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Abstract. This paper considers a class of nonsmooth nonconvex-nonconcave min-max problems in machine
learning and games. We first provide sufficient conditions for the existence of global minimax points
and local minimax points. Next, we establish the first-order and second-order optimality conditions
for local minimax points by using directional derivatives. These conditions reduce to smooth min-
max problems with Fr\'echet derivatives. We apply our theoretical results to generative adversarial
networks (GANs) in which two neural networks contest with each other in a game. Examples are
used to illustrate applications of the new theory for training GANs.
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1. Introduction. Consider the following min-max problem:

min
x\in X

max
y\in Y

f(x, y),(1.1)

where X \subseteq \BbbR n and Y \subseteq \BbbR m are nonempty, closed, and convex sets, f : \BbbR n \times \BbbR m \rightarrow \BbbR is a
locally Lipschitz continuous function. Define an envelope function

\varphi (x) :=max
y\in Y

f(x, y).

In this paper, we assume that \varphi (x) is finite-valued for any x \in X. We say problem (1.1) is
nonconvex-nonconcave if for a fixed x\in X, f(x, \cdot ) is not concave, and for a fixed y \in Y , f(\cdot , y)
is not convex.

The min-max problem (1.1) has many applications in machine learning and games [20, 30,
35], for instance, the popular generative adversarial networks (GANs) in machine learning
[2, 9, 16, 17, 26]. Let D :\BbbR m\times \BbbR s1 \rightarrow (0,1) be a parameterized discriminator, let G :\BbbR n\times \BbbR s2 \rightarrow 
\BbbR s1 be a parameterized generator, and let \xi i be a si-valued random vector with probability
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694 JIE JIANG AND XIAOJUN CHEN

distribution Pi and support \Xi i \subseteq \BbbR si for i = 1,2. Then the plain vanilla GAN model can be
formulated as

min
x\in X

max
y\in Y

\BbbE P1
[log (D(y, \xi 1))] +\BbbE P2

[log (1 - D(y,G(x, \xi 2)))] ,(1.2)

where x and y are the parameters to control D and G with ranges X and Y , respectively.
Here \BbbE Pi

[\cdot ] denotes the expected value with probability distribution Pi over \Xi i for i = 1,2.
We assume that the expected values are finite for any fixed x\in X and y \in Y . Since the range
of D is (0,1), for any fixed x,

\varphi (x) =max
y\in Y

\BbbE P1
[log (D(y, \xi 1))] +\BbbE P2

[log (1 - D(y,G(x, \xi 2)))]

is real-valued. The functions D and G are usually defined by deep neural networks (see
section 4 for a specific example). It is noteworthy that unconstrained min-max problems
for training GANs are widely used, while constrained min-max problems are also used for
improved GANs, Wasserstein GANs and some games. One can refer to [2, 3, 19] for more
details.

Since the pioneering work [29] by Von Neumann in 1928, convex-concave min-max prob-
lems have been investigated extensively, based on the concept of saddle points (see, e.g.,
[6, 28, 35, 36] and the references therein). In recent years, driven by important applications,
nonconvex-nonconcave min-max problems have attracted considerable attention [21, 22, 24, 31].
However, it is well-known that a nonconvex-nonconcave min-max problem may not have a sad-
dle point. How to properly define its local optimal points and optimality conditions has been
of great concern. In [1, 12, 25], the concept of local saddle points was studied, but it is pointed
out in [21] that the concept of local saddle points is not suitable for most applications of min-
max optimization in machine learning. A nonconvex-nonconcave min-max problem may not
have a local saddle point (see Example 2.7 in this paper). In [21], the authors argued that
a local solution cannot be determined just based on the function value in an arbitrary small
neighborhood of a given point. For that reason, they proposed the concept of local minimax
points of unconstrained smooth nonconvex-nonconcave min-max problems and studied the
first-order and second-order optimality conditions.

Optimality conditions for minimization problems have been extensively studied [7, 32].
Moreover, the study of optimality conditions for simultaneous games has a long history, whose
solutions are commonly described as the Nash equilibrium. According to the definition of Nash
equilibrium, the optimality conditions are the combination of each player's optimality condi-
tion when the rivals' decisions are fixed. Therefore, optimality conditions for simultaneous
games can be viewed as an extension of those for minimization problems. For more details, one
can refer to [4, 7, 14, 27, 32]. However, optimality and stationarity of nonsmooth nonconvex-
nonconcave min-max problems are not well understood. Necessary optimality conditions for
unconstrained weakly-convex-concave min-max problems and their application in machine
learning were studied in [23, 31]. In [21], from the viewpoint of sequential games, the local
minimax points and the first-order and second-order optimality conditions for unconstrained
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NONSMOOTH NONCONVEX-NONCONCAVE MIN-MAX PROBLEMS 695

smooth nonconvex-nonconcave min-max problems were defined. Based on the concept of
the local minimax points proposed in [21], necessary and sufficient optimality conditions for
the local minimax points of constrained smooth min-max problems were studied in [11]. It
is worth noting that the min-max problem can be viewed as a specific bilevel optimization
problem. The general practice to solve a bilevel optimization problem is to replace the lower
level optimization by its first-order optimality conditions, so that the bilevel optimization
problem becomes a mathematical programming with equilibrium constraints (MPEC) and
its optimality conditions are derived based on the MPEC formulation [13]. However, opti-
mality conditions for global/local minimax points of nonsmooth bilevel problems where the
upper level problem is nonconvex and the lower level problem is nonconcave have not been
studied yet.

The main contributions of this paper can be summarized as follows.
\bullet We define the first-order and second-order optimality conditions of local minimax

points of constrained min-max problem (1.1) by using directional derivatives. Our op-
timality conditions extend the work [21] for unconstrained smooth min-max problems
to constrained nonsmooth min-max problems. These conditions reduce to smooth
min-max problems with Fr\'echet derivatives. Moreover, we rigorously describe the re-
lationships between saddle points, local saddle points, global minimax points, local
minimax points, and stationary points defined by these first-order and second-order
optimality conditions. The relationships among these points is illustrated by interest-
ing examples and summarized in Figure 1.

\bullet We establish new mathematical optimization theory for the GAN model with both
smooth and nonsmooth activation functions. In particular, we give new properties
of global minimax points, local minimax points and stationary points of problem
(1.2) under some specific settings. Examples with the sample average approximation
approach show that our results are helpful and efficient for training GANs.

second-order
stationary
point

first-order
stationary
point

global
minimax
point

local
minimax
point

local
saddle
point

saddle point

Figure 1. Venn diagram for saddle points, minimax points and stationary points: a saddle point \Rightarrow a local
saddle point (Definitions 2.1 and 2.2), a global (local) minimax point \nRightarrow a local saddle point (Example 2.7), a
local saddle point \Rightarrow a local minimax point (Definitions 2.2 and 2.4), a local minimax point \Rightarrow a first-order or
second-order stationary point (Theorems 3.11 and 3.17), a first-order stationary point \nRightarrow a local minimax point
(Example 3.24), a second-order stationary point \Rightarrow a first-order stationary point (Definition 3.22).
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696 JIE JIANG AND XIAOJUN CHEN

The reminder of this paper is organized as follows. In section 2, we give some notations and
preliminaries. In section 3, we study the first-order and second-order optimality conditions of
nonsmooth and smooth min-max problems, respectively. In section 4, we apply our results
to GANs and use examples to show the effectiveness of our results. Finally, we make some
concluding remarks in section 5.

2. Notations and preliminaries. In this paper, \BbbN denotes the natural numbers. \BbbR n
+ de-

notes the nonnegative part of \BbbR n. \| \cdot \| denotes the Euclidean norm. cl(\Omega ), int(\Omega ), and bd(\Omega )
denote the closure, the interior, and the boundary of set \Omega , respectively. o(| t| ) denotes the
infinitesimal of a higher order than | t| as t\rightarrow 0. O(| t| ) denotes the same order as | t| as t\rightarrow 0.
\BbbB (x, r) denotes the closed ball centred at x with radius r > 0. Denote (\cdot )+ := max\{ 0, \cdot \} the
ReLU activation function. The indicator function of a set \Omega is denoted by \delta \Omega , i.e., \delta \Omega (x) = 0 if
x\in \Omega and \delta \Omega (x) =\infty otherwise. The extended-valued functions are functions that are allowed
to be extended-real-valued, i.e., to take values in \BbbR \cup \{ \pm \infty \} .

Let \Omega \subseteq \BbbR n be a closed and convex set. The tangent cone [32, Definition 6.1] to \Omega at x\in \Omega ,

denoted by \scrT \Omega (x), is defined as \scrT \Omega (x) = \{ w : \exists xk \Omega \rightarrow x, tk \downarrow 0 such that limk\rightarrow \infty 
xk - x
tk =w\} .

The normal cone [32, Definition 6.3] to \Omega at x\in \Omega , denoted by \scrN \Omega (x), is

\scrN \Omega (x) := \{ y \in \BbbR n : \langle y,\omega  - x\rangle \leq 0 \forall \omega \in \Omega \} .

It also knows from [32, Proposition 6.5] that \scrN \Omega (x) = \{ v : \langle v,\omega \rangle \leq 0 for \forall \omega \in \scrT \Omega (x)\} .
Definition 2.1. We say that (\^x, \^y)\in X \times Y is a saddle point of problem (1.1) if

f(\^x, y)\leq f(\^x, \^y)\leq f(x, \^y)(2.1)

holds for any (x, y)\in X \times Y .

Definition 2.2. We say that (\^x, \^y)\in X \times Y is a local saddle point of problem (1.1) if there
exists a \delta > 0 such that, for any (x, y) \in X \times Y satisfying \| x - \^x\| \leq \delta and \| y - \^y\| \leq \delta , (2.1)
holds.

In the convex-concave setting, saddle points are usually used to describe the optimality of
min-max problems. However, one significant drawback of considering (local) saddle points of
nonconvex-nonconcave problems is that such points might not exist [21, Proposition 6]. Also,
(local) saddle points correspond to simultaneous game, but many applications (such as GANs
and adversarial training) correspond to sequential games. In view of this, we consider in what
follows global and local minimax points proposed in [21], which are from the viewpoint of
sequential games.

Definition 2.3. We say that (\^x, \^y)\in X \times Y is a global minimax point of problem (1.1) if

f(\^x, y)\leq f(\^x, \^y)\leq max
y\prime \in Y

f(x, y\prime )

holds for any (x, y)\in X \times Y .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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NONSMOOTH NONCONVEX-NONCONCAVE MIN-MAX PROBLEMS 697

Definition 2.4. We say that (\^x, \^y) \in X \times Y is a local minimax point of problem (1.1) if
there exist a \delta 0 > 0 and a function \tau : \BbbR + \rightarrow \BbbR + satisfying \tau (\delta ) \rightarrow 0 as \delta \rightarrow 0, such that for
any \delta \in (0, \delta 0] and any (x, y)\in X \times Y satisfying \| x - \^x\| \leq \delta and \| y - \^y\| \leq \delta , we have

f(\^x, y)\leq f(\^x, \^y)\leq max
y\prime \in \{ y\in Y :\| y - \^y\| \leq \tau (\delta )\} 

f(x, y\prime ).

Remark 2.5. It is noteworthy that the function \tau in Definition 2.4 can be further restricted
to be monotone or continuous without changing Definition 2.4 [21, Remark 15]. Hereafter, we
always assume that \tau is monotone and continuous.

Global or local minimax points are motivated by many practical applications and the
probable nonconvexity-nonconcavity of the min-max problem. Obviously, a saddle point is a
global minimax point and a local saddle point is a local minimax point. However, problem
(1.1) may not have a local saddle point. The following proposition gives some sufficient
conditions for the existence of global (local) minimax points. Note that the existence of a
global (local) minimax point does not imply the existence of a local saddle point.

Proposition 2.6.
(i) If \Phi u := \{ x \in X : \varphi (x)\leq u\} is nonempty and bounded for some scalar u and \{ y \in Y :

f(x, y) \geq lx\} is bounded for every x \in \Phi u and some scalar lx, then problem (1.1) has
at least a global minimax point.

(ii) (See [21, Lemma 16].) (x\ast , y\ast )\in X \times Y is a local minimax point if and only if y\ast is a
local maximum of f(x\ast , \cdot ) and there exists a \delta 0 > 0 such that x\ast is a local minimum of
\varphi \delta (x) :=maxy\prime \in \{ y\in Y :\| y - y\ast \| \leq \delta \} f(x, y

\prime ) for any \delta \in (0, \delta 0].

Proof. (i) According to the continuity of f(x, y), \varphi is lower semicontinuous. We know
from [32, Theorem 1.9] that argminx\in X\varphi (x) \subseteq \Phi u is nonempty and compact. Let x\ast \in 
argminx\in X\varphi (x) and consider the set argmaxy\in Y f(x

\ast , y). Since \{ y \in Y : f(x\ast , y) \geq lx\ast \} is
bounded, we know from the continuity of f(x\ast , \cdot ) that the maximum can be achieved. Let
y\ast \in argmaxy\in Y f(x

\ast , y). It is easy to check that (x\ast , y\ast ) is a global minimax point.

Specifically, if both X and Y are bounded, then all conditions in (i) of Proposition 2.6
hold. Thus problem (1.1) has a global minimax point. However, a local minimax point may
not exist even X and Y are bounded (see Example 3.24). Also, a global minimax point may
not be a local minimax point (see Example 3.24). The following example tells that the global
and local minimax points exist but (local) saddle points do not.

Example 2.7 (see [21, Figure 1]). Let n = m = 1 and X = Y = [ - 1,1]. Consider
f(x, y) = - x2 + 5xy - y2. Note that

\varphi (x) = max
y\in [ - 1,1]

( - x2 + 5xy - y2) =

\left\{     
 - x2  - 5x - 1, x\in 

\bigl[ 
 - 1, - 2

5

\bigr] 
;

21
4 x

2, x\in 
\bigl[ 
 - 2

5 ,
2
5

\bigr] 
;

 - x2 + 5x - 1, x\in 
\bigl[ 
2
5 ,1
\bigr] 
.

It is not difficult to examine that minx\in [ - 1,1]\varphi (x) = 0 when x= 0. In this case, y= 0. There-

fore, (0,0) is a global minimax point. Moreover, let \delta 0 =
2
5 and \tau (\delta ) = 5

2\delta in Definition 2.4.
Then for any \delta \leq \delta 0, (x, y)\in [ - 1,1]\times [ - 1,1] satisfying | x| \leq \delta and | y| \leq \delta , we have

max
y\prime \in \{ y\in Y :| y| \leq 5

2
\delta \} 
f(x, y\prime ) =

21

4
x2

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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698 JIE JIANG AND XIAOJUN CHEN

when y= 5
2x. Thus, we obtain

 - y2 = f(0, y)\leq f(0,0) = 0\leq max
y\prime \in \{ y\in Y :| y| \leq 5

2
\delta \} 
f(x, y\prime ) =

21

4
x2,

which implies that (0,0) is also a local minimax point.
Note that the solutions of maxy\in [ - \delta ,\delta ]minx\in [ - \delta ,\delta ] f(x, y) are (\delta ,0) and ( - \delta ,0) for any \delta \in 

(0,1]. Thus, we have

max
y\in [ - \delta ,\delta ]

min
x\in [ - \delta ,\delta ]

f(x, y) = - \delta 2 \not = 0= min
x\in [ - \delta ,\delta ]

max
y\in [ - \delta ,\delta ]

f(x, y),(2.2)

which implies that (0,0) is neither a saddle point (i.e., (2.2) holds with \delta = 1; see Definition 2.1)
nor a local saddle point (i.e., (2.2) holds with a sufficiently small \delta , see Definition 2.2).

Example 2.7 gives a nonconvex-nonconcave min-max problem that has global and local
minimax points, but does not have a local saddle point. Thus, global and local minimax
points defined in Definitions 2.3 and 2.4, respectively, are good supplements of (local) saddle
points, especially in the nonconvex-nonconcave setting.

3. Optimality and stationarity. In this section, we first discuss the first-order and second-
order optimality conditions when f in problem (1.1) is nonsmooth. The smooth case is
considered as a special case of the nonsmooth ones when the directional derivatives can be
represented by Fr\'echet derivatives. Our results extend the study of necessary optimality
conditions of unconstrained smooth min-max problems in [21]. In particular, in the nonsmooth
case, our results extend [21] from unconstrained smooth ones to constrained nonsmooth ones
and in the smooth case, our results extend [21] from unconstrained ones to constrained ones.
We also illustrate these theoretical results by three examples.

To proceed further, we give the description of tangents to convex sets.

Lemma 3.1 (see [32, Theorem 6.9]). If \Omega \subseteq \BbbR n is convex and \=x\in \Omega , then

\scrT \Omega (\=x) = cl\{ w : \exists \lambda > 0with \=x+ \lambda w \in \Omega \} , int (\scrT \Omega (\=x)) = \{ w : \exists \lambda > 0with \=x+ \lambda w \in int(\Omega )\} .

Denote

\scrT \circ 
\Omega (\=x) := \{ w : \exists \lambda > 0 with \=x+ \lambda w \in \Omega \} .

It is not difficult to verify that \scrT \Omega (\=x), int(\scrT \Omega (\=x)), and \scrT \circ 
\Omega (\=x) are convex cones if \Omega is convex.

Moreover, we have the following relationship int (\scrT \Omega (\=x))\subseteq \scrT \circ 
\Omega (\=x)\subseteq \scrT \Omega (\=x). If \Omega is polyhedral,

then \scrT \circ 
\Omega (\=x) = \scrT \Omega (\=x).

3.1. Nonsmooth case. In this subsection, we consider problem (1.1) when f is not dif-
ferentiable. For this purpose, we introduce some definitions for nonsmooth analysis.

Let g :\BbbR n \rightarrow \BbbR . The (first-order) subderivative dg(x)(v) at x\in \BbbR n for v \in \BbbR n is defined as
[32, Definition 8.1]

dg(x)(v) := lim inf
v\prime \rightarrow v,t\downarrow 0

g(x+ tv\prime ) - g(x)

t
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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NONSMOOTH NONCONVEX-NONCONCAVE MIN-MAX PROBLEMS 699

The function g is semidifferentiable at x for v [32, Definition 7.20] if the (possibly infinite)
limit

lim
v\prime \rightarrow v,t\downarrow 0

g(x+ tv\prime ) - g(x)

t

exists. Further, if the above limit exists for every v \in \BbbR n, we say that g is semidifferentiable
at x. It is easy to see that if g is Lipschitz continuous in a neighborhood of x, then this limit
is finite.

There are two types of second-order subderivatives [32, Definition 13.3]. The second-order
subderivative at x\in \BbbR n for w and v is

d2g(x| v)(w) := lim inf
w\prime \rightarrow w,t\downarrow 0

g(x+ tw\prime ) - g(x) - t \langle v,w\prime \rangle 
1
2 t

2
.

The second-order subderivative at x\in \BbbR n for w (without mention of v) is

d2g(x)(w) := lim inf
w\prime \rightarrow w,t\downarrow 0

g(x+ tw\prime ) - g(x) - tdg(x)(w\prime )
1
2 t

2
.

We say that g is twice semidifferentiable at x if it is semidifferentiable at x and the
(possibly infinite) limit

lim
w\prime \rightarrow w,t\downarrow 0

g(x+ tw\prime ) - g(x) - tdg(x)(w\prime )
1
2 t

2

exists for any w \in \BbbR n.
The one-side directional derivative g\prime (x;v) at x\in \BbbR n along the direction v \in \BbbR n is defined

as

g\prime (x;v) := lim
t\downarrow 0

g(x+ tv) - g(x)

t
.

The function g is directionally differentiable at x if g\prime (x;v) exists for all directions v \in \BbbR n.
If g is locally Lipschitz continuous near x, then semidifferentiability at x is equivalent to
directional differentiability at x.

The second-order directional derivative of g at x\in \BbbR n along the direction v \in \BbbR n is defined
as [32, Chapter 13.B]

g(2)(x;v) := lim
t\downarrow 0

g(x+ tv) - g(x) - tg\prime (x;v)
1
2 t

2
.

Obviously, if g is semidifferentiable at x, then dg(x)(v) = g\prime (x;v); if g is twice semidiffer-
entiable at x, then d2g(x)(w) = g(2)(x;w).

As a generalization of classical directional derivatives, the (Clarke) generalized directional
derivative of g at x\in \BbbR n along the direction v \in \BbbR n is defined as [7, section 2.1]

g\circ (x;v) := limsup
x\prime \rightarrow x,t\downarrow 0

g(x\prime + tv) - g(x\prime )

t
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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700 JIE JIANG AND XIAOJUN CHEN

We say that g is Clarke regular at x [7, Definition 2.3.4] if g\prime (x;v) exists and g\circ (x;v) = g\prime (x;v)
for all v. By using the generalized directional derivative, we can define the (Clarke) generalized
subdifferential as

\partial g(x) := \{ z \in \BbbR n : \langle z, v\rangle \leq g\circ (x;v) \forall v \in \BbbR n\} .

In turn, we know from [7, p. 10] that

g\circ (x;v) =max\{ \langle \zeta , v\rangle : \zeta \in \partial g(x)\} .(3.1)

The generalized second-order directional derivative of g at x \in \BbbR n along the direction
(u, v)\in \BbbR n \times \BbbR n is defined as (see [8, Definition 1.1] and [32, Theorem 13.52])

g\circ \circ (x;u, v) := limsup
x\prime \rightarrow x

t\downarrow 0,\delta \downarrow 0

g(x\prime + \delta u+ tv) - g(x\prime + \delta u) - g(x\prime + tv) + g(x\prime )

\delta t
.

Especially, when u= v, we write g\circ \circ (x;v, v) as g\circ \circ (x;v) for simplicity.

Remark 3.2. When f is continuously differentiable at (\^x, \^y), f\circ x(\^x, \^y;v) = dxf(\^x, \^y)(v) =
\nabla xf(\^x, \^y)

\top v and f\circ y (\^x, \^y;w) = dyf(\^x, \^y)(w) =\nabla yf(\^x, \^y)
\top w (see [32, Exercise 8.20]). Moreover,

if f is twice continuously differentiable at (\^x, \^y), we know from [32, Example 13.8, Proposi-
tion 13.56] that f\circ \circ x (\^x, \^y;v) = d2xf(\^x, \^y)(v) = v\top \nabla 2

xf(\^x, \^y)v and f\circ \circ y (\^x, \^y;w) = d2yf(\^x, \^y)(w) =

w\top \nabla 2
yf(\^x, \^y)w.

Example 3.3. Consider a two-layer neural network with the ReLU activation function as
follows:

F (W,b) := \rho (W2(W1\xi + b1)+ + b2)

for a fixed \xi \in \BbbR s, where W1 \in \BbbR s1\times s, b1 \in \BbbR s1 , W2 \in \BbbR s2\times s1 , b2 \in \BbbR s2 , \rho : \BbbR s2 \rightarrow \BbbR is a
continuously differentiable function, W = (W1,W2) and b = (b1, b2). Obviously, F is locally
Lipschitz continuous. For fixed W = (W 1,W 2) and \=b= (\=b1,\=b2), we consider

F \prime (W,b;W,\=b) = lim
t\downarrow 0

F (W + tW, b+ t\=b) - F (W,b)

t

= lim
t\downarrow 0

\rho ((W2 + tW 2)((W1 + tW 1)\xi + b1 + tb1)+ + b2 + tb2) - \rho (W2(W1\xi + b1)+ + b2)

t

and

lim
t\downarrow 0

(W2 + tW 2)((W1 + tW 1)\xi + b1 + tb1)+ + b2 + tb2  - (W2(W1\xi + b1)+ + b2)

t

= lim
t\downarrow 0

W2

\bigl( 
((W1 + tW 1)\xi + b1 + tb1)+  - (W1\xi + b1)+

\bigr) 
+ t
\bigl( 
W 2((W1+ tW 1)\xi + b1 + tb1)++ b2

\bigr) 
t

=W2

\biggl( 
lim
t\downarrow 0

((W1 + tW 1)\xi + b1 + tb1)+  - (W1\xi + b1)+
t

\biggr) 
+W 2(W1\xi + b1)+ + b2.

For i= 1, . . . , s1, denote W
i
1 and W i

1 the ith row vectors of W 1 and W1, and \=bi1 and bi1 the ith
components of \=b1 and b1, respectively. Then, for i= 1, . . . , s1 and sufficiently small t > 0, we
have
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NONSMOOTH NONCONVEX-NONCONCAVE MIN-MAX PROBLEMS 701\Bigl( 
(W i

1 + tW
i
1)

\top \xi + bi1 + tb
i
1

\Bigr) 
+
 - 
\Bigl( 
(W i

1)
\top \xi + bi1

\Bigr) 
+

=

\left\{         
t(W

i
1)

\top \xi + tb
i
1 if (W i

1)
\top \xi + bi1 > 0;

0 if (W i
1)

\top \xi + bi1 < 0;

t(W
i
1)

\top \xi + tb
i
1 if (W i

1)
\top \xi + bi1 = 0 and (W

i
1)

\top \xi +\=bi1 > 0;

0 if (W i
1)

\top \xi + bi1 = 0 and (W
i
1)

\top \xi +\=bi1 \leq 0.

Hence we obtain

lim
t\downarrow 0

((W i
1 + tW

i
1)

\top \xi + bi1 + tb
i
1)+  - ((W i

1)
\top \xi + bi1)+

t

=

\Biggl\{ 
(W

i
1)

\top \xi +\=bi1 if (W i
1)

\top \xi + bi1 > 0 or (W i
1)

\top \xi + bi1 = 0 and (W
i
1)

\top \xi +\=bi1 > 0;

0 if (W i
1)

\top \xi + bi1 < 0 or (W i
1)

\top \xi + bi1 = 0 and (W
i
1)

\top \xi +\=bi1 \leq 0.

Thus, we have that the limit

\Upsilon :=W2

\Biggl( 
lim
t\downarrow 0

((W1 + tW 1)\xi + b1 + tb1)+  - (W1\xi + b1)+
t

\Biggr) 
+W 2(W1\xi + b1)+ + b2

exists. Therefore, we have that F is semidifferentiable based on the locally Lipschitz continuity.
If, moreover, \rho is twice continuously differentiable, we have

d2F (W,b)(W,\=b) = lim inf
t\downarrow 0

W \prime \rightarrow W,\=b\prime \rightarrow \=b

F (W + tW
\prime 
, b+ t\=b\prime ) - F (W,b) - tdF (W,b)(W

\prime 
,\=b\prime )

1
2 t

2

=\Upsilon \top \nabla 2\rho (W2(W1\xi + b1)+ + b2)\Upsilon ,

which implies that F is twice semidifferentiable.

The following lemma tells the necessary optimality conditions for an unconstrained mini-
mization problem by using subderivatives.

Lemma 3.4 (see [32, Theorems 10.1 and 13.24]). Let g : \BbbR n \rightarrow ( - \infty ,+\infty ] be a proper
extended-valued function. If \=x is a local minimum of g over \BbbR n, then dg(\=x)(v) \geq 0 and
d2g(\=x| 0)(v)\geq 0 for any v \in \BbbR n.

The following lemma shows that we can replace d2g(\=x| 0)(v) \geq 0 by d2g(\=x)(v) \geq 0 under
certain mild conditions.

Lemma 3.5. Let g :\BbbR n \rightarrow ( - \infty ,+\infty ] be twice semidifferentiable at \=x. If dg(\=x)(v) = 0, then
d2g(\=x| 0)(v) = d2g(\=x)(v).

Proof. Let dg(\=x)(v) = 0. Note that

d2g(\=x)(v) = lim inf
v\prime \rightarrow v,t\downarrow 0

g(\=x+ tv\prime ) - g(\=x) - tdg(\=x)(v\prime )
1
2 t

2
= lim

v\prime \rightarrow v,t\downarrow 0

g(\=x+ tv\prime ) - g(\=x) - tdg(\=x)(v\prime )
1
2 t

2

= lim
t\downarrow 0

g(\=x+ tv) - g(\=x) - tdg(\=x)(v)
1
2 t

2
= lim

t\downarrow 0

g(\=x+ tv) - g(\=x)
1
2 t

2
=d2g(x| 0)(v),
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702 JIE JIANG AND XIAOJUN CHEN

where the second equality follows from the twice semidifferentiability of g at \=x and the third
equality follows from the existence of the limit.

Lemma 3.6 (see [32, Theorem 8.2]). For the indicator function \delta \scrX of a set \scrX \subseteq \BbbR n and
any point x\in \scrX , one has d\delta \scrX (x)(v) = \delta \scrT \scrX (x)(v) for any v \in \BbbR n.

A function g : \BbbR n \rightarrow \BbbR is called positively homogeneous of degree p > 0 if g(\lambda w) = \lambda pg(w)
for all \lambda > 0 and w \in \BbbR n (see [32, Definition 13.4]).

The following lemma shows the expansion of a function via subderivatives.

Lemma 3.7 (see [32, Theorem 7.21 and Exercise 13.7]). Let g :\BbbR n \rightarrow \BbbR . Then
(i) g is semidifferentiable at \=x if and only if

g(x) = g(\=x) + dg(\=x)(x - \=x) + o (\| x - \=x\| ) ,

where dg(\=x)(\cdot ) is a finite, continuous, positively homogeneous function.
(ii) Suppose that g is semidifferentiable at \=x. Then g is twice semidifferentiable at \=x if and

only if

g(x) = g(\=x) + dg(\=x)(x - \=x) +
1

2
d2g(\=x)(x - \=x) + o

\Bigl( 
\| x - \=x\| 2

\Bigr) 
,

where d2g(\=x)(\cdot ) is a finite, continuous, positively homogeneous of degree 2 function.

The following lemma gives the first-order and second-order optimality conditions for min-
imizing a semidifferentiable function, which extends a subresult of [10, Proposition 2.3] from
a polyhedral set to a general convex and closed set.

Lemma 3.8. Let \scrX \subseteq \BbbR n be a closed and convex set, let g :\BbbR n \rightarrow \BbbR be semidifferentiable at
\=x\in \scrX , and let \=x be a local minimum point of g over \scrX . Then dg(\=x)(v)\geq 0 for all v \in \scrT \scrX (\=x).
Moreover, if g is twice semidifferentiable at \=x, then d2g(\=x)(v) \geq 0 for all v \in \scrT \circ 

\scrX (\=x) \cap \{ v :
dg(\=x)(v) = 0\} .

Proof. Since \=x is a local minimum point of g over \scrX , we know from Lemma 3.4 that
d\=g(\=x)(v)\geq 0 and d2\=g(\=x| 0)(v)\geq 0 for any v \in \BbbR n, where \=g= g+ \delta \scrX . From Lemma 3.6, we have
for all v \in \scrT \scrX (\=x) that

0\leq d\=g(\=x)(v) = lim inf
v\prime \rightarrow v,t\downarrow 0

g(\=x+ tv\prime ) - g(\=x) + \delta \scrX (\=x+ tv\prime ) - \delta \scrX (\=x)

t

= lim inf
v\prime \rightarrow v,t\downarrow 0

g(\=x+ tv\prime ) - g(\=x)

t
=dg(\=x)(v),

where the second equality follows from the observation that \delta \scrX (\=x) = 0 due to \=x\in \scrX and v\prime is
selected such that \delta \scrX (\=x+ tv\prime ) = 0 (see Lemma 3.1) for sufficient small t to achieve the limit
inferior.

Based on the above results, for v \in \scrT \circ 
\scrX (\=x)\subseteq \scrT \scrX (\=x), dg(\=x)(v) = 0 if and only if d\=g(\=x)(v) = 0.

Thus, \scrT \circ 
\scrX (\=x)\cap \{ v : dg(\=x)(v) = 0\} = \scrT \circ 

\scrX (\=x)\cap \{ v : d\=g(\=x)(v) = 0\} .
We know from Lemma 3.5 that for v \in \scrT \circ 

\scrX (\=x)\cap \{ v : dg(\=x)(v) = 0\} , d2\=g(\=x| 0)(v) = d2\=g(\=x)(v).
Therefore, for v \in \scrT \circ 

\scrX (\=x)\cap \{ v : dg(\=x)(v) = 0\} , we have
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NONSMOOTH NONCONVEX-NONCONCAVE MIN-MAX PROBLEMS 703

0\leq d2\=g(\=x)(v)
(\mathrm{a})
= lim inf

v\prime \rightarrow v,t\downarrow 0

g(\=x+ tv\prime ) + \delta \scrX (\=x+ tv\prime ) - g(\=x) - \delta \scrX (\=x) - td\=g(\=x)(v\prime )
1
2 t

2

(\mathrm{b})

\leq lim inf
t\downarrow 0

g(\=x+ tv) + \delta \scrX (\=x+ tv) - g(\=x) - \delta \scrX (\=x) - td\=g(\=x)(v)
1
2 t

2

(\mathrm{c})
= lim

t\downarrow 0

g(\=x+ tv) - g(\=x) - tdg(\=x)(v)
1
2 t

2

(\mathrm{d})
= d2g(\=x)(v),

where (a) follows from the definition of the second-order subderivative d2\=g(\=x)(v), (b) follows
from the definition of limit inferior (see [32, Definition 1.5]), (c) follows from \=x\in \scrX and \=x+tv \in 
\scrX for sufficiently small t due to v \in \scrT \circ 

\scrX (\=x), and (d) follows from the twice semidifferentiability
of g at \=x.

The following lemma gives a description of the generalized second-order directional deriv-
ative by using directional derivatives.

Lemma 3.9 (see [8, Proposition 1.3]). Let g :\BbbR n \rightarrow \BbbR be a continuous function that admits
a directional derivative at every point near x. Then g\circ \circ (x;u, v) is the generalized directional
derivative of g\prime (\cdot , v) at x along direction u, that is

g\circ \circ (x;u, v) = limsup
x\prime \rightarrow x

t\downarrow 0

g\prime (x\prime + tu;v) - g\prime (x\prime ;v)

t
.

Remark 3.10. Note that

g\circ \circ (x;v)\geq lim
t\downarrow 0

g(x+ tv+ tv) - g(x+ tv) - g(x+ tv) + g(x)

t2
= g(2)(x;v).

Recall that g :\BbbR n \rightarrow \BbbR is twice subregular at x [8, Definition 3.1] if the limit

lim
t\downarrow 0,\delta \downarrow 0

g(x+ \delta u+ tv) - g(x+ \delta u) - g(x+ tv) + g(x)

\delta t

exists and the above limit equals to g\circ \circ (x;u, v). Thus, we know that g\circ \circ (x;v) = g(2)(x;v) if g
is twice subregular at x.

Now we are ready to give the main results of this subsection.

Theorem 3.11. Let the tuple (\^x, \^y)\in X \times Y be a local minimax point of problem (1.1).
(i) If f is semidifferentiable at (\^x, \^y), then

f\circ x(\^x, \^y;v)\geq 0 for all v \in \scrT X(\^x),(3.2a)

dyf(\^x, \^y)(w)\leq 0 for all w \in \scrT Y (\^y),(3.2b)

where f\circ x(\^x, \^y;v) denotes the generalized directional derivative of f with respect to x at
\^x along the direction v for fixed \^y.

(ii) Assume, further, that f is twice semidifferentiable at (\^x, \^y) and f is Clarke regular in
a neighborhood of (\^x, \^y). Then
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704 JIE JIANG AND XIAOJUN CHEN

f\circ \circ x (\^x, \^y;v)\geq 0 for all v \in \scrT \circ 
X(\^x)\cap \{ v : \exists \delta > 0,dxf(\^x, y

\prime )(v) = 0 \forall y\prime \in \BbbB (\^y, \delta )\cap Y \} ,(3.3a)

d2yf(\^x, \^y)(w)\leq 0 for allw \in \scrT \circ 
Y (\^y)\cap \{ w : dyf(\^x, \^y)(w) = 0\} ,(3.3b)

where f\circ \circ x (\^x, \^y;v) denotes the generalized second-order directional derivative of f with respect
to x at \^x along the direction (v, v) for fixed \^y.

Proof. Equations (3.2b) and (3.3b) directly follow from Lemma 3.8. Therefore, we only
focus on (3.2a) and (3.3a), respectively.

(i) Since (\^x, \^y) is a local minimax point, there exist a \delta 0 > 0 and a function \tau : \BbbR + \rightarrow \BbbR +

satisfying \tau (\delta ) \rightarrow 0 as \delta \rightarrow 0, such that for any \delta \in (0, \delta 0] and (x, y) \in X \times Y satisfying
\| x - \^x\| \leq \delta and \| y - \^y\| \leq \delta , we have

f(\^x, y)\leq f(\^x, \^y)\leq max
y\prime \in \{ y\in Y :\| y - \^y\| \leq \tau (\delta )\} 

f(x, y\prime ).(3.4)

For any v \in \scrT X(\^x), according to the convexity of X, there exist \{ vk\} k\geq 1 with vk \rightarrow v as
k\rightarrow \infty and \{ tk\} k\geq 1 with tk \downarrow 0 as k\rightarrow \infty , such that xk := \^x+ tkv

k \in X (see Lemma 3.1). Let
\delta k =

\bigm\| \bigm\| xk  - \^x
\bigm\| \bigm\| and \~yk be defined by

\~yk \in argmax
y\prime \in \{ y\in Y :\| y - \^y\| \leq \tau (\delta k)\} 

f(xk, y\prime ).(3.5)

Obviously, \delta k \rightarrow 0 and
\bigm\| \bigm\| \~yk  - \^y

\bigm\| \bigm\| \rightarrow 0 as k\rightarrow \infty . According to the second inequality of (3.4),
we have (for sufficiently large k) that

0\leq f(xk, \~yk) - f(\^x, \^y) = f(xk, \~yk) - f(\^x, \~yk) + f(\^x, \~yk) - f(\^x, \^y)

\leq f(xk, \~yk) - f(\^x, \~yk).
(3.6)

Note from the mean-value theorem [7, Theorem 2.3.7] that there exists an \~xk lying in the
segment between xk and \^x such that

f(xk, \~yk) - f(\^x, \~yk)\in 
\biggl\langle 
\partial f(\~xk, \~yk),

\biggl( 
tkv

k

0

\biggr) \biggr\rangle 
.

It indicates that there exists an element contained in\biggl\langle 
\partial f(\~xk, \~yk),

\biggl( 
tkv

k

0

\biggr) \biggr\rangle 
such that it is not less than 0. Thus, by dividing tk in both sides and letting k\rightarrow \infty , due to
the upper semicontinuity of \partial f(\cdot , \cdot ) (see [7, Proposition 2.1.5]), we obtain

0\leq sup
\zeta \in \partial f(\^x,\^y)

\biggl\langle 
\zeta ,

\biggl( 
v
0

\biggr) \biggr\rangle 
(\mathrm{a})
= f\circ (\^x, \^y;v,0) = f\circ x(\^x, \^y;v),

where (a) follows from (3.1) and f\circ x(\^x, \^y;v) denotes the Clarke generalized directional deriva-
tive of f with respect to x at \^x along the direction v for fixed \^y.

(ii) Let v \in \scrT \circ 
X(\^x) \cap \{ v : \exists \delta > 0,dxf(\^x, y

\prime )(v) = 0 \forall y\prime \in \BbbB (\^y, \delta ) \cap Y \} . Then there exists a
sequence \{ tk\} k\geq 1 with tk \downarrow 0, such that xk := \^x+ tkv \in X. Let \delta k =

\bigm\| \bigm\| xk  - \^x
\bigm\| \bigm\| , and let \~yk be

defined in (3.5).
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NONSMOOTH NONCONVEX-NONCONCAVE MIN-MAX PROBLEMS 705

From the mean-value theorem, there is \zeta k \in (0, tk) such that

f(\^x+ tkv, \~y
k) - f(\^x, \~yk)\in \partial f(\^x+ \zeta kv, \~y

k)

\biggl( 
tkv
0

\biggr) 
.

Similar to (3.6), we have f(\^x+ tkv, \~y
k) - f(\^x, \~yk)\geq 0. Thus, we have

f\circ (\^x+ \zeta kv, \~y
k;v,0) = sup

\theta \in \partial f(\^x+\zeta kv,\~yk)

\biggl\langle 
\theta ,

\biggl( 
v
0

\biggr) \biggr\rangle 
\geq 0.(3.7)

Then, according to the Clarke regularity of f near (\^x, \^y), we have from (3.7) that

0
(\mathrm{b})

\leq limsup
k\rightarrow \infty 

f\circ (\^x+ \zeta kv, \~y
k;v,0)

\zeta k

(\mathrm{c})
= limsup

k\rightarrow \infty 

f \prime (\^x+ \zeta kv, \~y
k;v,0)

\zeta k

(\mathrm{d})
= limsup

k\rightarrow \infty 

f \prime (\^x+ \zeta kv, \~y
k;v,0) - f \prime (\^x, \~yk;v,0)

\zeta k
\leq limsup

x\prime \rightarrow \^x,y\prime \rightarrow \^y

t\downarrow 0

f \prime (x\prime + tv, y\prime ;v,0) - f \prime (\^x, y\prime ;v,0)

t

(\mathrm{e})
= f\circ \circ (\^x, \^y;v,0) = f\circ \circ x (\^x, \^y;v),

where (b) follows from (3.7), (c) follows from the Clarke regularity of f near (\^x, \^y), (d) follows
from f \prime (\^x, \~yk;v,0) = 0 for sufficiently large k, (e) follows from Lemma 3.9 and f\circ \circ x (\^x, \^y;v)
denotes the generalized second-order directional derivative of f with respect to x at \^x along
the direction (v, v) for fixed \^y.

We illustrate Theorem 3.11 by Example A.1 in Appendix A.

Remark 3.12. We know from (3.1) that for any v, f\circ x(\^x, \^y;v) =maxz\in \partial xf(\^x,\^y) \langle z, v\rangle . Thus,
(3.2a) can be equivalently reformulated as maxz\in \partial xf(\^x,\^y) \langle z, v\rangle \geq 0 \forall v \in \scrT X(\^x), which, based
on the definition of normal cone, is equivalent to 0\in \partial xf(\^x, \^y) +\scrN X(\^x).

Generally, (3.2b) implies the Clarke stationary condition 0 \in  - \partial yf(\^x, \^y) + \scrN Y (\^y), but
not vice versa. Moreover, by using the (generalized) directional derivatives, we can establish
the second-order necessary optimality conditions for the nonsmooth case. Therefore, the
(generalized) directional derivatives are employed in Theorem 3.11.

Remark 3.13. It is noteworthy that the necessary optimality conditions (3.2a)--(3.2b) and
(3.3a)--(3.3b) with respect to x and y are not symmetric. Generally, (3.2a) and (3.3a) are
weaker than

dxf(\^x, \^y;v)\geq 0 for all v \in \scrT X(\^x)(3.8)

and

d2xf(\^x, \^y;v)\geq 0 for all v \in \scrT \circ 
X(\^x)\cap \{ v : dxf(\^x, \^y)(v) = 0\} ,(3.9)

respectively, because f\circ x(\^x, \^y;v)\geq dxf(\^x, \^y;v), f
\circ \circ 
x (\^x, \^y;v)\geq d2xf(\^x, \^y;v) (Remark 3.10) and

\scrT \circ 
X(\^x)\cap \{ v : \exists \delta > 0,dxf(\^x, y

\prime )(v) = 0 \forall y\prime \in \BbbB (\^y, \delta )\cap Y \} \subseteq \scrT \circ 
X(\^x)\cap \{ v : dxf(\^x, \^y)(v) = 0\} .
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706 JIE JIANG AND XIAOJUN CHEN

The main reason is that a local minimax point may not be a local saddle point. If we replace
(3.2a) and (3.3a) by (3.8) and (3.9), respectively, the necessary optimality conditions for local
saddle points are derived. Indeed, if (\^x, \^y) \in X \times Y is a local saddle point of problem (1.1),
then \^x is a local minimum of minx\in X f(x, \^y) and \^y is a local maximum of maxy\in Y f(\^x, y) by
Definition 2.2. Hence by Lemma 3.8, we obtain that (3.8) and (3.9) are necessary optimality
conditions for local saddle points of problem (1.1).

If, in addition, f is Clarke regular at (\^x, \^y), then

f\circ x(\^x, \^y;v)
(\mathrm{a})
= f\circ (\^x, \^y;v,0)

(\mathrm{b})
= f \prime (\^x, \^y;v,0)

(\mathrm{c})
= df(\^x, \^y)(v,0)

(\mathrm{d})
= dxf(\^x, \^y)(v),

where (a) follows from the definition of f\circ x , (b) follows from the Clarke regularity, (c) follows
from [10, section 2.1], and (d) follows from the definition of dxf . Thus, (3.2a) can be replaced
by (3.8).

If, in addition, f is twice subregular at (\^x, \^y), then

f\circ \circ (\^x, \^y;v,0)
(\mathrm{e})
= d2f(\^x, \^y)(v,0)

(\mathrm{f})
= d2xf(\^x, \^y)(v),

where (e) follows from [10, section 2.1] and (f) follows from the definition of d2xf . Thus (3.3a)
can be replaced by

d2xf(\^x, \^y)(v)\geq 0 \forall v \in \scrT \circ 
X(\^x)\cap \{ v : \exists \delta > 0,dxf(\^x, y

\prime )(v) = 0 \forall y\prime \in \BbbB (\^y, \delta )\cap Y \} .

Remark 3.14. Suppose that f is twice semidifferentiable, Clarke regular, and twice sub-
regular. Then we have f\circ x(\^x, \^y;v) = dxf(\^x, \^y)(v) and f\circ \circ x (\^x, \^y;v) = d2xf(\^x, \^y)(v). Based on
Lemma C.4 and (3.3), we can have

f\circ \circ x (\^x, \^y;v)> 0 for all 0 \not = v \in \scrT X(\^x)\cap \{ v : dxf(\^x, \^y)(v) = 0\} ,
d2yf(\^x, \^y)(w)> 0 for all 0 \not =w \in \scrT Y (\^y)\cap \{ w : dyf(\^x, \^y)(w) = 0\} ,

(3.10)

with (3.2) as a second-order sufficient condition for a local saddle point. Since a local saddle
point is a local minimax point, (3.10) together with (3.2) is also a sufficient condition for a
local minimax point.

Based on Theorem 3.11, we define the first-order and second-order d-stationary points of
min-max problems.

Definition 3.15. We call that (\^x, \^y) \in X \times Y is a first-order d-stationary point of problem
(1.1) if it satisfies (3.2a)--(3.2b). If (\^x, \^y) also satisfies (3.3a)--(3.3b), we call it a second-order
d-stationary point of problem (1.1).

3.2. Smooth case. In this subsection, we consider the necessary optimality conditions of
problem (1.1) when f is (twice) continuously differentiable. For any (x, y)\in X \times Y , denote

\Gamma \circ 
1(x, y) = \{ v \in \scrT \circ 

X(x) : v\bot \nabla xf(x, y)\} , \Gamma 1(x, y) = \{ v \in \scrT X(x) : v\bot \nabla xf(x, y)\} ,
\Gamma \circ 
2(x, y) = \{ w \in \scrT \circ 

Y (y) :w\bot \nabla yf(x, y)\} , \Gamma 2(x, y) = \{ w \in \scrT Y (y) :w\bot \nabla yf(x, y)\} .

It is noteworthy that cl(\Gamma \circ 
1(x, y)) \not =\Gamma 1(x, y) and cl(\Gamma \circ 

2(x, y)) \not =\Gamma 2(x, y) generally even if we
have cl(\scrT \circ 

X(x)) = \scrT X(x) and cl(\scrT \circ 
Y (y)) = \scrT Y (y). We summarize their relationships as follows.
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NONSMOOTH NONCONVEX-NONCONCAVE MIN-MAX PROBLEMS 707

Lemma 3.16. Let (x, y)\in X\times Y . Then \Gamma \circ 
1(x, y), \Gamma 1(x, y), \Gamma 

\circ 
2(x, y), and \Gamma 2(x, y) are convex

cones, and we have cl\Gamma \circ 
1(x, y) \subseteq \Gamma 1(x, y) and cl\Gamma \circ 

2(x, y) \subseteq \Gamma 2(x, y). Moreover, if X and Y are
polyhedral, then \Gamma \circ 

1(x, y) = cl\Gamma \circ 
1(x, y) = \Gamma 1(x, y) and \Gamma \circ 

2(x, y) = cl\Gamma \circ 
2(x, y) = \Gamma 2(x, y).

Proof. Since X and Y are closed and convex, we know from Lemma 3.1 that \scrT \circ 
X(x), and

\scrT \circ 
Y (y) are convex cones, \scrT X(x) and \scrT Y (y) are closed convex cones, and

cl\scrT \circ 
X(\=x)\subseteq \scrT X(\=x) and cl\scrT \circ 

Y (\=y)\subseteq \scrT Y (\=y).

Thus, we obtain that \Gamma \circ 
1(x, y), \Gamma 1(x, y), \Gamma 

\circ 
2(x, y), and \Gamma 2(x, y) are convex cones. Moreover, we

have
cl\Gamma \circ 

1(x, y) = cl\{ v \in \scrT \circ 
X(x) : v\bot \nabla xf(x, y)\} \subseteq \{ v \in cl\scrT \circ 

X(x) : v\bot \nabla xf(x, y)\} 
\subseteq \{ v \in \scrT X(x) : v\bot \nabla xf(x, y)\} =\Gamma 1(x, y).

Similarly, we can verify cl\Gamma \circ 
2(x, y)\subseteq \Gamma 2(x, y).

If, further, X and Y are polyhedral, we have \scrT \circ 
X(\=x) = \scrT X(\=x) and \scrT \circ 

Y (\=y) = \scrT Y (\=y). Thus,

cl\Gamma \circ 
1(x, y)\subseteq \Gamma 1(x, y) = \{ v \in \scrT X(x) : v\bot \nabla xf(x, y)\} 

= \{ v \in \scrT \circ 
X(x) : v\bot \nabla xf(x, y)\} =\Gamma \circ 

1(x, y),

which implies that \Gamma \circ 
1(x, y) = cl\Gamma \circ 

1(x, y) = \Gamma 1(x, y). Similarly, we can verify \Gamma \circ 
2(x, y) =

cl\Gamma \circ 
2(x, y) = \Gamma 2(x, y).

Theorem 3.17. Let f be continuously differentiable and the tuple (\^x, \^y) \in X \times Y be a local
minimax point of problem (1.1).

(i) Then it holds that

0\in \nabla xf(\^x, \^y) +\scrN X(\^x),(3.11a)

0\in  - \nabla yf(\^x, \^y) +\scrN Y (\^y).(3.11b)

(ii) Assume, further, that f is twice continuously differentiable. Then\bigl\langle 
v,\nabla 2

xxf(\^x, \^y)v
\bigr\rangle 
\geq 0 for all v \in cl\{ \=v : \exists \delta > 0, \=v \in \Gamma \circ 

1(\^x, y
\prime ) \forall y\prime \in \BbbB (\^y, \delta )\} ,(3.12a) \bigl\langle 

w,\nabla 2
yyf(\^x, \^y)w

\bigr\rangle 
\leq 0 for all w \in cl\Gamma \circ 

2(\^x, \^y).(3.12b)

Proof. (i) The proof is similar to Theorem 3.11. Here we give a simple proof of (3.11a) and

(3.12a) for completeness. For any xk
X\rightarrow \^x as k\rightarrow \infty , denote \delta k =

\bigm\| \bigm\| xk  - \^x
\bigm\| \bigm\| and \~yk is defined

in (3.5). Obviously, \delta k \rightarrow 0 and
\bigm\| \bigm\| \~yk  - \^y

\bigm\| \bigm\| \rightarrow 0 as k\rightarrow \infty . From the continuous differentiability
of f , we have

0\leq f(xk, \~yk) - f(\^x, \~yk) =\nabla f(\=xk, \~yk)\top 
\biggl( 
xk  - \^x
\~yk  - \~yk

\biggr) 
=\nabla xf(\^x, \^y)

\top (xk  - \^x) + o
\Bigl( \bigm\| \bigm\| \bigm\| xk  - \^x

\bigm\| \bigm\| \bigm\| \Bigr) ,
where \=xk is some point lying in the segment between \^x and xk. Thus, we obtain

 - \nabla xf(\^x, \^y)
\top (xk  - \^x)\leq o

\Bigl( \bigm\| \bigm\| \bigm\| xk  - \^x
\bigm\| \bigm\| \bigm\| \Bigr) .

We know from [32, Definition 6.3] that  - \nabla xf(\^x, \^y)\in \scrN X(\^x), which verifies (3.11a).
(ii) We need only prove that (3.12a) holds with v \in \Gamma \circ 

1(\^x, y
\prime ) for all y\prime \in \BbbB (\^y, \delta ) and some

\delta > 0. According to the definition of \scrT \circ 
X(\^x), there exists a sequence \{ tk\} k\geq 1 with tk \downarrow 0 as

k\rightarrow \infty , such that xk := \^x+ tkv \in X. Let \delta k = tk \| v\| , and \~yk is denoted in (3.5). Similarly, we
have that
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708 JIE JIANG AND XIAOJUN CHEN

0\leq f(xk, \~yk) - f(\^x, \~yk)
(\mathrm{a})
= \nabla xf(\^x, \~y

k)\top (xk  - \^x) +
1

2
(xk  - \^x)\top \nabla 2

xxf(\~x
k, \~yk)(xk  - \^x)

(\mathrm{b})
= \nabla xf(\^x, \~y

k)\top (xk  - \^x) +
1

2
(xk  - \^x)\top \nabla 2

xxf(\^x, \^y)(x
k  - \^x) + o

\biggl( \bigm\| \bigm\| \bigm\| xk  - \^x
\bigm\| \bigm\| \bigm\| 2\biggr) ,

where (a) follows from Taylor's theorem for multivariate functions with Lagrange's remainder,
and \~xk is some point lying in the segment between \^x and xk; (b) follows from the twice
continuous differentiability of f and \~xk \rightarrow \^x as k\rightarrow \infty . Thus, we obtain

tk\nabla xf(\^x, \~y
k)\top v+ t2k

1

2
v\top \nabla 2

xxf(\^x, \^y)v+ \| v\| 2 o(t2k)\geq 0.

Since \nabla xf(\^x, \~y
k)\top v= 0 for sufficiently large k, dividing by t2k in both sides and letting k\rightarrow \infty ,

we complete the proof.

Remark 3.18. The asymmetry between (3.12a) and (3.12b) mainly arises from the asym-
metry between x and y in a local minimax point. Conversely, if the conditions in (ii) of
Theorem 3.17 hold except that cl\{ w : \exists \delta > 0,w \in \Gamma \circ 

1(\^x, y
\prime ) \forall y\prime \in \BbbB (\^y, \delta )\} and cl\Gamma \circ 

2(\^x, \^y) are re-
placed by \Gamma 1(\^x, \^y) and \Gamma 2(\^x, \^y), respectively, and the inequality is strict when v \not = 0 and
w \not = 0, then (\^x, \^y) is a local saddle point. In that case, (3.12) together with (3.11) are the
so-called second-order sufficient condition for a local saddle point. This fact can be easily de-
rived by using the sufficient optimality condition for minimization problems (see [32, Example
13.25]) and the definition of local saddle points (see Definition 2.2). Specifically, by invoking
Lemma C.3 (ii), these conditions imply that \^y is a local maximum of maxy\in Y f(\^x, y) for fixed
\^x, and \^x is a local minimum of minx\in X f(x, \^y) for fixed \^y. Hence (\^x, \^y) is a local saddle
point.

Corollary 3.19. Let f be twice continuously differentiable. If, further, for local minimax
point (\^x, \^y), there exists an \tau such that \tau (\delta ) = o(\delta ) as \delta \downarrow 0, then (3.12a) can be replaced by\bigl\langle 

v,\nabla 2
xxf(\^x, \^y)v

\bigr\rangle 
\geq 0 for all v \in cl\Gamma \circ 

1(\^x, \^y).

Proof. Let 0 \not = v \in \Gamma \circ 
1(\^x, \^y). According to the definition of \scrT \circ 

X(\^x), there exists a sequence
\{ tk\} k\geq 1 with tk \downarrow 0 as k\rightarrow \infty , such that xk := \^x+ tkv \in X. Let \delta k :=

\bigm\| \bigm\| xk  - \^x
\bigm\| \bigm\| , and let \~yk be

denoted in (3.5). Since \tau (\delta ) = o(\delta ) as \delta \downarrow 0, we have
\bigm\| \bigm\| \~yk  - \^y

\bigm\| \bigm\| = o
\bigl( \bigm\| \bigm\| xk  - \^x

\bigm\| \bigm\| \bigr) for sufficiently
large k. We know from the twice continuous differentiability of f that

f(xk, \~yk) = f(\^x, \^y) +\nabla xf(\^x, \^y)
\top (xk  - \^x) +\nabla yf(\^x, \^y)

\top (\~yk  - \^y)

+
1

2
(xk  - \^x)\top \nabla 2

xxf(\^x, \^y)(x
k  - \^x) + (xk  - \^x)\top \nabla 2

xyf(\^x, \^y)(\~y
k  - \^y)

+
1

2
(\~yk  - \^y)\top \nabla 2

yyf(\^x, \^y)(\~y
k  - \^y) + o

\biggl( \bigm\| \bigm\| \bigm\| xk  - \^x
\bigm\| \bigm\| \bigm\| 2 + \bigm\| \bigm\| \bigm\| \~yk  - \^y

\bigm\| \bigm\| \bigm\| 2\biggr) ,
f(\^x, \~yk) = f(\^x, \^y) +\nabla yf(\^x, \^y)

\top (\~yk  - \^y) +
1

2
(\~yk  - \^y)\top \nabla 2

yyf(\^x, \^y)(\~y
k  - \^y)

+ o

\biggl( \bigm\| \bigm\| \bigm\| \~yk  - \^y
\bigm\| \bigm\| \bigm\| 2\biggr) .
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NONSMOOTH NONCONVEX-NONCONCAVE MIN-MAX PROBLEMS 709

Using tk\nabla xf(\^x, \^y)
\top v=\nabla xf(\^x, \^y)

\top (xk  - \^x) = 0 for v \in \Gamma \circ 
1(\^x, \^y), we have

0\leq f(xk, \~yk) - f(\^x, \~yk)

=
1

2
(xk  - \^x)\top \nabla 2

xxf(\^x, \^y)(x
k  - \^x) + (xk  - \^x)\top \nabla 2

xyf(\^x, \^y)(\~y
k  - \^y)

+ o

\biggl( \bigm\| \bigm\| \bigm\| xk  - \^x
\bigm\| \bigm\| \bigm\| 2 + \bigm\| \bigm\| \bigm\| \~yk  - \^y

\bigm\| \bigm\| \bigm\| 2\biggr)  - o

\biggl( \bigm\| \bigm\| \bigm\| \~yk  - \^y
\bigm\| \bigm\| \bigm\| 2\biggr) 

(\mathrm{a})
=

1

2
(xk  - \^x)\top \nabla 2

xxf(\^x, \^y)(x
k  - \^x) + (xk  - \^x)\top \nabla 2

xyf(\^x, \^y)(\~y
k  - \^y) + o

\biggl( \bigm\| \bigm\| \bigm\| xk  - \^x
\bigm\| \bigm\| \bigm\| 2\biggr) 

(\mathrm{b})
= t2k

1

2
v\top \nabla 2

xxf(\^x, \^y)v+ o(t2k),

where (a) follows from the fact that
\bigm\| \bigm\| \~yk  - \^y

\bigm\| \bigm\| = o
\bigl( \bigm\| \bigm\| xk  - \^x

\bigm\| \bigm\| \bigr) for sufficiently large k and (b)
follows from the fact that\bigm| \bigm| \bigm| (xk  - \^x)\top \nabla 2

xyf(\^x, \^y)(\~y
k  - \^y)

\bigm| \bigm| \bigm| \leq \bigm\| \bigm\| \bigm\| xk  - \^x
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \nabla 2

xyf(\^x, \^y)
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \~yk  - \^y

\bigm\| \bigm\| \bigm\| = o(t2k).

Finally, dividing by t2k in both sides and letting tk \rightarrow 0, we complete the proof.

Remark 3.20. In Corollary 3.19, the asymmetry of optimality conditions between on x and
on y has been removed. The main reason lies in restricting the scope of the local minimax
points by requiring \tau (\delta ) = o(\delta ) as \delta \downarrow 0 in Definition 2.4.

The following example illustrates cl\{ w :w \in \Gamma \circ 
1(\^x, y

\prime ) \forall y\prime \in \BbbB (\^y, \delta )\} for some \delta > 0.

Example 3.21. Let n=m= 1, X = Y = [ - 1,1]. Consider

min
x\in [ - 1,1]

max
y\in [ - 1,1]

f(x, y) := - x4 + 4x2y2  - y4.

We have

\varphi (x) = max
y\in [ - 1,1]

( - x4 + 4x2y2  - y4) =

\left\{   3x4, x\in 
\Bigl[ 
 - 

\surd 
2
2 ,

\surd 
2
2

\Bigr] 
(y\ast =\pm 

\surd 
2x);

 - x4 + 4x2  - 1, [ - 1,1]\setminus 
\Bigl[ 
 - 

\surd 
2
2 ,

\surd 
2
2

\Bigr] 
(y\ast = 1),

which is not a convex function over [ - 1,1]. Moreover, it can be examined that (0,0) is a

global minimax point. In fact, it is also a local minimax point. Let \tau (\delta ) = 2\delta 2 and \delta 0 =
\surd 
2
2 .

Then, for any \delta \in (0, \delta 0] and any (x, y)\in [ - 1,1]2 satisfying | x| \leq \delta and | y| \leq \delta , we have

 - y4 = f(0, y)\leq f(0,0)\leq max
y\prime \in \{ y\in Y :| y| \leq \tau (\delta )\} 

f(x, y\prime ) = 3x4.

Therefore, for any \delta \in (0,1],

cl
\bigl\{ 
w :w \in \Gamma \circ 

1(0, y
\prime ) \forall y\prime \in \BbbB (0, \delta )

\bigr\} 
= cl

\left(  \bigcap 
y\prime \in \BbbB (0,\delta )

\{ w1 \in \scrT \circ 
[ - 1,1](0) :w1\bot \nabla xf(0, y

\prime )\} 

\right)  =\BbbR .

Similarly, we have cl\Gamma \circ 
2(0,0) = \{ w2 \in \scrT \circ 

[ - 1,1](0) :w2\bot \nabla yf(0,0)\} =\BbbR .
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710 JIE JIANG AND XIAOJUN CHEN

In this case, the second-order optimality condition (3.12) means \nabla 2
xxf(0,0) \geq 0 and

\nabla 2
yyf(0,0)\leq 0.

In Theorem 3.17, the first-order and second-order optimality necessary conditions are
given in a sense of geometry. In particular, for the case that X and Y are polyhedral, we
derive the corresponding Karush--Kuhn--Tucker (KKT) systems in Appendix B.

Definition 3.22. We state that (\^x, \^y) \in X \times Y is a first-order stationary point of problem
(1.1) if it satisfies (3.11a)--(3.11b). Moreover, if (\^x, \^y) also satisfies (3.12a)--(3.12b), we call
it a second-order stationary point of problem (1.1).

The existence results of the first-order stationary points can be obtained by using existing

results in [15, Proposition 2.2.3, Corollary 2.2.5]. Let F (x, y) =
\Bigl( 

\nabla xf(x, y)
 - \nabla yf(x, y)

\Bigr) 
.

(i) If there exist a bounded open set \scrZ \subseteq X \times Y and a point (\=x, \=y) \in (X \times Y ) \cap \scrZ such
that \biggl\langle 

F (x, y),

\biggl( 
x - \=x
y - \=y

\biggr) \biggr\rangle 
\geq 0 \forall (x, y)\in (X \times Y )\cap bd(\scrZ ),

then problem (1.1) has at least a first-order stationary point.
(ii) In particular, if X and Y are bounded, the first-order stationary point set of problem

(1.1) is nonempty.
We know from [21, Proposition 21] that a global minimax point can be neither a local

minimax point nor a stationary point. However, some global minimax points can be the
first-order stationary points.

The following proposition claims that under mild conditions a class of global minimax
points are first-order stationary points.

Proposition 3.23. Let f be continuously differentiable over X\times Y , and let (\^x, \^y) be a global
minimax point of (1.1) satisfying

\^y \in limsup
x\rightarrow \^x

\Biggl( 
argmax

y\prime \in Y
f(x, y\prime )

\Biggr) 
,

where `` limsup"" denotes outer limit [32, Definition 4.1]. Then (\^x, \^y) is a first-order stationary
point.

Proof. Since (\^x, \^y) is a global minimax point, we have for any (x, y)\in X \times Y that

f(\^x, y)
(\mathrm{a})

\leq f(\^x, \^y)
(\mathrm{b})

\leq max
y\prime \in Y

f(x, y\prime ).(3.13)

The inequality (a) of (3.13) implies (3.11b). In what follows, we only consider (3.11a) through
inequality (b) of (3.13). Since

\^y \in limsup
x\rightarrow \^x

\Biggl( 
argmax

y\prime \in Y
f(x, y\prime )

\Biggr) 
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

04
/2

4/
24

 to
 1

58
.1

32
.1

61
.5

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



NONSMOOTH NONCONVEX-NONCONCAVE MIN-MAX PROBLEMS 711

without loss of generality, we know from the definition of outer limit that there exist a sequence
\{ xk\} and \~yk \in argmaxy\prime \in Y f(x

k, y\prime ) such that \~yk \rightarrow \^y as k \rightarrow \infty . By a similar procedure to
the proof for (i) of Theorem 3.17, we have

0\leq \nabla xf(\^x, \~y
k)\top (xk  - \^x) + o

\Bigl( 
\| xk  - \^x\| 

\Bigr) 
=\nabla xf(\^x, \^y)

\top (xk  - \^x) +
\Bigl( 
\nabla xf(\^x, \~y

k
\Bigr) 
 - \nabla xf(\^x, \^y))

\top 
\Bigl( 
xk  - \^x

\Bigr) 
+ o

\Bigl( 
\| xk  - \^x\| 

\Bigr) 
=\nabla xf(\^x, \^y)

\top (xk  - \^x) + o
\Bigl( 
\| xk  - \^x\| 

\Bigr) 
,

which implies that  - \nabla xf(\^x, \^y)\in \scrN X(\^x).

In general, a global minimax point can be neither a local minimax point nor a stationary
point [21, Proposition 21]. Moreover, a first-order stationary point may not be a local minimax
point. We use the following example to show this assertion.

Example 3.24 (see [21, Figure 2]). Let n=m= 1, X = [ - 1,1], and Y = [ - 5,5]. Consider
the following minimax problem:

min
x\in [ - 1,1]

max
y\in [ - 5,5]

f(x, y) := xy - cos(y).(3.14)

By direct calculation, we have

\varphi (x) = max
y\in [ - 5,5]

(xy - cos(y)) =

\Biggl\{ 
x \cdot (\pi  - arcsin( - x)) - cos(\pi  - arcsin( - x)), x\in [0,1];

x \cdot ( - \pi  - arcsin( - x)) - cos( - \pi  - arcsin( - x)), x\in [ - 1,0],

where the optima is achieved when y= \pi  - arcsin( - x) and y= - \pi  - arcsin( - x), respectively.
It can be observed from the definition of \varphi (x) that x= 0 is the minimum. In this case, (0, - \pi )
and (0, \pi ) are two global minimax points. However, they both fail to satisfy (3.11a)--(3.11b),
that is, \Biggl\{ 

0\in y+\scrN [ - 1,1](x),

0\in x+ sin(y) +\scrN [ - 5,5](y),

which has a unique solution (0,0). Thus, neither (0, - \pi ) nor (0, \pi ) is a first-order stationary
point, which implies from Theorem 3.17 that they cannot be local minimax points either.
Therefore, a global minimax point can be neither a local minimax point nor a first-order
stationary point.

Next, we show that even (0,0) is not a local minimax point. For any y satisfying 0< | y| \leq \delta 
with any sufficiently small \delta > 0, we have  - cos(y) = f(0, y)> f(0,0) = - 1, which, according
to the definition of local minimax points in Definition 2.4, concludes that (0,0) is not a local
minimax point. Therefore, problem (3.14) here does not have a local minimax point even
both X and Y are bounded.

Sometimes we can find that a global minimax point may be a stationary point (Exam-
ple 2.7). In the following proposition, we conclude some sufficient conditions such that a
global minimax point is a local minimax point.
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712 JIE JIANG AND XIAOJUN CHEN

Proposition 3.25. Let (\^x, \^y) be a global minimax point, and let f be Lipschitz continuous
over X \times Y . Assume that for each x in a neighborhood of \^x, maxy\prime \in Y f(x, y

\prime ) has a unique
and uniformly bounded solution. Then (\^x, \^y) is a local minimax point.

Proof. Since maxy\prime \in Y f(x, y
\prime ) has a unique solution for all x in a neighborhood of \^x, we

use \=y(x) to denote this unique solution. Consider

max
y\prime \in Y

g(y\prime ) := f(\^x, y\prime ) and max
y\prime \in Y

\~g(y\prime ) := f(x, y\prime ).

Note that f(\^x, \cdot ) is continuous and \=y(x) is uniformly bounded for x in a neighborhood of
\^x. Then, by using Lemma C.1, we know that \| \=y(x) - \^y\| \rightarrow 0 as x \rightarrow \^x, which implies that
there exists a \delta 0 > 0 such that for any x \in X satisfying \| x - \^x\| \leq \delta \leq \delta 0, \tau (\delta ) \rightarrow 0, where
\tau (\delta ) := sup\{ x\in X:\| x - \^x\| \leq \delta \} \| \=y(x) - \^y\| . As (\^x, \^y) is a global minimax point, we have for any
x\in X and y \in Y that f(\^x, y)\leq f(\^x, \^y)\leq maxy\prime \in Y f(x, y

\prime ). This indicates that for x satisfying
\| x - \^x\| \leq \delta (\leq \delta 0) and y satisfying \| y - \^y\| \leq \tau (\delta ), we have

f(\^x, y)\leq f(\^x, \^y)\leq max
y\prime \in Y

f(x, y\prime ) = f(x, \=y(x)) = max
y\prime \in \{ y\in Y :\| y - \^y\| \leq \tau (\delta )\} 

f(x, y\prime ).

Thus, (\^x, \^y) is a local minimax point based on Definition 2.4.

Obviously, when f(x, \cdot ) is strictly concave for all x in a neighborhood of \^x, the condition
for the uniqueness of the maximization problem holds.

To end this section, we summarize relationships between saddle points, local saddle points,
global minimax points, local minimax points, and first-order and second-order stationary
points in Figure 1.

4. Generative adversarial networks. In this section, we consider the first-order and second-
order optimality conditions of the GAN using nonsmooth activation functions, which can be
formulated as nonsmooth nonconvex-nonconcave min-max problem (1.1).

The GAN is one of the most popular generative models in machine learning. It is comprised
of two ingredients: the generator, which creates samples that are intended to follow the same
distribution as the training data, and the discriminator, which examines samples to determine
whether they are real or fake. For more motivations and advantages of GANs, one can refer
to [17]. Recently, Wang gave a mathematical introduction to GANs in [34].

The plain vanilla GAN model can be formulated as (1.2), where D and G are given by
feedforward neural networks with parameters x and y, respectively. The activation function
is a function from \BbbR to \BbbR that is used to compute the hidden layer values and introduce
the nonlinear property. There are several commonly-used activation functions, such as ReLU
\sigma (z) =max\{ 0, z\} , the logistic sigmoid \sigma (z) = 1/(1+exp( - z)), the softplus activation function
\sigma (z) = ln(1 + exp(z)), etc.

We give an intuition for D and G which are consist of linear models with activation
functions in the following example.

Example 4.1. Consider that the discriminator D is a single-layer network with a logistic
sigmoid activation function [18] and the generator G is a two-layer network with an activation
function \sigma as follows: G(x, \xi 2) := W2\bfitsigma (W1\xi 2 + b1) + b2 and D(y, \xi 1) := 1

1+\mathrm{e}\mathrm{x}\mathrm{p}(y\top \xi 1)
, where
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NONSMOOTH NONCONVEX-NONCONCAVE MIN-MAX PROBLEMS 713

x = (vec(W1)
\top ,vec(W2)

\top , b\top 1 , b
\top 
2 )

\top and vec(\cdot ) denotes the columnwise vectorization operator
of matrices, W1 \in \BbbR s\times s2 , b1 \in \BbbR s, W2 \in \BbbR s1\times s, b2 \in \BbbR s1 , and \bfitsigma : \BbbR s \rightarrow \BbbR s. Here, \bfitsigma is a
separable vector activation function that aggregates the individual neuron activations.

In this case, the GAN model (1.2) can be explicitly written as

min
x\in X

max
y\in Y

f(x, y) =

\Biggl( 
\BbbE P1

\biggl[ 
log

\biggl( 
1

1 + exp(y\top \xi 1)

\biggr) \biggr] 

+\BbbE P2

\biggl[ 
log

\biggl( 
1 - 1

1 + exp(y\top (W2\bfitsigma (W1\xi 2 + b1) + b2))

\biggr) \biggr] \Biggr) 
.

(4.1)

If X and Y are compact and \bfitsigma is continuous, by Proposition 2.6, problem (4.1) has a global
minimax point.

Obviously, if D(\cdot , \xi 1) and G(\cdot , \xi 2) are smooth (i.e., \bfitsigma is smooth), the necessary optimality
conditions in Theorem 3.17 hold. Next, we focus on the nonsmooth case with the ReLU
activation function.

Proposition 4.2. Let f be defined in (4.1) with \bfitsigma (\cdot ) = (\cdot )+. Assume that support sets \Xi 1

and \Xi 2 are bounded. Then the following statements hold.
(i) f is locally Lipschitz continuous and twice semidifferentiable in X \times Y .
(ii) If, in addition, f is Clarke regular and twice subregular at (x, y), we have

f\circ x(x, y;v) =\BbbE P2

\Bigl[ 
\nabla \rho y (W2(W1\xi 2 + b1)+ + b2)

\top \Upsilon (v, \xi 2)
\Bigr] 
,(4.2a)

f\circ \circ x (x, y;v) =\BbbE P2

\Bigl[ 
\Upsilon (v, \xi 2)

\top \nabla 2\rho y(W2(W1\xi 2 + b1)+ + b2)\Upsilon (v, \xi 2)
\Bigr] 
,(4.2b)

where v=
\Bigl( 
vec(W 1)

\top ,vec(W 2)
\top , b

\top 
1 , b

\top 
2

\Bigr) 
\in \BbbR n, \rho y(\cdot ) := log

\Bigl( 
1 - 1

1+\mathrm{e}\mathrm{x}\mathrm{p}(y\top (\cdot ))

\Bigr) 
and

\Upsilon (v, \xi 2) :=W2

\biggl( 
lim
t\downarrow 0

((W1 + tW 1)\xi 2 + b1 + tb1)+  - (W1\xi + b1)+
t

\biggr) 
+W 2(W1\xi 2 + b1)+ + b2,

(4.3)

and

dyf(x, y)(w) = (\BbbE P1
[\nabla y log (D(y, \xi 1))] +\BbbE P2

[\nabla y log (1 - D(y,G(x, \xi 2)))])
\top w,(4.4a)

d2yf(x, y)(w) =w\top \bigl( \BbbE P1

\bigl[ 
\nabla 2

y log (D(y, \xi 1))
\bigr] 
+\BbbE P2

\bigl[ 
\nabla 2

y log (1 - D(y,G(x, \xi 2)))
\bigr] \bigr) 
w,

(4.4b)

where w \in \BbbR m.

Proof. (i) Let \rho 1(y) = \BbbE P1
[log (D(y, \xi 1))] , \rho 2(x, y) = \BbbE P2

[log (1 - D(y,G(x, \xi 2)))] . Since
for any fixed \xi 2 \in \Xi 2, G(x, \xi 2) and log (1  - 1

1+\mathrm{e}\mathrm{x}\mathrm{p}(y\top G(x,\xi 2))
) are locally Lipschitz continuous

in X \times Y , the local Lipschitz continuity of f(x, y) = \rho 1(y) + \rho 2(x, y) follows the continuous
differentiability of log and exp functions. Moreover, the twice semidifferentiability follows
directly from Example 3.3.
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714 JIE JIANG AND XIAOJUN CHEN

(ii) Since \rho y(\cdot ) is twice continuously differentiable, we have

f\circ x(x, y;v)
(\mathrm{a})
= f \prime x(x, y;v)

(\mathrm{b})
= \BbbE P2

\Bigl[ 
\nabla \rho y (W2(W1\xi 2 + b1)+ + b2)

\top \Upsilon (v, \xi 2)
\Bigr] 
,

where (a) follows from the Clarke regularity, (b) follows from Fatou--Lebesgue theorem, and
Example 3.3 and \Upsilon (v, \xi 2) is defined in (4.3). Again, by twice subregularity, we have

f\circ \circ x (x, y;v) = f (2)x (x, y;v) =\BbbE P2

\Bigl[ 
\Upsilon (v, \xi 2)

\top \nabla 2\rho y(W2(W1\xi 2 + b1)+ + b2)\Upsilon (v, \xi 2)
\Bigr] 
.

Note that, for given x, \xi 1, and \xi 2, D(y, \xi 1) and D(y,G(x, \xi 2)) are continuously differen-
tiable with respect to y. By Lemma C.2 and the boundedness of \Xi 1 and \Xi 2, we know that
f(x, y) is continuously differentiable with respect to y. Moreover, we have (see Remark 3.2)

dyf(x, y)(w) =\nabla yf(x, y)
\top w=

\Bigl( 
\nabla y\rho 1(y) +\nabla y\rho 2(x, y)

\Bigr) \top 
w

=
\Bigl( 
\BbbE P1

[\nabla y log (D(y, \xi 1))] +\BbbE P2
[\nabla y log (1 - D(y,G(x, \xi 2)))]

\Bigr) \top 
w,

where the last equality follows from Lemma C.2. Analogously, by applying Lemma C.2 to
\BbbE P1

[\nabla y log (D(y, \xi 1))] and \BbbE P2
[\nabla y log (1 - D(y,G(x, \xi 2)))], we can derive that f(x, y) is twice

continuously differentiable with respect to y and (see Remark 3.2)

d2yf(x, y)(w) =w\top \nabla 2
yf(x, y)w

=w\top 
\Bigl( 
\BbbE P1

\bigl[ 
\nabla 2

y log (D(y, \xi 1))
\bigr] 
+\BbbE P2

\bigl[ 
\nabla 2

y log (1 - D(y,G(x, \xi 2)))
\bigr] \Bigr) 
w.

The proof is complete.

By directly using Proposition 4.2, we can apply Theorems 3.11 and 3.17 to problem (4.1).

Proposition 4.3. Let (\^x, \^y) be a local minimax point of problem (4.1).
(i) Suppose the assumptions of Proposition 4.2 hold with (x, y) = (\^x, \^y). Then the first-

order necessary optimality conditions (3.2a)--(3.2b) hold at (\^x, \^y) with f\circ x(\^x, \^y;v) and
dyf(\^x, \^y)(w) being given by (4.2a) and (4.4a). If, in addition, f is Clarke regular in
a neighborhood of (\^x, \^y), then the second-order necessary optimality conditions (3.3a)--
(3.3b) hold at (\^x, \^y) with f\circ \circ x (\^x, \^y;v) and d2yf(\^x, \^y)(w) being given by (4.2b) and (4.4b).

(ii) If \bfitsigma (\cdot ) is twice continuously differentiable, then the first-order and second-order nec-
essary optimality conditions (3.11a)--(3.11b) and (3.12a)--(3.12b) hold at (\^x, \^y).

In Appendix D, we discuss the sample average approximation of the first-order and second-
order stationary points of problem (4.1).

5. Conclusions. Many nonconvex-nonconcave min-max problems in dada sciences do not
have saddle points. In this paper, we provide sufficient conditions for the existence of global
and local minimax points of constrained nonsmooth nonconvex-nonconcave min-max problem
(1.1). Moreover, we give the first-order and second-order optimality conditions of local mini-
max points of problem (1.1), and use these conditions to define the first-order and second-order
stationary points of (1.1). The relationships between saddle points, local saddle points, global
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NONSMOOTH NONCONVEX-NONCONCAVE MIN-MAX PROBLEMS 715

minimax points, local minimax points, stationary points are summarized in Figure 1. Several
examples are employed to illustrate our theoretical results. To demonstrate applications of
these optimality conditions, we propose a method to verify the optimality conditions at any
given point of generative adversarial network (4.1).

Appendix A. Example.

Example A.1. Let X = [ - 1,1] and Y = [ - 1,1]. We consider

min
x\in [ - 1,1]

max
y\in [ - 1,1]

f(x, y) := - | x| 9 + 3

5
| x| 3 | y| 3  - | y| 5 .

Taking \tau (\delta ) = 3
5(
\surd 
\delta )3, for any | x| \leq \delta and | y| \leq \delta with sufficiently small \delta \in (0,1), we have

 - | y| 5 = f(0, y)\leq f(0,0)\leq max
y\in [ - \tau (\delta ),\tau (\delta )]

 - | x| 9 + 3

5
| x| 3 | y| 3  - | y| 5 = - | x| 9 + 2

5

\biggl( 
3

5

\biggr) 4

(
\sqrt{} 

| x| )15,

where \pm 3
5(
\sqrt{} 

| x| )3 is the maximum of the above maximization problem. This implies that
(0,0) is a local minimax point. Obviously, f(x, y) is not differentiable at (0,0). In what
follows, we examine the necessary optimality conditions in Theorem 3.11. Since \scrT X(0) = \BbbR 
and \scrT Y (0) =\BbbR , we have for any v \in \scrT X(0) that

f\circ x(0,0;v) = limsup
x\prime \rightarrow 0,t\downarrow 0

 - | x\prime + tv| 9 + | x\prime | 9

t
= 0,

which implies that f\circ x(0,0;v) = f \prime x(0,0;v), i.e., the Clarke regularity holds.
Similarly, we have for any w \in \scrT Y (0) that

dyf(0,0)(w) = lim inf
w\prime \rightarrow w,t\downarrow 0

f(0, tw\prime ) - f(0,0)

t
= lim inf

w\prime \rightarrow w,t\downarrow 0

 - | tw\prime | 5

t
= 0.

Next, consider the second-order optimality conditions. Note that \scrT \circ 
X(0) = \BbbR and for any

fixed y\prime , we have

dxf(0, y
\prime )(v) = lim inf

v\prime \rightarrow v,t\downarrow 0

f(tv\prime , y\prime ) - f(0, y\prime )

t

= lim inf
v\prime \rightarrow v,t\downarrow 0

 - t9 | v\prime | 9 + 3
5 t

3 | v\prime | 3 | y\prime | 3  - | y\prime | 5 + | y\prime | 5

t
= 0

for any v, which implies that \{ v : dxf(0, y\prime )(v) = 0\} =\BbbR . Thus, for any \delta > 0

\scrT \circ 
X(0)\cap \{ v : dxf(0, y\prime )(v) = 0 \forall y\prime \in \BbbB (0, \delta )\cap Y \} =\BbbR .

Notice that

f\circ \circ x (0,0;v) = limsup
x\prime \rightarrow 0

t\downarrow 0,\delta \downarrow 0

f(x\prime + \delta v+ tv,0) - f(x\prime + \delta v,0) - f(x\prime + tv,0) + f(x\prime ,0)

\delta t

= limsup
x\prime \rightarrow 0

t\downarrow 0,\delta \downarrow 0

 - | x\prime + \delta v+ tv| 9 + | x\prime + \delta v| 9 + | x\prime + tv| 9  - | x\prime | 9

\delta t
\geq 0
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716 JIE JIANG AND XIAOJUN CHEN

for any v \in \BbbR . Similarly, we have \scrT \circ 
Y (0)\cap \{ w : dyf(0,0)(w) = 0\} =\BbbR and

d2yf(0,0)(w) = lim inf
w\prime \rightarrow w,t\downarrow 0

f(0, tw\prime ) - f(0,0) - tdyf(0,0)(w
\prime )

1
2 t

2
= lim inf

w\prime \rightarrow w,t\downarrow 0

 - | tw\prime | 5
1
2 t

2
= 0

for any w \in \BbbR .

Appendix B. The polyhedral case. If both X and Y are polyhedral, we can replace
cl\{ w : \exists \delta > 0,w \in \Gamma \circ 

1(\^x, y
\prime ) \forall y\prime \in \BbbB (\^y, \delta )\} and cl\Gamma \circ 

2(\^x, \^y) in Theorem 3.17 by cl\{ w : \exists \delta > 0,w \in 
\Gamma 1(\^x, y

\prime ) \forall y\prime \in \BbbB (\^y, \delta )\} and \Gamma 2(\^x, \^y), respectively (see Lemma 3.16). In particular, we consider
that X and Y are defined as follows:

X = \{ x\in \BbbR n :Ax\leq b\} and Y = \{ y \in \BbbR m :Cy\leq d\} ,(B.1)

where A\in \BbbR p\times n, b\in \BbbR p, C \in \BbbR q\times m, and d\in \BbbR q.
The following proposition establishes the relationship between tangent/normal cones and

algebra systems when X and Y are defined in (B.1).

Proposition B.1 (see [15]). Let X and Y be defined in (B.1). Then we have

\scrT X(x) =
\Bigl\{ 
\lambda \in \BbbR n : - A\top 

i \lambda \geq 0 \forall i\in \scrA X(x)
\Bigr\} 
, \scrT Y (y) =

\Bigl\{ 
\mu \in \BbbR m : - C\top 

j \mu \geq 0 \forall j \in \scrA Y (y)
\Bigr\} 
,

\scrN X(x) =

\Biggl\{ 
 - 

p\sum 
i=1

\alpha iAi : \alpha \in \scrN \BbbR p
+
(b - Ax)

\Biggr\} 
, \scrN Y (y) =

\left\{    - 
q\sum 

j=1

\beta jCj : \beta \in \scrN \BbbR q
+
(d - Cy)

\right\}   ,

where Ai is the ith row vector of matrix A and Cj is the jth row vector of matrix C, respectively,
for i= 1, . . . , p and j = 1, . . . , q, and \scrA X(x) and \scrA Y (y) are active sets of X at x and Y at y,
respectively.

Theorem B.2. Let the tuple (\^x, \^y) \in X \times Y be a local minimax point of problem (1.1) with
X and Y being defined in (B.1). Then there exist multipliers \alpha \in \BbbR p and \beta \in \BbbR q such that\Biggl\{ 

\nabla xf(\^x, \^y) - 
\sum p

i=1\alpha iAi = 0,  - \nabla yf(\^x, \^y) - 
\sum q

j=1 \beta jCj = 0,

\alpha \in \scrN \BbbR p
+
(b - A\^x), \beta \in \scrN \BbbR q

+
(d - C\^y).

(B.2)

If, moreover, f is twice continuously differentiable, we have, for any \delta > 0, that\left\{     
\bigl\langle 
v,\nabla 2

xxf(\^x, \^y)v
\bigr\rangle 
\geq 0 for all

v \in 
\bigl\{ 
\lambda \in \scrT X(\^x) : \exists \delta > 0, \lambda \top \nabla xf(\^x, y

\prime ) = 0 for y\prime \in \BbbB (\^y, \delta )
\bigr\} 
,\bigl\langle 

w,\nabla 2
yyf(\^x, \^y)w

\bigr\rangle 
\leq 0 for allw \in 

\bigl\{ 
\mu \in \scrT Y (\^y) : \mu \top \nabla yf(\^x, \^y) = 0

\bigr\} 
.

(B.3)

Proof. We know from (3.11) of Theorem 3.17 that the following first-order optimality
necessary condition holds: 0\in \nabla xf(\^x, \^y)+\scrN X(\^x) and 0\in  - \nabla yf(\^x, \^y)+\scrN Y (\^y). This, together
with the specific reformulations of \scrN X(x) and \scrN Y (y) in Proposition B.1, we obtain (B.2)
directly.
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NONSMOOTH NONCONVEX-NONCONCAVE MIN-MAX PROBLEMS 717

Next, we focus on (B.3). Analogously, we know from (3.12) of Theorem 3.17 that\Biggl\{ \bigl\langle 
v,\nabla 2

xxf(\^x, \^y)v
\bigr\rangle 
\geq 0 for all v \in cl\{ \=v : \exists \delta > 0, \=v \in \Gamma \circ 

1(\^x, y
\prime ) \forall y\prime \in \BbbB (\^y, \delta )\} ,\bigl\langle 

w,\nabla 2
yyf(\^x, \^y)w

\bigr\rangle 
\leq 0 for allw \in cl\Gamma \circ 

2(\^x, \^y)
(B.4)

holds. Since X and Y are polyhedral, we know from Lemma 3.16 that \Gamma \circ 
1(x, y) = cl\Gamma \circ 

1(x, y) =
\Gamma 1(x, y) and \Gamma \circ 

2(x, y) = cl\Gamma \circ 
2(x, y) = \Gamma 2(x, y). Thus, (B.4) can be equivalently rewritten as\Biggl\{ \bigl\langle 

v,\nabla 2
xxf(\^x, \^y)v

\bigr\rangle 
\geq 0 for all v \in cl\{ \=v : \exists \delta > 0, \=v \in \Gamma 1(\^x, y

\prime ) \forall y\prime \in \BbbB (\^y, \delta )\} ,\bigl\langle 
w,\nabla 2

yyf(\^x, \^y)w
\bigr\rangle 
\leq 0 for allw \in \Gamma 2(\^x, \^y).

(B.5)

Note that \Gamma 1(x, y) = \{ v \in \scrT X(x) : v\bot \nabla xf(x, y)\} and \Gamma 2(x, y) = \{ w \in \scrT Y (y) : w\bot \nabla yf(x, y)\} .
This, together with (B.5) and the reformulations of \scrT X(x) and \scrT Y (y) in Proposition B.1,
verifies (B.3).

We call (B.2) the first-order KKT system of problem (1.1) and (B.2)--(B.3) the second-
order KKT system of problem (1.1).

Appendix C. Four lemmas. Consider the minimization problem

min
x\in \scrX 

g(x),(C.1)

where \scrX \subseteq \BbbR n is a compact and convex set and g :\scrX \rightarrow \BbbR is continuous, and its a sequence of
perturbation problems

min
x\in \scrX 

\~gk(x),(C.2)

where \~gk :\scrX \rightarrow \BbbR are continuous for k \in \BbbN .

Lemma C.1. Let v\ast , \scrS \ast , and v\ast k, \scrS \ast 
k denote the optimal values and the optimal solution

sets of problems (C.1) and (C.2), respectively. Assume supx\in \scrX | \~gk(x) - g(x)| \rightarrow 0 as k\rightarrow \infty .
Then (i) v\ast , v\ast k are finite and \scrS \ast , \scrS \ast 

k are nonempty; (ii) supx\in \scrS \ast 
k
d(x,\scrS \ast )\rightarrow 0 as k\rightarrow \infty .

Proof. (i) It follows from that \scrX is a compact and convex set and g, \~gk are continu-
ous. (ii) We give the proof by contradiction. Assume that there exists an \epsilon 0 > 0 such that
supx\in \scrS \ast 

kl

d(x,\scrS \ast ) \geq \epsilon 0, where \{ \scrS \ast 
kl
\} l\geq 1 is a subsequence of \{ \scrS \ast 

k\} k\geq 1. Thus, we can select a

sequence \{ xkl
\} l\geq 1 with xkl

\in \scrS \ast 
kl

such that d(xkl
,\scrS \ast )\geq \epsilon 0

2 \forall l \in \BbbN . Due to the boundedness of
feasible set \scrX , we know that the sequence \{ xkl

\} l\geq 1 is bounded, and without loss of generality,
we assume that xkl

\rightarrow \=x as l\rightarrow \infty . We have that

v\ast kl
 - g(\=x) = \~gkl

(xkl
) - g(\=x) = \~gkl

(xkl
) - g(xkl

) + g(xkl
) - g(\=x).

Since limsupl\rightarrow \infty v\ast kl
= liml\rightarrow \infty v\ast kl

= v\ast , we have

v\ast  - g(\=x) = limsup
l\rightarrow \infty 

\bigl( 
v\ast kl

 - g(\=x)
\bigr) 
\geq lim inf

l\rightarrow \infty 
(\~gkl

(xkl
) - g(xkl

)) + lim inf
l\rightarrow \infty 

(g(xkl
) - g(\=x)) .

Note that\bigm| \bigm| \bigm| \bigm| lim inf
l\rightarrow \infty 

(\~gkl
(xkl

) - g(xkl
))

\bigm| \bigm| \bigm| \bigm| \leq sup
x\in X

| \~gkl
(x) - g(x)| \rightarrow 0 and lim inf

l\rightarrow \infty 
g(xkl

) - g(\=x)\geq 0,

which implies that v\ast  - g(\=x) \geq 0 and thus \=x \in \scrS \ast . This contradicts with \epsilon 0
2 \leq d(xkl

,\scrS \ast ) \rightarrow 
d(\=x,\scrS \ast ) = 0. Therefore, supx\in \scrS \ast 

k
d(x,\scrS \ast )\rightarrow 0 as k\rightarrow \infty .
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718 JIE JIANG AND XIAOJUN CHEN

Lemma C.2 (see [33, Theorem 7.57]). Let U \subseteq \BbbR n be an open set, let X be a nonempty com-
pact subset of U , and let F :U \times \Xi \rightarrow \BbbR be a random function. Suppose that (i) \{ F (x, \xi )\} x\in X
is dominated by an integrable function; (ii) there exists an integrable function C(\xi ) such that
| F (x\prime , \xi ) - F (x, \xi )| \leq C(\xi )\| x\prime  - x\| for all x\prime , x \in U and a.e. \xi \in \Xi ; (iii) for every x \in X
the function F (\cdot , \xi ) is continuously differentiable at x w.p.1. Then (a) the expectation func-
tion f(x) is finite valued and continuously differentiable on X, and (b) for all x \in X the
corresponding derivatives can be taken inside the integral, i.e., \nabla f(x) =\BbbE [\nabla xF (x, \xi )].

Lemma C.3. Suppose that g is twice differentiable at \=x \in \scrX . Let \Gamma \circ (\=x) := \{ w \in \scrT \circ 
\scrX (\=x) :

w\bot \nabla g(\=x)\} and \Gamma (\=x) := \{ w \in \scrT \scrX (\=x) :w\bot \nabla g(\=x)\} . Then \Gamma \circ (\=x) and \Gamma (\=x) are convex cones and
(i) If \=x is a local minimum point of (C.1), then

0\in \nabla g(\=x) +\scrN \scrX (\=x) and
\bigl\langle 
w,\nabla 2g(\=x)w

\bigr\rangle 
\geq 0 for all w \in cl\Gamma \circ (\=x).(C.3)

(ii) If the conditions in (C.3) hold by replacing cl\Gamma \circ (\=x) by \Gamma (\=x) and ``\geq "" by ``>"" for w \not = 0,
then \=x is a local minimum point of (C.1).

Proof. (i) For any w \in \Gamma \circ (\=x) with \| w\| = 1, there exists a sequence \{ tk\} k\geq 1 with tk \downarrow 0 as

k\rightarrow \infty such that 0\leq g(\=x+ tkw) - g(\=x) = tk\nabla g(\=x)\top w+ t2k
2 w

\top \nabla 2g(\=x)w+ t2k \| w\| 
2 o(1). Dividing

t2k in both sides gives w\top \nabla 2g(\=x)w\geq 0, since \nabla g(\=x)\top w= 0. Hence (C.3) holds.
(ii) We assume by contradiction that \=x is not a local minimum point. Then there

exists a sequence \{ xk\} k\geq 1 \subseteq \scrX with xk \rightarrow \=x as k \rightarrow \infty such that g(xk) < g(\=x). Let

tl =
\bigm\| \bigm\| xkl  - \=x

\bigm\| \bigm\| and wl =
xkl - \=x

\| xkl - \=x\| \in \scrT \circ 
\scrX (\=x). Then g(xk) = g(\=x) + tl\nabla g(\=x)\top wl +

t2l
2 w

\top 
l \nabla 2g(\=x)wl+

t2l \| wl\| 2 o(1).Without loss of generality, we assume that wl \rightarrow \=w as l\rightarrow \infty . Then \=w \in cl\Gamma \circ (\=x)\subseteq 
\Gamma (\=x).

If there exists a subsequence \{ kl\} l\geq 1 such that \nabla g(\=x)\top wl = 0, then 1
2w

\top 
l \nabla 2g(\=x)wl > 0 and

\=w\top \nabla 2g(\=x) \=w> 0, which implies g(xk)\geq g(\=x). This leads to a contradiction.
If there exists a subsequence \{ kl\} l\geq 1 such that \nabla g(\=x)\top wl > 0, then we have g(xk)\geq g(\=x) if

\nabla g(\=x)\top \=w> 0, and \=w\top \nabla 2g(\=x) \=w> 0 if\nabla g(\=x)\top \=w= 0 (i.e., \=w \in \Gamma (\=x)), which implies g(xk)\geq g(\=x).
This also leads to a contradiction.

Lemma C.4. Suppose that g is twice semidifferentiable at \=x \in \scrX and \scrX is a nonempty,
closed, and convex set. If dg(\=x)(v)\geq 0 for all v \in \scrT \scrX (\=x) and 0 \not = v \in \scrT \scrX (\=x)\cap \{ w : dg(\=x)(w) = 0\} 
implies that d2g(\=x)(v)> 0, then \=x is a local minimum point of problem (C.1).

Proof. Let \=g := g + \delta \scrX . Consider the unconstrained minimization problem minx\in \BbbR n \=g(x),
which is equivalent to constrained minimization problem (C.1). By applying [32, Theorem
13.24] to the unconstrained minimization problem, we complete the proof.

Appendix D. The sample average approximation. We discuss the sample average ap-
proximation (SAA) of first-order and a second-order stationary points of problem (4.1).

To this end, we assume that \bfitsigma (\cdot ) is twice continuously differentiable. Let X = [a, b]
and Y = [c, d], where a, b \in \BbbR n, c, d \in \BbbR m, a < b, and c < d with n = (s + 1)(s1 + s2) and
m= s1.

Denote \{ \xi j1\} Nj=1 and \{ \xi j2\} Nj=1 the independent identically distributed (iid) samples of \xi 1
and \xi 2, respectively. We consider the following min-max problem:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

04
/2

4/
24

 to
 1

58
.1

32
.1

61
.5

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



NONSMOOTH NONCONVEX-NONCONCAVE MIN-MAX PROBLEMS 719

min
x\in X

max
y\in Y

\^fN (x, y) :=
1

N

N\sum 
i=1

\Biggl( 
log

\biggl( 
1

1 + exp(y\top \xi i1)

\biggr) 

+ log

\biggl( 
1 - 1

1 + exp(y\top (W2\bfitsigma (W1\xi i2 + b1) + b2))

\biggr) \Biggr) 
.

(D.1)

Use the existing automatic differentiation technique, such as back-propagation, we can
compute \nabla x

\^fN (x, y), \nabla y
\^fN (x, y), \nabla 2

xx
\^fN (x, y), \nabla 2

yy
\^fN (x, y). Moreover, we have

\scrT X(x) = \scrT \circ 
X(x) =

\left\{     v \in \BbbR n : vi \in 

\left\{     
[0,\infty ) if xi = ai

( - \infty ,\infty ) if ai <xi < bi

( - \infty ,0] if xi = bi

\right\}     ,

\scrT Y (y) = \scrT \circ 
Y (y) =

\left\{     w \in \BbbR m : wj \in 

\left\{     
[0,\infty ) if yj = cj

( - \infty ,\infty ) if cj < yj <dj

( - \infty ,0] if yj = dj

\right\}     ,

and

\Gamma \circ 
1(x, y) = \Gamma 1(x, y) = \{ v \in \scrT X(x) : v\bot \nabla x

\^fN (x, y)\} ,
\Gamma \circ 
2(x, y) = \Gamma 2(x, y) = \{ w \in \scrT Y (y) :w\bot \nabla y

\^fN (x, y)\} .

By Theorem 3.17, if (\^x, \^y) is a local minimax point of problem (D.1), then (\^x, \^y) must satisfy
the first-order and second-order optimality conditions:\left\{     

(\nabla x
\^fN (\^x, \^y))i \geq 0 if xi = ai;

(\nabla x
\^fN (\^x, \^y))i = 0 if ai <xi < bi;

(\nabla x
\^fN (\^x, \^y))i \leq 0 if xi = bi

and

\left\{     
(\nabla y

\^fN (\^x, \^y))j \leq 0 if yj = cj ;

(\nabla y
\^fN (\^x, \^y))j = 0 if cj < yj <dj ;

(\nabla y
\^fN (\^x, \^y))j \geq 0 if yj = dj

for i= 1, . . . , n, j = 1, . . . ,m, and\Bigl\langle 
v,\nabla 2

xx
\^fN (\^x, \^y)v

\Bigr\rangle 
\geq 0 for all v \in 

\bigl\{ 
\=v : \exists \delta > 0, \=v \in \Gamma 1(\^x, y

\prime ) \forall y\prime \in \BbbB (\^y, \delta )
\bigr\} 
,\Bigl\langle 

w,\nabla 2
yy

\^fN (\^x, \^y)w
\Bigr\rangle 
\leq 0 for allw \in \Gamma 2(\^x, \^y).

The following proposition tells that the above procedures can ensure an exponential rate
of convergence with respect to sample size N .

Proposition D.1. Let \bfitsigma (\cdot ) be twice continuously differentiable. If (xN , yN ) is a first-order
(second-order) stationary point of problem (D.1) with iid samples \{ \xi j1\} Nj=1 and \{ \xi j2\} Nj=1 of \xi 1
and \xi 2, respectively, then (xN , yN ) converges to a first-order (second-order) stationary point
of problem (4.1) exponentially with respect to N .
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720 JIE JIANG AND XIAOJUN CHEN

Proof. Denote

h(z) =

\biggl( 
\nabla xf(x, y)
 - \nabla yf(x, y)

\biggr) 
, H(z) =

\biggl( 
supv\in \scrV (x,y)

\bigl\langle 
v, - \nabla 2

xxf(x, y)v
\bigr\rangle 

supw\in \scrW (x,y)

\bigl\langle 
w,\nabla 2

yyf(x, y)w
\bigr\rangle \biggr) ,

\^hN (z) =

\biggl( 
\nabla x

\^fN (x, y)

 - \nabla y
\^fN (x, y)

\biggr) 
, \widehat HN (z) =

\left(  supv\in \scrV (x,y)

\Bigl\langle 
v, - \nabla 2

xx
\^fN (x, y)v

\Bigr\rangle 
supw\in \scrW (x,y)

\Bigl\langle 
w,\nabla 2

yy
\^fN (x, y)w

\Bigr\rangle \right)  ,

where z = (x\top , y\top )\top , \scrV (x, y) := \BbbB (0,1) \cap \cup \delta >0cl\{ \=v : \exists \delta > 0, \=v \in \Gamma \circ 
1(x, y

\prime ) \forall y\prime \in \BbbB (y, \delta )\} , and
\scrW (x, y) :=\BbbB (0,1)\cap cl\Gamma \circ 

2(x, y).
According to the twice continuous differentiability of f (see Proposition 4.2) and the

boundedness of \Xi 1 and \Xi 2, we have \^hN (z) \rightarrow h(z) and \widehat HN (z) \rightarrow H(z) exponentially fast
uniformly in any compact subset of \scrZ \subseteq Z := X \times Y [33, Theorem 7.73]. That is, for any
given \epsilon > 0, there exist C =C(\epsilon ) and \beta = \beta (\epsilon ), such that

Prob

\biggl\{ 
sup
z\in \scrZ 

\bigm\| \bigm\| \bigm\| \^hN (z) - h(z)
\bigm\| \bigm\| \bigm\| \geq \epsilon 

\biggr\} 
\leq Ce - N\beta and Prob

\biggl\{ 
sup
z\in \scrZ 

\bigm| \bigm| \bigm| \widehat HN (z) - H(z)
\bigm| \bigm| \bigm| \geq \epsilon 

\biggr\} 
\leq Ce - N\beta .

Without loss of generality, we assume that zN = (x\top N , y
\top 
N )\top \in \scrZ . Denote the following general

growth functions:

\psi 1(\tau ) := inf\{ d(0, h(z) +\scrN Z(z)) : z \in \scrZ , d(z,\scrS 1)\geq \tau \} ,
\psi 2(\tau ) := inf\{ \| (H(z))+\| : z \in \scrZ , d(z,\scrS 2)\geq \tau \} ,

where \scrS 1 and \scrS 2 are the sets satisfying (3.11a)--(3.11b) and (3.12a)--(3.12b), respectively,
and ``d"" denotes the distance from a point to a set. Let the related functions \Psi 1(t) :=
\psi  - 1
1 (t)+ t and\Psi 2(t) :=\psi  - 1

2 (t)+ t, where \psi  - 1
i (t) := sup\{ \tau :\psi i(\tau )\leq \eta \} for i= 1,2, which satisfy

\Psi i(t)\rightarrow 0 as t \downarrow 0 for i= 1,2.
Then, by a conventional discussion (see, e.g., [5]), we have

d(zN ,\scrS 1)\leq \Psi 1

\biggl( 
sup
z\in Z

\bigm\| \bigm\| \bigm\| \^hN (z) - h(z)
\bigm\| \bigm\| \bigm\| \biggr) and d(zN ,\scrS 2)\leq \Psi 2

\biggl( 
sup
z\in Z

\bigm| \bigm| \bigm| \widehat HN (z) - H(z)
\bigm| \bigm| \bigm| \biggr) .

Thus, we have Prob\{ d(zN ,\scrS 1)\geq \Psi 1(\epsilon )\} \leq Ce - N\beta and Prob\{ d(zN ,\scrS 2)\geq \Psi 2(\epsilon )\} \leq Ce - N\beta ,
which shows that zN converges to a first-order stationary point in \scrS 1 (or a first-order stationary
point in \scrS 2) exponentially with respect to N .
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