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� Establish analytical homogenization
formulas to determine the elastic
constants of stretching-dominated
truss lattices with transversely
isotropic base materials.

� Propose an analytical approach to
design elastically isotropic stretching-
dominated truss lattices with
transversely isotropic base materials.

� Develop traversal searching methods
to obtain stretching-dominated truss
lattices with tailored zero/negative
Poisson’s ratios and superior stiffness.

� Validate the effectiveness of the
proposed design method
incorporating material anisotropy
through finite element analysis and
experimental tests.
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Incorporating the process-induced material anisotropy into design framework of additively manufac-
tured lattice structures is crucial to ensure the accuracy of design and analysis models. This work pro-
poses an analytical approach to design stretching-dominated truss lattices with tailored elastic
properties, including isotropic elasticity, tailored zero/negative Poisson’s ratios, tailored Young’s moduli
ratios along specified directions. The transversely isotropic elasticity is adopted to represent the micro
lase powder bed fusion (LPBF) process-induced anisotropy of base materials. The lattices are designed
through combination of elementary bars with appropriate volume fractions. An analytical homogeniza-
tion theory is established to determine elastic constants of combined lattices. An analytical design
approach is proposed to obtain elastically isotropic truss lattices. A traversal searching is performed to
determine ranges of Young’s moduli, Poisson’s ratios of combined lattices, and find most manufacturable
ones with tailored Young’s moduli ratios and Poisson’s ratios. Finite element analysis reveals all designed
lattices from anisotropic materials achieve better agreements to design targets than those designed from
na.
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isotropic materials, thus validating the superiority of the proposed method. The lattices with isotropic
elasticity, tailored zero/negative Poisson’s ratios are fabricated in stainless steel 316L via micro-LPBF,
and quasi-static compression experiments are performed to further validate the proposed design
approach.
� 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Truss lattices are a special class of periodic lattice structures, in
which the primitive unit cell consists of a set of bars [1,2]. Truss
lattices are known for their open-cell property, which is favourable
for the liquid resin or metal powder based additive manufacturing
(AM) [3–5], and mass and heat transfer related multifunctional
applications [6–8]. Besides, truss lattices possess superior stiffness
and strength to the earlier appearing open-cell stochastic foams
with equal relative densities [1,9]. Depending on the deformation
behaviours under external loads, truss lattices are classified as
stretching-dominated and bending-dominated ones [10,11]. Typi-
cally, stretching-dominated truss lattices possess superior stiff-
ness, yielding and buckling strength to bending-dominated ones
at lower relative densities [10–13]. Accordingly, the design of
stretching-dominated truss lattices with tailored mechanical prop-
erties is of practical significance.

Up to now, many efforts have been made to develop stretching-
dominated truss lattices with tailored elastic properties, including
isotropic elasticity, tailored zero/negative Poisson’s ratios, tailored
Young’s moduli ratios along specified directions, in which the ana-
lytical and numerical methods are two main design approaches.
Compared with the numerical method, the main advantages of
the analytical method are the thorough understanding of the
essence of design problems and significantly lower computational
cost. An analytical homogenization theory is well established to
determine the elastic constants of stretching-dominated truss lat-
tices [14,15]. Based on this theory, a series of elastically isotropic
stretching-dominated truss lattices are designed through combina-
tion of anisotropic three-dimensional (3D) cubic lattices with
appropriate volume fractions [14–16], including simple cubic
(SC), body-centered cubic (BCC), face-centered cubic (FCC). All
combined lattices possess identical elastic moduli and approach
1/3 of the Hashin-Shtrikman stiffness upper bounds for 3D isotro-
pic two-phase materials at low density limit [17,18]. Similarly,
truss lattices can be analytically designed to achieve tailored
Young’s moduli ratios along specified directions through adjusting
the cross-sectional radii and relative densities of the elementary
bars [19,20], and tailored zero/negative Poisson’s ratios through
the re-entrant [21], chirality [22], anti-chirality [23] or rotating
rigid mechanism [24] design strategies.

However, all the above-mentioned truss lattices related studies
are based on the assumption of isotropic base materials, while the
material anisotropy is generally inevitable in the layer-by-layer
AM [25–28], thus leading to non-negligible discrepancies among
the relevant theoretical, numerical and experimental results. Typ-
ically, the base materials fabricated by AM processes exhibit trans-
versely isotropic elasticity [29,30], since materials are deposited,
joined and solidified layer by layer to form 3D objects. The base
materials possess nearly identical elastic properties within the hor-
izontal plane, while the properties are different from those along
the vertical direction [31]. Accordingly, several attempts were
made to incorporate the material anisotropy into the structural
design and analysis processes. Li et al. [32], Wang et al. [33] char-
acterized the transverse isotropy of base materials via experimen-
tal tests on the additively manufactured tensile samples, and
introduced the material anisotropy into the topology optimization
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of cantilever beams, which resulted in nearly 10% improvement of
their stiffness and strength than the optimized designs without
consideration of material anisotropy. To further enlarge the design
space and improve the mechanical properties, Jantos et al. [34],
Yan et al. [35], Lu et al. [36] proposed several concurrent topology
optimization frameworks, in which the microscale lattice struc-
tures were treated as homogenized anisotropic materials, and the
elemental densities of macrostructures and orientations of aniso-
tropic microstructures were optimized simultaneously. These
works targeted on the design and optimization of macrostructures.
Hereupon, Wu et al. [37], Sun et al. [38] introduced the trans-
versely isotropic elasticity into the analysis of truss lattices, and
concluded that the anisotropy model enabled more accurate pred-
ication of their mechanical properties. However, these analysis
approaches were not integrated into design methods to tailor the
mechanical properties of truss lattices with transversely isotropic
base materials.

This paper aims to improve the design accuracy of AM fabri-
cated truss lattices by incorporating the process-induced aniso-
tropy of base materials. An analytical method is proposed to
design stretching-dominated truss lattices with tailored elastic
properties, including isotropic elasticity, tailored zero/negative
Poisson’s ratios, and tailored Young’s moduli ratios along specified
directions, in which the transversely isotropic elasticity model is
adopted to represent the micro laser powder bed fusion (LPBF)
process-induced anisotropy of the base materials. The lattices are
designed through the combination of several groups of bars with
appropriate volume fractions. An analytical homogenization the-
ory is established to determine all elastic constants of the com-
bined lattices. An analytical design approach is proposed to
obtain elastically isotropic truss lattices with transversely isotropic
base materials. Furthermore, a traversal searching method is devel-
oped to determine the ranges of Young’s moduli, Poisson’s ratios of
combined lattices, and find the most manufacturable ones with tai-
lored Young’s moduli ratios and Poisson’s ratios. The proposed
stretching-dominated truss lattices with tailored zero/negative
Poisson’s ratios possess superior stiffness to their bending-
dominated counterparts reported in previous studies. The elastic
properties of the designed lattices are validated via numerical
homogenization, which is implemented through the Timoshenko-
Ehrenfest beam theory based finite element analysis (FEA). Besides,
the designed lattices with unconventional properties of isotropic
elasticity, tailored zero/negative Poisson’s ratios are fabricated in
stainless steel 316 L (SS316L) materials via micro-LPBF. Quasi-
static compression test experiments are performed to further val-
idate the proposed analytical design method. The proposed design
and analysis method may contribute to the applications of lattices
in the fields including lightweight and high-stiffness structures
with isotropic elasticity, and bone implants with controllable elas-
tic anisotropy.
2. Analytical design methods

2.1. Transversely isotropic base materials

Transversely isotropic base materials exhibit symmetric physi-
cal properties with regard to the axis normal to its plane of iso-
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Fig. 1. The five groups of bars within the cubic truss lattices of SC, BCC, FCC families,
in which each colour represents an individual group of bars with the same axial
Young’s modulus.

Table 2
Axial Young’s moduli of the five groups of bars within the three cubic truss lattices.

Cubic
lattice

Unit vector
(n)

Axial Young’s modulus (E) Group of
bars

SC (1, 0, 0) EI ¼ Eb1 I
(0, 1, 0)
(0, 0, 1) EII ¼ Eb3 II

BCC (1, 1, 1)
EIII ¼ 9= 4

Eb1
1� mb13
� �þ 1

Eb3
þ 2

Gb
13

� �
III

(1, 1, �1)
(1, �1, 1)
(-1, 1, 1)

FCC (1, 0, 1)
EIV ¼ 4= 1

Eb1
1� 2mb13
� �þ 1

Eb3
þ 1

Gb
13

� �
IV

(1, 0, �1)
(0, 1, 1)
(0, 1, �1)
(1, 1, 0) EV ¼ Eb1 V
(1, �1, 0)
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tropy. The materials possess identical properties along all direc-
tions within the plane of isotropy, while the property along the
normal direction is different [31]. The constitutive relation of the

materials is eb ¼ Sbrb, in which the superscript b denotes the base

materials, eb, Sb, rb denote the strain vector, compliance matrix,
stress vector of the base materials, respectively, and are repre-
sented in matrix form with Voigt notation as:

eb ¼

eb1
eb2
eb3
eb4
eb5
eb6

2
666666664

3
777777775
; Sb ¼

1
Eb1

� mb12
Eb1

� mb13
Eb1

0 0 0

1
Eb1

� mb13
Eb1

0 0 0

1
Eb3

0 0 0

sym 1
Gb
13

0 0

1
Gb
13

0

2 1þmb12ð Þ
Eb1

2
6666666666666664

3
7777777777777775

; rb ¼

rb
1

rb
2

rb
3

rb
4

rb
5

rb
6

2
666666664

3
777777775
;

ð1Þ
where the compliance matrix Sb includes five independent elastic

constants: two independent Young’s moduli Eb
1, E

b
3 along x, z direc-

tions, one shear modulus Gb
13 within x-z plane, and two independent

Poisson’s ratios mb12, mb13 corresponding to an extension along y, z
directions when a contraction is applied along x direction, respec-
tively. The Young’s modulus of the transversely isotropic materials
along an arbitrary direction with the unit vector of n ¼ n1;n2;n3ð Þ
is:

Eb
n ¼ 1=

1

Eb
1

n2
1 þ n2

2

� �
n2
1 þ n2

2 � 2mb13n
2
3

� �þ 1

Eb
3

n4
3 þ

1

Gb
13

n2
3 n2

1 þ n2
2

� �" #
:

ð2Þ
The derivation details of Eq. (2) are shown in Appendix A.

The transversely isotropic elasticity of the micro-LPBF fabri-
cated SS316L was calibrated through experimental tests on stan-
dard tensile samples fabricated along different directions. The
five independent elastic constants are listed in Table 1, and the
details of the calibration process are referred to our previous work
[39].

2.2. Analytical design methods of truss lattices with tailored elasticity

This work focuses on orthorhombic truss lattices, whose unit
cells possess reflectional symmetry regarding the three orthogonal
middle planes. The constitutive bars are taken from the three cubic
truss lattices of SC, BCC, FCC families, and the circular cross-section
is adopted for all bars, as shown in Fig. 1. The main difference of the
proposed method compared with the current methods based on
isotropic base materials is that bars may possess different axial
Young’s moduli according to their building orientations. Given
the transverse isotropy of the base materials, the constitutive bars
are classified into five groups (I, II, III, IV, V), each of which pos-
sesses the same axial Young’s modulus, as calculated from Eq. (2)
and listed in Table 2. Accordingly, the bars within the same group
are assigned with the same design variable, i.e., the same cross-
sectional radius. To design truss lattices with tailored elastic prop-
erties, the analytical theory is developed based on the following
assumptions:
Table 1
Elastic constants of SS316L materials fabricated by micro-LPBF.

Property Eb1 GPa½ � Eb3 GPa½ � Gb
13 GPa½ � mb12 �½ � mb13 �½ �

Value 189.31 173.71 75.02 0.24 0.29

3

1. The base materials are linear elastic, homogeneous, and trans-
versely isotropic.

2. All bars undergo small deformation.
3. All nodes are pin-jointed; all bars are infinitely extended; and

the combined lattices exhibit stretching-dominated deforma-
tion behaviours.

Under this circumstance, all constitutive bars only bear uniaxial
loads along axial directions, while the transverse, shear and bend-
ing loads are small. Therefore, the proposed analytical design
model only involves the axial Young’s modulus of each constitutive
bar.

The macroscopic constitutive equation of a truss lattice is
r ¼ Ce, in which r, e, C are the homogenized stress vector, strain
vector, elasticity matrix of the lattice, and are denoted in matrix
form with the Voigt notation as [16]:

r ¼

r1

r2

r3

r4

r5

r6

2
666666664

3
777777775
; C ¼

C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

sym C44 C45 C46

C55 C56

C66

2
666666664

3
777777775

¼

c1111 c1112 c1113 c1114 c1115 c1116
c2222 c2233 c2223 c2213 c2212

c3333 c3323 c3313 c3312
sym c2323 c2313 c2312

c1313 c1312
c1212

2
666666664

3
777777775
; e ¼

e1
e2
e3
e4
e5
e6

2
666666664

3
777777775
; ð3Þ



Q. Ma, L. Zhang, J. Ding et al. Materials & Design 230 (2023) 111995
where the components of the elasticity tensor of a stretching-
dominated truss lattice are obtained from an established homoge-
nization theory as [14–16]:

cpqrs ¼
X
i2UC

qiEb
i n

i
pn

i
qn

i
rn

i
s; p; q; r; s ¼ 1;2;3ð Þ; ð4Þ

where UC denotes the assembly of bars contained within the lattice
unit cell; ni represents the unit axial vector of bar i, ni

p denotes the

p-th component of ni; Eb
i denotes the Young’s modulus of base

materials along ni direction; qi denotes the volume fraction of the
i-th set of bars, and satisfies:X
i2UC

qi ¼ q
�
; ð5Þ

where q
�

denotes the relative density of the lattice. To ensure
stretching-dominated deformation behaviours, the axial force equi-
librium equation for all bars connecting at node J needs to be
satisfied:X
i2S Jð Þ

AiEb
i n

i
pn

i
qn

i ¼ 0; p; q ¼ 1;2;3ð Þ; ð6Þ

in which A represents the cross-sectional area, S(J) represents the
assembly of bars that connect at node J.

2.2.1. Design of truss lattices with isotropic elasticity
For an elastically isotropic truss lattice, the elasticity matrix

states:

C ¼ E
1þ m

1�m
1�2m

m
1�2m

m
1�2m 0 0 0

1�m
1�2m

m
1�2m 0 0 0
1�m
1�2m 0 0 0

sym 0:5 0 0

0:5 0

0:5

2
66666666664

3
77777777775
; ð7Þ

where E, m denote the Young’s modulus, Poisson’s ratio of the lattice.
Through equating the corresponding components of the elasticity
matrix in Eqs. (3), (4) and those in Eq. (7), the criteria for a
stretching-dominated truss lattice to achieve isotropic elasticity
are obtained as:X
i2UC

qiEb
i ni

p

� �2
ni
qn

i
r ¼ 0; p; q; r ¼ 1;2;3; q–rð Þ; ð8aÞ

X
i2UC

qiEb
i ni

p

� �2
¼ 1

3

X
i2UC

qiEb
i ; p ¼ 1;2;3ð Þ; ð8bÞ

X
i2UC

qiEb
i ni

p

� �4
¼ 1

5

X
i2UC

qiEb
i ; p ¼ 1;2;3ð Þ: ð8cÞ

For an orthorhombic lattice, Eq. (8a) is always satisfied, and Eqs.
(8b)�(8c) should be further satisfied through combination of the
five groups of bars with appropriate volume fractions. Once the
isotropic elasticity is reached, the elastic properties of the com-
bined lattice are obtained as [14–16]:

E ¼ 1
6

X
i2UC

qiEb
i ; m ¼ 0:25: ð9Þ

Given the transverse isotropy of the base materials, Eqs.
(8b)�(8c) represent four independent linear equations. Combin-
ing the four equations with Eq. (5) yields the following linear
equation system to determine the volume fractions of the five
groups of bars for the combined lattices to obtain isotropic
elasticity:
4

1 1 1 1 1
3
10 EI � 1

5 EII � 4
45 EIII � 3

40 EIV
1
20 EV

� 1
5 EI

4
5 EII � 4

45 EIII
1
20 EIV � 1

5 EV

1
6 EI � 1

3 EII 0 � 1
12 EIV

1
6 EV

� 1
3 EI

2
3 EII 0 1

6 EIV � 1
3 EV

2
6666664

3
7777775

qI

qII

qIII

qIV

qV

2
6666664

3
7777775
¼

q
�

0
0
0
0

2
6666664

3
7777775
: ð10Þ

With the five Young’s moduli given in Table 2, the rank of the coef-
ficient matrix in Eq. (10) is analytically calculated to be 4, implying
the existence of infinite solutions. The general solutions of the lin-
ear equation system in Eq. (10) are analytically calculated as:

qI

qII

qIII

qIV

qV

2
6666664

3
7777775
¼

�16EIEIIEIII � 9EIEIIEIV þ 8EIIEIIIEIV

2EIV 9EIEII þ 2EIEIII þ 4EIIEIIIð Þ
� EI 16EIEIII � 9EIEIV þ 8EIIIEIVð Þ
4EIV 9EIEII þ 2EIEIII þ 4EIIEIIIð Þ

� 9EI 8EIEII þ EIEIV þ 6EIIEIVð Þ
4EIV 9EIEII þ 2EIEIII þ 4EIIEIIIð Þ

2EI
EIV

1

2
66666666666664

3
77777777777775
qV

þ

4EIIEIII q
�

9EIEII þ 2EIEIII þ 4EIIEIII

2EIEIII q
�

9EIEII þ 2EIEIII þ 4EIIEIII

9E1EII q
�

9EIEII þ 2EIEIII þ 4EIIEIII

0
0

2
66666666666664

3
77777777777775
; ð11Þ

where the variable qV can vary independently to yield a series of
feasible solutions for the combined lattices to obtain isotropic elas-

ticity, as long as 0 6 qi 6 q
�
, (i ¼ I; II; III; IV ;V). The elastic constants

of the elastically isotropic combined lattices in Eq. (9) are normal-
ized as:

E
�
¼ E

q
�
EI

¼ 5

2 9 EI
EIII

þ 2 EI
EII
þ 4

� � ; m ¼ 0:25: ð12Þ

Eq. (12) shows that once the isotropic elasticity is obtained, the
lattices possess the same Young’s modulus, whose value only
depends on the three axial Young’s moduli EI , EII , EIII , and identical
Poisson’s ratio of 0.25. The relations between the volume fractions
and cross-sectional radii (RI , RII , RIII , RIV , RV ) of the five groups of
bars are formulated as:

qI ¼ 2pR2
I

D2 ; qII ¼ pR2
II

D2 ; qIII ¼ 4
ffiffiffi
3

p
pR2

III

D2 ; qIV ¼ 8
ffiffiffi
2

p
pR2

IV

D2 ; qV

¼ 4
ffiffiffi
2

p
pR2

V

D2 ; ð13Þ

in which D denotes the unit cell size of the lattice. Given the volume
fractions of the five groups of bars, the corresponding cross-
sectional radii are determined by Eq. (13).

Among all feasible solutions in Eq. (11), there are two special
ones. The first one includes only the bars within SC and BCC truss
lattices (qIV ¼ qV ¼ 0):

qI

qII

qIII

qIV

qV

2
6666664

3
7777775
¼ q

�

9EIEII þ 2EIEIII þ 4EIIEIII

4EIIEIII

2EIEIII

9EIEII

0
0

2
6666664

3
7777775
; ð14Þ

while the other one includes only the bars within SC and FCC lat-
tices (qIII ¼ 0):
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qI

qII

qIII

qIV

qV

2
6666664

3
7777775
¼ q

�

9EIEII þ 2EIEIII þ 4EIIEIII

�

4EIIEIII � 2EII 16EIEIIEIII � 9EIEIIEIV þ 8EIIEIIIEIVð Þ
8EIEII þ EIEIV þ 6EIIEIV

2EIEIII � EIEII 16EIEIII � 9EIEIV þ 8EIIIEIVð Þ
8EIEII þ EIEIV þ 6EIIEIV

0
8EIEII 9EIEII þ 2EIEIII þ 4EIIEIIIð Þ

8EIEII þ EIEIV þ 6EIIEIV

4EIIEIV 9EIEII þ 2EIEIII þ 4EIIEIIIð Þ
8EIEII þ EIEIV þ 6EIIEIV

2
66666666666664

3
77777777777775
: ð15Þ

The two special lattices are investigated in detail in this work, as
shown in Fig. 2, in which Isotropic-1 (Iso-1), Isotropic-2 (Iso-2)
denote the elastically isotropic SC-BCC, SC-FCC combined lattices

with q
� ¼ 10%, respectively. The normalized Young’s moduli of

the lattices and normalized cross-sectional radii of the five groups
of bars are listed in Table 3. The Iso-1, Iso-2 lattices possess iden-

tical normalized Young’s moduli E
�
¼ 0:165, and Poisson’s ratio

m ¼ 0:25. To further clarify the superiority of the proposed design
method considering material anisotropy, the lattices are re-
designed based on the assumption of isotropic base materials with

the Young’s modulus Eb
1 and Poisson’s ratio mb12, which are also

included in Table 3. The elastic constants of the designed lattices
will be investigated via FEA based numerical homogenization
and the errors away from the design targets will be evaluated, in
which the base materials are the realistic transversely isotropic
SS316L materials (Table 1).
2.2.2. Design of truss lattices with tailored Young’s moduli ratios
Given the transverse isotropy of the base materials, the elastic-

ity matrix of a stretching-dominated orthorhombic truss lattice is
derived from Eqs. (3)�(4) as:
Fig. 2. Elastically isotropic SC-BCC (Iso-1), SC-FC

Table 3
Normalized Young’s moduli of elastically isotropic truss lattices (q

� ¼ 10%) designed from
cross-sectional radii of the five groups of bars.

Lattice Design target

Transversely isotropic base materials Isotropic-1 (Iso-1) E
�
¼ 0:165

Isotropic-2 (Iso-2) E
�
¼ 0:165

Isotropic base materials Isotropic-1 (Iso-1) E
�
¼ 0:167

Isotropic-2 (Iso-2) E
�
¼ 0:167

5

C ¼

C11 C12 C13 0 0 0
C11 C13 0 0 0

C33 0 0 0
sym C44 0 0

C44 0
C66

0
BBBBBBBB@

1
CCCCCCCCA
; ð16Þ

with

C11 ¼ 1
2q

IEI þ 1
9q

IIIEIII þ 1
8q

IV EIV þ 1
4q

VEV ; C33 ¼ qIIEII þ 1
9q

IIIEIII þ 1
4q

IV EIV ;

C12 ¼ C66 ¼ 1
9q

IIIEIII þ 1
4q

VEV ; C13 ¼ C44 ¼ 1
9q

IIIEIII þ 1
8q

IV EIV :

ð17Þ
Correspondingly, the compliance matrix of the lattice is derived

as:

S ¼ C�1 ¼

S11 S12 S13 0 0 0
S11 S13 0 0 0

S33 0 0 0
sym S44 0 0

S44 0
S66

0
BBBBBBBB@

1
CCCCCCCCA
; ð18Þ

with

S11 ¼ �C2
13þC11C33

C11�C12ð Þ �2C2
13þC11C33þC12C33ð Þ ; S33 ¼ C11þC12

�2C2
13þC11C33þC12C33

;

S12 ¼ C2
13�C12C33

C11�C12ð Þ �2C2
13þC11C33þC12C33ð Þ ; S13 ¼ � C13

�2C2
13þC11C33þC12C33

;

S44 ¼ 1
C13

; S66 ¼ 1
C12

:

ð19Þ

The Young’s moduli are derived from Eqs. (17) and (19) as:

E1 ¼ E2 ¼ 1
S11

¼ C11�C12ð Þ �2C2
13þC11C33þC12C33ð Þ

�C2
13þC11C33

;

E3 ¼ 1
S33

¼ �2C2
13þC11C33þC12C33

C11þC12
;

ð20Þ

where E1, E2, E3 denote the Young’s moduli along [100], [010],
[001] directions, respectively.
C (Iso-2) combined truss latices (q
� ¼ 10%).

transversely isotropic base materials and isotropic base materials, and normalized

R1=D �½ � R2=D �½ � R3=D �½ � R4=D �½ � R5=D �½ �

6:48� 10�2 6:77� 10�2 5:22� 10�2 0 0

4:58� 10�2 4:78� 10�2 0 3:87� 10�2 3:85� 10�2

6:51� 10�2 6:51� 10�2 5:25� 10�2 0 0

4:61� 10�2 4:61� 10�2 0 3:87� 10�2 3:87� 10�2
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Eqs. (17), (20) imply that the Young’s moduli are nonlinear
functions of the volume fractions of the five groups of bars. There-
fore, it is not straightforward to form a set of linear equations to
design truss lattices with tailored Young’s moduli ratios. To
address this design problem, a traversal searching is performed
to determine the ranges of the three Young’s moduli of orthorhom-
bic truss lattices, in which the volume fractions of the five groups

of bars vary within the feasible ranges, i.e., 0 6 qi 6 q
�
,

(i ¼ I; II; III; IV ;V), and they all satisfy the relation in Eq. (5). The
cross-sectional radii of the five groups of bars are determined by
Eq. (13). Based on the ranges of the three Young’s moduli obtained
from traversal searching, all possible lattices with tailored moduli
ratios along specified directions are achieved, among which the
most manufacturable ones are identified and selected for experi-
mental validation. The following two criteria are employed to
determine the most manufacturable lattices:

1. At least three values among the five cross-sectional radii are
non-zero.

2. Among all feasible combined lattices satisfying the first crite-
rion, the lattice with the smallest value of coefficient of varia-
tion (Rcv ) of all the non-zero radii is the most manufacturable
one, in which:
Rcv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Z R1 � Ravg

� �2 þ R2 � Ravg
� �2 þ :::þ RZ � Ravg

� �2h ir
Ravg

; ð21Þ

where R1, . . ., RZ denote the non-zero radii, whose average value is
represented as Ravg .
Fig. 3. Ranges of normalized Young’s moduli E
�
1, E

�
3 of orthorhom

6

The traversal searching reveals the ranges of the three normal-

ized Young’s moduli as 0 < E
�
1 ¼ E

�
2 < 0:50, and 0 < E

�
3 < 0:91, as

illustrated in Fig. 3. The A1 lattice possesses nearly zero Young’s
moduli along [100], [010], [001] directions, and much larger
modulus along [111] direction, due to its very thin bars along
[100], [010], [001] directions and significantly thicker bars along
[111] direction. The A2 lattice possesses thick bars along [100] and
[010] directions, while very thin bars along the remaining direc-

tions, therefore its normalized modulus E
�
1 reaches the maximum

among all lattices, with a value of 0.50. Similarly, the A3 lattice pos-

sesses the maximal modulus E
�
3 among all lattices due to its thick

bars along [001] direction, with a value of 0.91. The larger value

of maximal modulus E
�
3 is primarily attributed to the larger

cross-sectional radii of vertical bars within A3 lattice. In this work,
we present two representative truss lattices with tailored moduli
ratios along [100], [010], [001] directions, including
Anisotropic-1 (Ani-1) and Anisotropic-2 (Ani-2) lattices with the

Young’s moduli ratios (E
�
1=E

�
3 ¼ E

�
2=E

�
3) of 2.0 and 0.5, respectively,

as illustrated in Fig. 4. The relative density is taken as q
� ¼ 10%,

and the normalized Young’s moduli and normalized cross-
sectional radii of the five groups of bars are listed in Table 4. Sim-
ilarly, the lattices are re-designed based on the assumption of iso-

tropic base materials with the Young’s modulus Eb
1 and Poisson’s

ratio mb12 for comparison, and are also included in Table 4.
2.2.3. Design of truss lattices with tailored Poisson’s ratios
The Poisson’s ratios of stretching-dominated orthorhombic

truss lattices are derived from Eqs. (19)–(20) as:
bic truss lattices with different topological configurations.



Table 4
Normalized Young’s moduli of truss lattices with tailored moduli ratios (q

� ¼ 10%) designed from transversely isotropic base materials and isotropic base materials, and
normalized cross-sectional radii of the five groups of bars.

Lattice Design target R1=D �½ � R2=D �½ � R3=D �½ � R4=D �½ � R5=D �½ �
Transversely isotropic base materials Anisotropic-1 (Ani-1) E

�
1 ¼ E

�
2 ¼ 0:184;

E
�
3 ¼ 0:092;

E
�
1

E
�
3

¼ E
�
2

E
�
3

¼ 2:0;

5:12� 10�2 0 0 3:54� 10�2 4:68� 10�2

Anisotropic-2 (Ani-2) E
�
1 ¼ E

�
2 ¼ 0:065;

E
�
3 ¼ 0:130;

E
�
1

E
�
3

¼ E
�
2

E
�
3

¼ 0:5;

0 4:55� 10�2 3:95� 10�2 2:98� 10�2 3:97� 10�2

Isotropic base materials Anisotropic-1 (Ani-1) E
�
1 ¼ E

�
2 ¼ 0:171;

E
�
3 ¼ 0:086;

E
�
1

E
�
3

¼ E
�
2

E
�
3

¼ 2:0;

4:72� 10�2 0 0 3:35� 10�2 5:09� 10�2

Anisotropic-2 (Ani-2) E
�
1 ¼ E

�
2 ¼ 0:064;

E
�
3 ¼ 0:127;

E
�
1

E
�
3

¼ E
�
2

E
�
3

¼ 0:5;

0 4:37� 10�2 4:18� 10�2 2:95� 10�2 3:75� 10�2

Fig. 4. Truss lattices with tailored Young’s moduli ratios along specified directions (q
� ¼ 10%).
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m12 ¼ m21 ¼ �S12E1 ¼ C2
13�C12C33

C2
13�C11C33

;

m13 ¼ m23 ¼ �S13E1 ¼ C13 C11�C12ð Þ
�C2

13þC11C33
;

m31 ¼ m32 ¼ �S13E3 ¼ C13
C11þC12

;

ð22Þ

where mij denotes the Poisson’s ratio corresponding to an exten-
sion in the j-th direction when the lattice is subjected to a contrac-
tion in the i-th direction. Similarly, the Poisson’s ratios are
nonlinear functions of the volume fractions of the five groups of
bars. Thus, the traversal searching method introduced in Sec-
tion 2.2.2 is adopted again to design stretching-dominated truss
lattices with tailored Poisson’s ratios. The traversal searching
reveals the ranges of the six Poisson’s ratios of orthorhombic truss
lattices as �1:0 < m12 ¼ m21 < 1:0, 0 < m13 ¼ m23 < 1:0,
0 < m31 ¼ m32 < 1:0, as illustrated in Fig. 5. Herein, six representa-
tive lattices (P1, P2, . . ., P6) with extreme values of Poisson’s ratios
are shown, all of which possess very thin bars along certain direc-
tions, and thick bars along the remaining directions. The two Pois-
son’s ratios within x-y plane (m12, m21) of the lattices may be
negative, zero, or positive, while the other four ones are always
positive. Accordingly, three representative lattices with tailored
zero/negative Poisson’s ratios within x-y plane are obtained, as
illustrated in Fig. 6, including Zero Poisson’s Ratio (ZPR), Negative
Poisson’s Ratio-1 (NPR-1), Negative Poisson’s Ratio-2 (NPR-2) lat-
tices with tailored Poisson’s ratios (m12, m21) of 0, �0.5, �0.8,

respectively. The relative density of the lattices is q
� ¼ 10%, the

Poisson’s ratios within x-y plane and normalized cross-sectional
7

radii of the five groups of bars are listed in Table 5. The re-
designed lattices based on the assumption of isotropic base mate-

rials with the Young’s modulus Eb
1 and Poisson’s ratio mb12 are also

listed in Table 5 for comparison. The normalized Young’s moduli of
the proposed stretching-dominated lattices are compared with
their bending-dominated counterparts reported in previous stud-
ies [21–23], as shown in Fig. 7, which illustrates that the proposed
lattices outperform their bending-dominated counterparts in stiff-
ness significantly.
3. FEA validation

3.1. FEA methods

In this work, a linear elastic FEA based numerical homogeniza-
tion framework is adopted to validate the elastic properties of the
designed lattices, using commercial software ABAQUSTM 2021. To
compute the elastic constants of the lattices, six load cases are
applied to the unit cell [40], including three uniaxial strain cases
(e 1ð Þ ¼ 1;0;0;0;0;0½ �T , e 2ð Þ ¼ 0;1;0; 0;0;0½ �T , e 3ð Þ ¼ 0;0;1;0;0;0½ �T ),
and three pure shear cases (e 4ð Þ ¼ 0;0;0;1;0;0½ �T ,
e 5ð Þ ¼ 0;0; 0;0;1;0½ �T , e 6ð Þ ¼ 0;0;0;0; 0;1½ �T ). In linear elastic FEA,
the magnitudes of testing strains do not affect the calculated elas-
tic constants. Therefore, all six load cases employ the unit strain for
simplicity. The ABAQUS B31 beam element, a 3D two-node linear
beam element based on the classical Timoshenko-Ehrenfest beam



Fig. 5. Ranges of Poisson’s ratios: (a) m13 versus m12, (b) m31 versus m12, of orthorhombic truss lattices with different topological configurations.

Fig. 6. Truss lattices with tailored zero/negative Poisson’s ratios within x-y plane (q
� ¼ 10%).

Table 5
Poisson’s ratios within x-y plane of truss lattices with tailored Poisson’s ratios (q

� ¼ 10%) designed from transversely isotropic base materials and isotropic base materials, and
normalized cross-sectional radii of the five groups of bars.

Lattice Design target R1=D �½ � R2=D �½ � R3=D �½ � R4=D �½ � R5=D �½ �
Transversely isotropic base materials Zero Poisson’s Ratio (ZPR) m12 ¼ 0 3:89� 10�2 0 3:42� 10�2 3:90� 10�2 2:49� 10�2

Negative Poisson’s Ratio-1 (NPR-1) m12 ¼ �0:5 2:96� 10�2 0 3:25� 10�2 4:49� 10�2 0

Negative Poisson’s Ratio-2 (NPR-2) m12 ¼ �0:8 0 2:52� 10�2 1:73� 10�2 5:07� 10�2 0

Isotropic base materials Zero Poisson’s Ratio (ZPR) m12 ¼ 0 8:56� 10�2 3:99� 10�2 0 3:44� 10�2 1:98� 10�2

Negative Poisson’s Ratio-1 (NPR-1) m12 ¼ �0:5 0 4:72� 10�2 2:14� 10�2 4:83� 10�2 0

Negative Poisson’s Ratio-2 (NPR-2) m12 ¼ �0:8 1:78� 10�2 0 1:79� 10�2 5:06� 10�2 0
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theory, is employed for FEA. Each bar is meshed with at least 100
elements, and the axial Young’s moduli in Table 2 are assigned to
the corresponding groups of bars. The cross-sectional properties,
including the area and second moments of area, are calculated
from the cross-sectional radii and assigned to the corresponding
groups of bars. Due to the unit cell’s reflectional symmetry regard-
ing the three orthogonal middle planes, the 1/8 unit cell is
employed for analysis [41]. The symmetric/anti-symmetric bound-
ary conditions are imposed on the three middle planes, and the
periodic boundary conditions are simplified and imposed on the
other three end planes [41]. The terms of the elasticity matrix in
Eq. (3) are obtained from macroscopic stresses under the six load
cases, which are evaluated by the average stress theorem [23,42].
8

The compliance matrix is calculated as the inverse of the elasticity
matrix, from which the three axial Young’s moduli (E1, E2, E3) and
six Poisson’s ratios (m12, m21, m13, m31, m23, m32) are obtained. The
details for implementing the FEA workflow are referred to our pre-
vious work [43].

To illustrate the tailored zero/negative Poisson’s ratios within x-
y plane, an additional FEA is performed to investigate the deforma-
tion responses of ZPR, NPR-1, NPR-2 lattices under uniaxial stress
loading along x direction. Along y, z directions of the lattices, free
extension or contraction is allowed. The periodic boundary condi-
tions are imposed via coupling the degrees of freedom of nodes at
boundary edges of the lattices with the corresponding reference
points.



Fig. 7. The normalized Young’s modulus versus Poisson’s ratio within x-y plane of
the proposed stretching-dominated truss lattices with tailored zero/negative
Poisson’s ratios and their bending-dominated counterparts in previous studies.
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3.2. FEA results of elastic constants

The FEA evaluated elastic constants of the designed lattices are
listed in Table 6. The degree of anisotropy of the lattices is mea-
sured by the universal anisotropy index AU [44,45]. For the lattices

with q
� ¼ 10% designed from transversely isotropic base materials,

the FEA results show that Iso-1, Iso-2 lattices possess nearly isotro-
pic elasticity, with the universal anisotropy indexes AU of
2:393� 10�5, 1:411� 10�3, respectively. They also possess nearly
the same normalized Young’s moduli, which match well with the
theoretical value of 0.165. ZPR, NPR-1, NPR-2 lattices nearly obtain
the tailored Poisson’s ratios (m12 ¼ m21) of 0, �0.5, �0.8, respec-
tively, with the relative errors lower than 10%. Ani-1, Ani-2 lattices
nearly obtain the tailored axial Young’s moduli ratios

(E
�
1=E

�
3 ¼ E

�
2=E

�
3) of 2.0, 0.5, respectively, with the relative errors
Table 6
The FEA evaluated elastic constants of the designed truss lattices with tailored elasticity f

Lattice Transversely isotropic base materials

Elastic constant (q
� ¼ 10%) Elastic cons

Isotropic-1 (Iso-1) E
�
1 ¼ E

�
2 ¼ 0:167;

E
�
3 ¼ 0:167;

AU ¼ 2:393� 10�5;

E
�
1 ¼ E

�
2 ¼

E
�
3 ¼ 0:

AU ¼ 4:522
Isotropic-2 (Iso-2) E

�
1 ¼ E

�
2 ¼ 0:165;

E
�
3 ¼ 0:168;

AU ¼ 1:411� 10�3;

E
�
1 ¼ E

�
2 ¼

E
�
3 ¼ 0:

AU ¼ 1:468
Anisotropic-1 (Ani-1) E

�
1 ¼ E

�
2 ¼ 0:187;

E
�
3 ¼ 0:093;

E
�
1

E
�
3

¼ E
�
2

E
�
3

¼ 2:007;

E
�
1 ¼ E

�
2 ¼ 0

E
�
3 ¼ 0:0

E
�
1

E
�
3

¼ E
�
2

E
�
3

¼ 2

Anisotropic-2 (Ani-2) E
�
1 ¼ E

�
2 ¼ 0:068;

E
�
3 ¼ 0:131;

E
�
1

E
�
3

¼ E
�
2

E
�
3

¼ 0:518;

E
�
1 ¼ E

�
2 ¼ 0

E
�
3 ¼ 0:1

E
�
1

E
�
3

¼ E
�
2

E
�
3

¼ 0

Zero Poisson’s Ratio (ZPR) m12 ¼ m21 ¼ 0:009; m12 ¼ m21 ¼
Negative Poisson’s Ratio-1 (NPR-1) m12 ¼ m21 ¼ �0:457; m12 ¼ m21 ¼
Negative Poisson’s Ratio-2 (NPR-2) m12 ¼ m21 ¼ �0:721: m12 ¼ m21 ¼
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lower than 4%. The FEA results show that all designed lattices
nearly obtain the target elastic properties. The remaining discrep-
ancies between the theoretical and numerical elastic properties are
primarily attributed to the bending effects of the lattices, which
lead to uneven distribution of normal stresses at different locations
of a cross section. To mitigate the influence of bending effects, the
elastic constants of the designed lattices with a lower relative den-

sity of q
� ¼ 1% are investigated and listed in Table 6. The lattices

possess the same topological configurations as those in Fig. 2,
Fig. 4, Fig. 6, and the cross-sectional radii of the bars are obtained
through dividing those in Table 3, Table 4, and Table 5 by a factor offfiffiffiffiffiffi
10

p
. The FEA results imply that the elastic properties of the

designed lattices with 1% relative density are much closer to the
target values (with relative errors lower than 1%) than those with
10% relative density, due to the lower bending effects.

For the lattices with q
� ¼ 10% designed from isotropic base

materials, the FEA evaluated elastic constants deviate more from
their target values, due to the assumption of an unrealistic, namely
isotropic, base material in the design method. The universal aniso-

tropy indexes AU of Iso-1, Iso-2 lattices are 4:035� 10�3,
9:169� 10�3, respectively, which are larger than those of Iso-1,
Iso-2 lattices designed from transversely isotropic base materials
and imply a larger degree of anisotropic elasticity. The FEA evalu-

ated axial Young’s moduli ratios (E
�
1=E

�
3 ¼ E

�
2=E

�
3) of Ani-1, Ani-2 lat-

tices, and Poisson’s ratios within x-y plane (m12 ¼ m21) of ZPR, NPR-
1, NPR-2 lattices also deviate more from the target values than
those designed from transversely isotropic materials. Such devia-
tions decrease with decreasing relative densities as a result of
lower bending effects, while they are still larger than the designed
lattices considering material anisotropy. The effects on the elastic
constants of the designed lattices evaluated through introducing
transversely isotropic base materials in FEA depend on the degree
of material anisotropy. Since the anisotropy degree of SS316L
materials adopted in this work is relatively low, the differences
between the FEA evaluated elastic constants of the designed lat-
tices with and without consideration of material anisotropy are
also relatively small. Nevertheless, the extension of the proposed
design method considering material anisotropy to other base
materials with higher anisotropy degrees will show more signifi-
cant advantages.

The configurations of ZPR, NPR-1, NPR-2 lattices designed from
transversely isotropic base materials under uniaxial stress loading
rom transversely isotropic base materials and isotropic base materials.

Isotropic base materials

tant (q
� ¼ 1%) Elastic constant (q

� ¼ 10%) Elastic constant (q
� ¼ 1%)

0:165;
165;
� 10�6;

E
�
1 ¼ E

�
2 ¼ 0:168;

E
�
3 ¼ 0:158;

AU ¼ 4:035� 10�3;

E
�
1 ¼ E

�
2 ¼ 0:166;

E
�
3 ¼ 0:156;

AU ¼ 4:063� 10�3;

0:164;
166;
� 10�4;

E
�
1 ¼ E

�
2 ¼ 0:168;

E
�
3 ¼ 0:162;

AU ¼ 9:169� 10�3;

E
�
1 ¼ E

�
2 ¼ 0:166;

E
�
3 ¼ 0:161;

AU ¼ 9:616� 10�3;

:184;
92;

:000;

E
�
1 ¼ E

�
2 ¼ 0:175;

E
�
3 ¼ 0:086;

E
�
1

E
�
3

¼ E
�
2

E
�
3

¼ 2:036;

E
�
1 ¼ E

�
2 ¼ 0:171;

E
�
3 ¼ 0:085;

E
�
1

E
�
3

¼ E
�
2

E
�
3

¼ 2:012;

:065;
29;

:502;

E
�
1 ¼ E

�
2 ¼ 0:066;

E
�
3 ¼ 0:123;

E
�
1

E
�
3

¼ E
�
2

E
�
3

¼ 0:534;

E
�
1 ¼ E

�
2 ¼ 0:063;

E
�
3 ¼ 0:122;

E
�
1

E
�
3

¼ E
�
2

E
�
3

¼ 0:519;

�2:074� 10�6; m12 ¼ m21 ¼ �0:01; m12 ¼ m21 ¼ �0:002;

�0:496; m12 ¼ m21 ¼ �0:447; m12 ¼ m21 ¼ �0:513;
�0:792: m12 ¼ m21 ¼ �0:716: m12 ¼ m21 ¼ �0:789:



Fig. 8. The configurations of ZPR, NPR-1, NPR-2 lattices within the 1/8 unit cell under uniaxial stress loading along x direction, in which the white and grey colours represent
the undeformed and deformed configurations of the lattices, respectively.
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along x direction are illustrated in Fig. 8, in which the 1/8 unit cell
is adopted for illustration. The white and grey colours represent
the undeformed and deformed configurations of the lattices,
respectively. The ZPR lattice does not deform along y direction
when it is subjected to tension along x direction, implying zero
Poisson’s ratio within x-y plane. The NPR-1, NPR-2 lattices expand
along y direction when subjected to tension along x direction,
implying negative Poisson’s ratios within x-y plane. Given the same
longitudinal strain along x direction, the deformation of NPR-2 lat-
tice along y direction is larger than that of NPR-1 lattice, since NPR-
2 lattice possesses a lower Poisson’s ratio within x-y plane (-0.8)
than NPR-1 lattice (-0.5).
4. Experimental validation

4.1. Micro-LPBF fabrication

The proposed Iso-1, ZPR and NPR-1 lattices were selected for
fabrication and experimental tests to further validate their uncon-
ventional properties of isotropic elasticity, tailored zero/negative
Poisson’s ratios. The lattices were fabricated by a micro-LPBF sys-
tem Hans’ Laser M100 machine, with gas atomized austenitic
stainless steel SS316L powders from Beijing AMC Powders Co.,
Ltd. A 500 W IPG fiber laser was equipped in the machine, and
the wavelength and beam diameter were 1.07 lm and 25 lm,
respectively; and the SS316L powder size ranged from 5 to
25 lm with D50 ¼ 16:27 lm. The scanning patterns between
sequential layers were rotated by 67

�
(the hatch angle) to reduce

the thermal stresses in the fabrication process and generate nearly
homogeneous microstructures throughout the samples [46]. The
laser power, hatch distance, layer thickness, scanning speed were
set as 50 W, 50 lm, 10 lm and 1000 mm/s, respectively. Such pro-
cess parameters were selected to ensure dense and pore-free sam-
ples based on our previous study [47]. After the micro-LPBF
fabrication process, all samples were removed from the substrate
baseplate via electrical discharge wire cutting and cleaned with
ethanol via ultrasonic vibrations, in which no heat treatment was
involved.
4.2. Sample configuration and surface morphology characterization

The micro-LPBF fabricated multi-cell samples of the selected

lattices with the relative density of q
� ¼ 10% and their fabrication

orientations on the baseplate are shown in Fig. 9. The designed
and measured geometric properties of the samples are listed in
Table 7. Iso-1 lattice was fabricated along the three principal lattice
directions of [100], [110], [111], respectively, and ZPR, NPR-1 lat-
tices were fabricated along [100] direction. Given the minimum
10
printing feature size of 70 lm, the unit cell size of the lattices
was taken as D ¼ 2:4 mm to ensure the fabrication accuracy. In
view of the transverse isotropy of the base materials, the lattice
direction [001] of all samples was aligned with the material direc-
tion (0, 0, 1) within the global coordinate system, while the ‘Iso-1
[111]’ sample was rotated along [001] direction to save the fabri-
cation space. For each designed lattice, 3 samples were fabricated
to ensure the experimental repeatability, leading to 15 samples
in total. Afterwards, the relative densities of the samples were cal-
culated based on the measured weight and the density of SS316L

(qs ¼ 7:98 g=cm3). The measured relative densities of the samples
are slightly larger than the designed values, with the relative errors
lower than 20%. The larger relative density results are primarily
attributed to the larger cross-sectional radii of the fabricated sam-
ples than the designed values. The measured relative densities of
the samples within the same group exhibit low standard devia-
tions, implying good repeatability of the micro-LPBF fabrication.

The different constitutive bars can be simultaneously fabricated
by the micro-LPBF process in this work, while the fabrication qual-
ity of different bars is different. To illustrate this point, the fabri-
cated samples were further inspected by a JSM-7800F Schottky
Field Emission Scanning Electron Microscope (FE-SEM), and an
RH-2000 High-Resolution 3D Optical Microscope, to characterize
their surface morphologies and the cross-section dimensions of
the bars. The SEM characterized top and side surfaces of ‘Iso-1
[100]’ sample are shown in Fig. 10, and the microscopic surface
morphologies and roughness (Ra) measured by the 3D optical
microscope are shown in Fig. 11. The side surface is found to have
more partially-melted loose powders attached than the top sur-
face, leading to a higher roughness of 10.60 lm. In contrast, the
top surface exhibits a lower surface roughness of 3.32 lm and pos-
sesses better surface finish. The designed cross-sectional radii of
the bars in group I, II are 155.52 lm, 162.48 lm, respectively. As
comparison, the measured radii are 162.74 lm, 183.07 lm, which
are nearly 4.64%, 12.67% larger than the designed values, respec-
tively. Therefore, the micro-LPBF fabricated bars are generally
thicker than the designed ones; and vertical bars are thicker than
horizontal bars with the same designed cross-sectional radii, since
the powders of horizontal bars are easier to be scraped away dur-
ing powder recoating.

The SEM characterized top and side surfaces of the ZPR sample
are shown in Fig. 12. The side surface also shows a larger surface
roughness and worse surface finish than the top surface. The fabri-
cation quality of the ZPR sample is lower than ‘Iso-1 [100]’ sample,
since the ZPR sample possesses more horizontal bars with smaller
cross-sectional radii. The ZPR sample possesses more warped hor-
izontal bars, among which some are non-uniform along axial direc-
tions or locally broken, since the powders are scraped away during
powder recoating. Larger fabrication defects, including surface



Fig. 9. Micro-LPBF fabricated multi-cell samples of the selected truss lattices and their fabrication orientations, in which the arrows denote the lattice directions.

Table 7
The designed and measured geometric properties of the samples.

Sample Unit cell size
D1 � D2 � D3 mm½ �

Number of unit cells Total size
L1 � L2 � L3 mm½ �

Relative density [-]

Designed Measured

Isotropic-1 [100] (Iso-1 [100]) 2.40 � 2.40 � 2.40 4 � 4 � 4 9.60 � 9.60 � 9.60 10% 10.22 ± 0.20%
Isotropic-1 [110] (Iso-1 [110]) 3.39 � 3.39 � 2.40 4 � 4 � 4 13.58 � 13.58 � 9.60 10.50 ± 0.32%
Isotropic-1 [111] (Iso-1 [111]) 4.16 � 3.39 � 5.88 3 � 4 � 2.5 12.47 � 13.58 � 14.70 10.40 ± 0.15%
Zero Poisson’s Ratio (ZPR) 2.40 � 2.40 � 2.40 4 � 4 � 4 9.60 � 9.60 � 9.60 12.04 ± 0.22%
Negative Poisson’s Ratio-1 (NPR-1) 2.40 � 2.40 � 2.40 4 � 4 � 4 9.60 � 9.60 � 9.60 10.86 ± 0.16%

Fig. 10. The SEM micrographs of surface morphologies of ‘Iso-1 [100]’ sample: (a) top surface, (b) side surface.

Q. Ma, L. Zhang, J. Ding et al. Materials & Design 230 (2023) 111995

11



Fig. 11. The surface morphologies and roughness measured by the 3D optical microscope for the (a) top, and (b) side surfaces of the ‘Iso-1 [100]’ sample.

Fig. 12. The SEM micrographs of surface morphologies of ZPR sample: (a) top surface, (b) side surface.
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roughness, dimensional variations, warping and broken bars, will
have larger effects on the measured elastic constants of the ZPR
sample.

4.3. Experimental validation with compression tests

To measure the elastic constants of micro-LPBF fabricated sam-
ples, the uniaxial compression tests were performed using the
Tinius Olsen H5KS compression testing machine (with a load cell
of 5 kN). All samples were loaded up to 250 N to ensure that they
were always in the linear elastic regime. The speed in displacement
control mode was set as 0.5 mm/min, which corresponded to the
strain rate (6.14 � 8.68)�10�4 /s. The samples ‘Iso-1 [100]’, ‘Iso-
1 [110]’, ‘Iso-1 [111]’ were loaded along [100], [110], [111] direc-
12
tions, respectively, and the samples ZPR, NPR-1 were loaded along
[100] direction. Normally, the first loading curve deviated from the
rest of curves as the contact surfaces between the samples and fix-
tures were not flat in the first loading; while the second and fol-
lowing curves were close to each other [28]. Therefore, the
compression tests were performed for four times along each direc-
tion, and the elastic constants were calculated based on the aver-
age data of the second to the fourth curves.

To accurately measure the Young’s moduli of the samples, an
additional compression test was performed on the machine (with-
out samples) for four times to measure the stiffness of the machine,
since the machine also underwent elastic deformations during the
loading. The total stiffness of the machine and sample (kmþs), and
the stiffness of the machine (km), were calculated as the average



Table 8
The theoretical and experimental elastic constants of the samples.

Sample Theoretical
values

Experimental values

Isotropic-1 [100] (Iso-1 [100]) E
�

100½ � ¼ 0:165 E
�

100½ � ¼ 0:140� 0:006
Isotropic-1 [110] (Iso-1 [110]) E

�
110½ � ¼ 0:165 E

�
110½ � ¼ 0:147� 0:002

Isotropic-1 [111] (Iso-1 [111]) E
�

111½ � ¼ 0:165 E
�

111½ � ¼ 0:121� 0:003
Zero Poisson’s Ratio (ZPR) m12 ¼ 0 m12 ¼ 0:130� 0:005
Negative Poisson’s Ratio-1 (NPR-

1)
m12 ¼ �0:5 m12 ¼ �0:445� 0:018
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slope of the second to fourth force–displacement curves of the cor-
responding tests, from which the Young’s modulus of the sample
was calculated as [28]:

E ¼ hkmkmþs

A0 km � kmþsð Þ ; ð23Þ

where h and A0 denote the height and cross-sectional area of the
sample, respectively. Given the differences in relative densities of

the fabricated samples, the normalized Young’s moduli E
�
were cal-

culated and compared with each other to verify the isotropic elas-
ticity of the samples.

To measure the Poisson’s ratios, the uniaxial compression test
was performed on the ZPR, NPR-1 samples along [100] direction.
The deformation history of the samples was recorded by a Sony
Alpha 57 camera, with a frequency of 0.5 Hz. For each sample, 8
pairs of nodes were marked to measure the original and deformed
lengths along [100], [010] directions, including 4 pairs along
[100] direction (blue color), and 4 pairs along [010] direction
(green color), as illustrated in Fig. 13. The longitudinal strain (ex),
transverse strain (ey) were calculated as the average of the defor-
mation to original length ratios along [100], [010] directions of
the 4 pairs of nodes, respectively, based on which the Poisson’s
ratio within x-y plane m12 was evaluated as:

m12 ¼ � ey
ex

: ð24Þ

The designed and measured elastic constants of the samples are
listed in Table 8. The measured normalized Young’s moduli of Iso-1
samples reach nearly 70 � 90% of the theoretical values. Among
[100], [110], [111] directions, Iso-1 samples exhibit the lowest
and highest Young’s moduli along [111] and [110] directions,
respectively. The lowest to highest normalized moduli ratio is

E
�
min=E

�
max ¼ E

�
111½ �=E

�
110½ � ¼ 0:824, implying that the isotropic elastic-

ity is almost achieved, with the relative moduli deviation of nearly
18%. The measured Poisson’s ratios within x-y plane (m12) of ZPR,
NPR-1 samples are 0.130, �0.445, which almost achieved the
design targets of zero and negative (-0.5) Poisson’s ratios within
x-y plane, respectively.
Fig. 13. The graphical interpretation for measurement of Poisson’s ratios within x-y
plane of lattices.
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In summary, the experimental results are in reasonable agree-
ment with the theoretical values, implying that the tailored isotro-
pic elasticity, and tailored zero/negative Poisson’s ratios within x-y
plane (m12) of the designed lattices are nearly obtained. The
remaining discrepancies between the experimental and theoretical
values are primarily attributed to the fabrication defects [48–50],
including dimensional variations, surface roughness and waviness,
warping and local fracture of bars. The effects of these defects will
be characterized through experimental tests in our future works,
based on which the relevant design compensation can be incorpo-
rated into the analytical design model to achieve better agree-
ments between the designed properties and actual ones.

5. Conclusions

This work proposes an analytical method to design stretching-
dominated truss lattices with tailored elastic properties, including
isotropic elasticity, tailored zero/negative Poisson’s ratios, tailored
Young’s moduli ratios along specified directions. The transversely
isotropic elasticity model is adopted to represent the process-
induced anisotropy of the base materials. The lattices are designed
through combination of five groups of bars within the cubic lattices
of SC, BCC, FCC families. An analytical homogenization theory is
formed to obtain the elastic constants of combined lattices. A set
of analytical criteria are derived to obtain truss lattices with isotro-
pic elasticity from transversely isotropic materials. Besides, a
traversal searching method is developed to determine the ranges
of Young’s moduli, Poisson’s ratios of the lattices, and find the most
manufacturable ones with tailored Young’s moduli ratios and Pois-
son’s ratios.

The analytical criteria show that the combined lattices possess
the same Young’s modulus, whose value only depends on the three
axial Young’s moduli (EI , EII , EIII), and identical Poisson’s ratio 0.25,
once the isotropic elasticity is obtained. The traversal searching
reveals the two Poisson’s ratios within x-y plane (m12, m21) may be
negative, zero, or positive, while the other four ones are always
positive. Accordingly, several representative lattices with tailored
Poisson’s ratios within x-y plane of 0, �0.5, �0.8, and tailored axial

Young’s moduli ratios (E
�
1=E

�
3 ¼ E

�
2=E

�
3) of 2.0 and 0.5, are obtained,

respectively. The FEA results reveal that all designed lattices nearly
obtain the target elastic properties, and the discrepancies decrease
as the relative density decreases. The FEA results also validate the
superiority of the proposed design method considering material
anisotropy, which leads to designed lattices with closer elastic
properties to the target values than those designed without consid-
eration of material anisotropy.

Finally, the Iso-1, ZPR, and NPR-1 lattices are fabricated via
micro-LPBF, and their isotropic elasticity, and tailored zero/nega-
tive Poisson’s ratios are validated via quasi-static compression test
experiments. The experimental results agree with theoretical val-
ues reasonably, with the target elastic properties almost achieved,
and the remaining discrepancies are primarily attributed to the
fabrication defects. The characterization and minimization meth-
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ods for these defects will be investigated in our future works to
achieve better agreements between the designed properties and
actual ones. Besides, the lattices may exhibit different stress–strain
behaviours in large deformations, due to their different topologies
and bar arrangements, which also deserves more in-depth investi-
gations in our future studies.
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Appendix A

Given the compliance matrix Sb of the transversely isotropic
materials in Eq. (1), the Young’s modulus along the direction
n ¼ n1;n2;n3ð Þ can be derived via coordinate transformation [51].
The global coordinate system (O� xyz) and local coordinate system

(O� x0y0z0) are shown in Fig. A1, in which the compliance matrix Sb

is represented in global coordinate system, and the x0 axis of local
coordinate system is aligned with the unit vector n. The coordinate
transformation between the global and local coordinate systems
can be performed through rotating the global coordinate system
along N direction for an angle of h, in which:

N ¼ N1;N2;N3ð Þ ¼ ex�n
kex�nk ¼ 0;� n3ffiffiffiffiffiffiffiffiffiffi

n22þn23
p ; n2ffiffiffiffiffiffiffiffiffiffi

n22þn23
p

	 

;

h ¼ arccos ex 	 nð Þ ¼ arccos n1ð Þ:
ðA1Þ
Fig. A1. The graphical interpretation of the
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The corresponding coordinate transformation matrix is [51]:

T ¼
l1 m1 q1

l2 m2 q2

l3 m3 q3

2
64

3
75; ðA2Þ

where:

l1 ¼ N2
1 1� cos hð Þ þ cos h; m1 ¼ N1N2 1� cos hð Þ þ N3 sin h;

q1 ¼ N1N3 1� cos hð Þ � N2 sin h;

l2 ¼ N1N2 1� cos hð Þ � N3 sin h; m2 ¼ N2
2 1� cos hð Þ þ cos h;

q2 ¼ N2N3 1� cos hð Þ þ N1 sin h;

l3 ¼ N1N3 1� cos hð Þ þ N2 sin h; m3 ¼ N2N3 1� cos hð Þ � N1 sin h;

q3 ¼ N2
3 1� cos hð Þ þ cos h:

ðA3Þ
The corresponding strain vector transformation matrix is [51]:

Te ¼
B11 B12

2B21 B22

� �
; ðA4Þ

where:

B11 ¼
l21 m2

1 q2
1

l22 m2
2 q2

2

l23 m2
3 q2

3

2
6664

3
7775; B12 ¼

m1q1 l1q1 l1m1

m2q2 l2q2 l2m2

m3q3 l3q3 l3m3

2
64

3
75;

B21 ¼
l2l3 m2m3 q2q3

l1l3 m1m3 q1q3

l1l2 m1m2 q1q2

2
64

3
75;

B22 ¼
m2q3 þm3q2 q2l3 þ q3l2 m2l3 þm3l2

m3q1 þm1q3 q3l1 þ q1l3 m3l1 þm1l3

m1q2 þm2q1 q1l2 þ q2l1 m1l2 þm2l1

2
64

3
75:

ðA5Þ

Based on the strain vector transformation matrix in Eq. (A4), the

compliance matrix Sb
� �0

within local coordinate system is derived

as [51]:

Sb
� �0

¼ TeS
bTT

e ; ðA6Þ

from which the Young’s modulus along n direction is obtained:
global and local coordinate systems.
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Eb
n ¼

1

Sb
� �0

11

¼ 1=
1

Eb
1

l21 þm2
1

� �
l21 þm2

1 �2mb13q
2
1

� �
þ 1

Eb
3

q4
1 þ

1

Gb
13

q2
1 l21 þm2

1

� �" #
:

ðA7Þ
Through combination with Eqs. (A1) and (A3), the Young’s mod-

ulus in Eq. (A7) is further simplified as:

Eb
n ¼ 1=

1

Eb
1

n2
1 þ n2

2

� �
n2
1 þ n2

2 � 2mb13n
2
3

� �þ 1

Eb
3

n4
3 þ

1

Gb
13

n2
3 n2

1 þ n2
2

� �" #
;

ðA8Þ

which exactly represents the formula in Eq. (2).
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