVDC link

Based on the detailed expressions of A12, A21, and A22 provided by (16), the following equation holds,

A12 (sI22 − A22)
−1 A21 =

[
−s/Cdc

(
s2Ldc + s Req0 + K IvVo sin α0

)
0

K Iv/sσin 0

]
(26)

Based on (20) and (24), (26) is rewritten as follows nearby the dominant frequency,

A12 (sI22 − A22)
−1 A21

⏐⏐
s= jωd

=

⎡⎣−σink0 K Pv Req0 + jωdσin (k0 K Pv Ldc − σinCdc K I cVo sin α0)

(k0 K Pv Ldc − σinCdc K I cVo sin α0)
2
+ σinCdck0 K Pv R2

eq0

0

− jωd K IvCdc/k0 K Pv 0

⎤⎦ (27)

In HVDC transmission systems, the time constant of the VSC’s inner loop is normally configured as several
illiseconds, while the DC-link capacitor is several hundreds of µF. Because of the small values of σin and Cdc,

28) holds with typical hybrid HVDC parameters,

k0 K Pv Ldc ≫ σinCdc K I cVo sin α0, k0 K Pv L2
dc ≫ σinCdc R2

eq0 (28)

Combining (27) and (28), the supplementary matrices MR and MI are reduced as,

MR =

[
−σin Req0/k0 K Pv L2

dc 0
0 0

]
, MI = ωd

[
σin/k0 K Pv Ldc 0

−K IvCdc/k0 K Pv 0

]
(29)

By inserting (29) into (25), the reduced characteristic equation of the hybrid HVDC link is obtained as,

Fr (s) = det (sI11 − A11 − MR − sMI/ωd) = a2s2
+ a1s + a0,

a2 = 1 −
σin

k0 K Pv Ldc
, a1 =

1
σin

−
g0

Cdc
−

K Iv

K Pv

−
1

k0 K Pv Ldc
+

σin Req0

k0 K Pv L2
dc

,

a0 =
k0 K Pv − g0

σinCdc
+

Req0

k0 K Pv L2
dc

.

(30)

.4. Stabilizing conditions

Due to the small values of σin and g0, the following inequalities hold with practical HVDC engineering
arameters,

a2 = 1−
σin

k K L
=

k0 K Pv Ldc − σin
k K L

> 0, a0 =
k0 K Pv − g0

σ C
+

Req0
2 ≈

k0 K Pv

σ C
+

Req0
2 > 0 (31)
0 Pv dc 0 Pv dc in dc k0 K Pv Ldc in dc k0 K Pv Ldc
813
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Since a2 and a0 are always positive, the sign of a1 determines the stability. Based on (30), the stability criterion
or the hybrid HVDC link is expressed as,

a1 = 1/σin − g0/Cdc − K Iv/K Pv − 1/k0 K Pv Ldc + σin Req0/k0 K Pv L2
dc > 0 (32)

(32) indicates that enlarging the integral gain of the DC voltage controller or downsizing the DC-link capacitor
f the VSC will degrade the system stability. To quantify the influences of system parameters on the stability of
he hybrid HVDC link, the stability margin marked as S is defined as,

S =
1

σin
−

g0

Cdc
−

K Iv

K Pv

−
1

k0 K Pv Ldc
+

σin Req0

k0 K Pv L2
dc

=
1

σin
−

idc0

Cdcudci0
−

K Iv

K Pv

−
2udci0

3K Pv Ldcud
s

+
2σinudci0r (udci0, idc0)

3K Pv L2
dcud

s
,

r (udci0, idc0) = Rl + dγ + K PcV +, V +
=

√
V 2

o −
(
udci0 +

(
Rl + dγ

)
idc0

)2
.

(33)

(32) and (33) indicate that the hybrid HVDC system is stable if S > 0 and the system reaches the stability
oundary if S = 0. Taking the partial derivatives of S with respect to udci0 and idc0, yields,

∂S
∂udci0

=
idc0

Cdcu2
dci0

−
2

3K Pv Ldcud
s

+
2σin K PcVoudci0

3K Pv L2
dcud

s V +
> 0

∂S
∂idc0

= −
1

Cdcudci0
−

2σin K Pc
(
Rl + dγ

)
udci0

(
udci0 +

(
Rl + dγ

)
idc0

)
3K Pv L2

dcud
s V +

< 0
(34)

Note that the first relation in (34) holds because Cdc is fairly small with typical HVDC parameters such that the
rst term is larger than the second term of the right side. (34) manifests that reduced DC voltage operation or a
eavy load will deteriorate the DC-side stability of the hybrid HVDC transmission system.

The impacts of controller parameters on the DC-side stability are obtained similarly,

∂S
∂K Pc

=
2σinudci0V +

3K Pv L2
dcud

s
> 0,

∂S
∂K Pv

=
1

K 2
Pv

(
K Iv +

2udci0

3Ldcud
s

−
2σinudci0 Req0

3L2
dcud

s

)
> 0,

∂S
∂σin

= −

(
1

σ 2
in

−
2Req0udci0

3K Pv L2
dcud

s

)
< 0

(35)

It is concluded from (35) that declining the proportional gain of the constant current controller and that of the DC
voltage controller or enlarging the time constant of the inner loop of the VSC may jeopardize the system stability
as well.

In order to build up clear and concise relationships between system parameters and stability, simplified stabilizing
conditions for hybrid HVDC links are derived as follows.

Based on (34), a sufficient condition of (32) can be constructed as,

S ≥ S
(
umin

dc , imax
dc

)
> 1/σin − imax

dc /Cdcumin
dc − K Iv/K Pv − 2umin

dc /3K Pv Ldcud
s > 0 (36)

here imax
dc and umin

dc are the allowable maximum current and the minimum voltage of the HVDC transmission
ystem.

Rearranging (36), it provides that,

K Iv <
(
1/σin − imax

dc /Cdcumin
dc

)
K Pv − 2umin

dc /3Ldcud
s (37)

Considering the integral gain K Iv should be positive, the following inequalities are obtained based on (37),

K Pv > 2σinCdc
(
umin

dc

)2
/3Ldcud

s

(
Cdcumin

dc − σinimax
dc

)
,

0 < K Iv <
(
1/σin − imax

dc /Cdcumin
dc

)
K Pv − 2umin

dc /3Ldcud
s

(38)
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(38) provides simplified stabilizing conditions for hybrid HVDC links. Given the key parameters of a specified
ystem, it is convenient to design the DC voltage controller parameters as per (38) to guarantee the DC-side stability
f the system.

. Case studies

The accuracy of dominant frequency model reduction is verified by the classic eigen analysis. Besides, nonlinear
imulations based on PSCAD/EMTDC are carried out to verify the relationship between the system stability and key
arameters. The schematic and main parameters of the test system can refer to in Fig. 1 and Table 1, respectively.

.1. Verification of dominant frequency model reduction

Fig. 8 compares the system eigenvalues with the proposed and the reduced model. Fig. 8(a) and (b) show the
nfluences of operating points on the eigenvalues. Fig. 8(a) shows that declining the DC-link voltage will cause the
ominant eigenvalues (s1 and s2) to move towards the left-hand plane (LHP) and close to the real axis, implying
he oscillations will be less damped with lower frequencies. In contrast, Fig. 8(b) indicates that decreasing the
ransmitted DC current will enhance the system damping but slightly impact the oscillation frequency. Therefore,
C-side instability is more likely to occur in hybrid HVDC links under reduced DC voltage operation with a heavy

oad. Fig. 8(c) and (d) illustrate the changes of the eigenvalues with various parameters of physical systems, which
hows that the DC-link capacitance mainly affects the dominant mode, while the inductance of the transmission
ine mainly influences other nondominant modes. As illustrated by Fig. 8(c), downsizing the capacitor of the VSC
ill jeopardize the system stability and increase the oscillation frequency. Fig. 8(e) to (h) present the influences
f control parameters on the DC-side stability. Fig. 8(e) shows that increasing the proportional gain of the LCC’s
onstant current controller slightly improves the system dynamic properties. In contrast, Fig. 8(f) shows that the
ncrease of the time constant of the VSC’s inner control loop significantly deteriorates stability properties and slows
own the oscillation frequency. As for the VSC’s outer voltage loop, Fig. 8(g) shows that enlarging the proportional
ain will lead to the increase of the dominant mode’s damping ratio and its natural oscillation frequency. However,
s shown in Fig. 8(h), elevating the integral gain of the VSC’s outer loop will sharply reduce the system damping
nd slightly affect the oscillation frequency.

Fig. 8. Impacts of system parameters on the eigenvalues of the state matrix: (a) ure f
dc from 515 kV to 350 kV; (b) ire f

dc from 0 to 2.4 kA;
(c) Cdc from 500 µF to 50 µF; (d) Ll from 0.01 H to 1.4 H; (e) K Pc from 10 to 0.1; (f) σin from 1 ms to 10 ms; (g) K Pv from 10.2 to
.3; (h) K Iv from 20 to 400.

To sum up, the DC-side stability of hybrid HVDC links will deteriorate with reduced DC voltage operation, a
eavy load, a small DC-link capacitor, slow VSC’s inner dynamics, a low proportional and a large integral gain of the
uter voltage loop, which is in line with (34) and (35). It is also observed in Fig. 8 that the dominant eigenvalues

alculated by the proposed model (denoted by circular points) are fairly close to those with the reduced model
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(denoted by diamond points) under various system parameters, demonstrating the accuracy of dominant frequency
model reduction.

Fig. 9 shows the influences of the PI gains of the VSC’s outer voltage loop on the system damping, where
he blue region denotes positive damping, while the red region denotes negative damping. The damping will be
nlarged by increasing the proportional gain or decreasing the integral gain. The stability boundary of the system
s obtained by connecting the points corresponding to zero damping together, which is denoted by the yellow solid
ine in Fig. 9. Based on (33), the stability boundary with the reduced model is the curve corresponding to S = 0,
hich is denoted by the purple dash line in Fig. 9. It is observed that the stability boundary with the proposed and

he reduced models are almost the same, which verifies the accuracy of the derived stability criterion expressed by
32). Moreover, by taking the mark of equality of (37), another stability boundary based on the simplified sufficient
tabilizing condition can be obtained, denoted by the brown dash–dot line in Fig. 9. Note that the boundary locates
n the blue region that corresponds to positive damping, indicating the conservatism of the stabilizing conditions
xpressed by (37) and (38).

Fig. 9. Stability boundary with different models.. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

4.2. Nonlinear simulation analysis

Fig. 10 shows the nonlinear simulation results under sudden DC voltage dips with various system parameters.
Fig. 10(a) depicts the system dynamics under different voltage dips. When the DC-link voltage becomes lower,
the hybrid HVDC system gradually exhibits less damped oscillations. Divergent oscillations occur when the DC-
link voltage dips to 350 kV. Besides, the oscillation frequency becomes larger as the DC-link voltage decreases.
Fig. 10(b) indicates that increasing the transmitted current is detrimental to suppressing the DC-link oscillations.
The system is destabilized when the DC-link current increases to 2.4 kA. Also, it is indicated by Fig. 10(b) that
the change of the DC-link current has negligible influences to the oscillation frequency. Fig. 10(c) presents the
system dynamics with different DC-link capacitances, which clearly shows that decreasing the DC-link capacitance
significantly augments and accelerates the DC-side oscillations. This can be explained by the fact that a smaller
capacitor possesses less capacity for storing the transient energy during DC-side perturbations. As illustrated by
Fig. 10(d), the system damping and the oscillation frequency will decrease when slowing down the VSC’s inner
dynamics. Consequently, a small time constant of the VSC’s inner loop is recommended for hybrid HVDC links
not only to fast track the reference current but also to suppress DC-link resonances. Fig. 10(e) depicts that declining

the proportional gain of the VSC’s outer voltage loop will sharply weaken the damping and reduce the oscillation
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Fig. 10. Impacts of system parameters on system dynamics: (a) under different voltage dips; (b) under different loads; (c) with different
DC-link capacitances; (d) with different time constant of the VSC’s inner loop; (e) with different proportional gains of the DC voltage
control; (f) with different integral gains of the DC voltage control.

frequency. In contrast, the change of the integral gain of the VSC’s outer loop rarely affects the oscillation frequency
as depicted in Fig. 10(f). It is also shown in Fig. 10(f) that the system exhibits apparent divergent oscillations with
an integral gain of 250. However, DC-link oscillations are significantly damped when the integral gain is below
180, which equals the right side of the inequality expressed by (37). The simulation results indicate that the DC-link
stability of hybrid HVDC systems can be ensured, provided that the simplified stabilizing conditions expressed by
(38) can be satisfied. Additionally, it is worth mentioning that in Fig. 10, the damping ratios and natural oscillation
frequencies calculated based on the proposed model perfectly coincide with the simulation results. The nonlinear
simulations effectively verify the stability analysis results of hybrid HVDC links.

5. Conclusion

Analytical DC-side stabilizing conditions for hybrid HVDC links are explored in this paper. A reduced-order
odel capable of accurately describing the hybrid HVDC system behaviors in the neighborhood of the dominant

scillation frequency is first obtained based on dominant frequency model reduction. Subsequently, an analytical
tability criterion for the system is derived, which indicates that reduced DC voltage operation, a heavy load, a
mall DC-link capacitor, a slow time constant of VSC’s inner loop, a small proportional and a large integral gain of
SC’s outer voltage loop will deteriorate the DC-side stability of hybrid HVDC links. Accordingly, the region of DC
oltage regulator parameters for guaranteeing the system stability under DC-side perturbations can be determined.
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