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ABSTRACT

Although practicing a task generally benefits later performance on that same task, there are
individual differences in practice effects. One avenue to model such differences comes from
research showing that brain networks extract functional advantages from operating in the
vicinity of criticality, a state in which brain network activity is more scale-free. We
hypothesized that higher scale-free signal from fMRI data, measured with the Hurst exponent
(H ), indicates closer proximity to critical states. We tested whether individuals with higher H
during repeated task performance would show greater practice effects. In Study 1, participants
performed a dual-n-back task (DNB) twice during MRI (n = 56). In Study 2, we used two runs
of n-back task (NBK) data from the Human Connectome Project sample (n = 599). In Study 3,
participants performed a word completion task (CAST) across six runs (n = 44). In all three
studies, multivariate analysis was used to test whether higher H was related to greater practice-
related performance improvement. Supporting our hypothesis, we found patterns of higher H
that reliably correlated with greater performance improvement across participants in all three
studies. However, the predictive brain regions were distinct, suggesting that the specific spatial
H↑ patterns are not task-general.

AUTHOR SUMMARY

Individuals vary in the degree to which they improve on a task upon repeating it, referred to as
practice effects. Research has shown a relationship between scale-free brain activity and
advantageous functional properties for the brain networks. Therefore, we asked if practice
effects are related to these scale-free brain dynamics. We hypothesized that individuals with
more scale-free fMRI activity, measured with Hurst exponent (H ), when repeating tasks would
show larger practice effects. Across three datasets including different tasks and individuals, we
found that higher fMRI H was associated with greater task performance improvement. We
conclude that exhibiting more efficient information processing when performing a cognitive
task may be indexed by higher fMRI scale-free activity and predict further improvement in task
performance.
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INTRODUCTION

Improvements in cognitive performance due to repeated practice vary considerably across
individuals, even within the same task (Calamia et al., 2012). When situational factors and
age are controlled, the variability observed in these so called ‘practice effects’ (see McCaffrey
et al., 2013) across healthy individuals is traditionally attributed to differences in intellectual
ability, where individuals with higher fluid intelligence benefit more from practice (Rapport
et al., 1997). The magnitude of practice effects in multiple tests of working memory, attention,
and executive function has been shown to provide rich and unique information about the
respondent, and can be used for diagnosis of clinical conditions as well as responsiveness
to clinical interventions (Duff et al., 2012). Given the diagnostic and prognostic values of prac-
tice effects, it is important to pursue neural process models for explaining differences in cog-
nitive performance improvements from practice.

As there is increasing evidence for the theory that the brain displays critical or near-critical
dynamics (Beggs & Timme, 2012), in the current study, we characterized the brain as a net-
work that imparts functional advantages when operating close to or at criticality (see Box 1).
We propose that brain network criticality provides a theoretical framework for investigating
changes in cognitive performance after practice. Specifically, performing most complex tasks
that engage working memory and focused attention depend on active information storage and
transfer in neuronal ensembles (Awh & Jonides, 2001; Ikkai & Curtis, 2011). Brain states near
criticality would confer computational advantages (i.e., superior information transfer and stor-
age) and such advantages could be measured in neural dynamics that we hypothesized would
be tied to differences in learning and practice effects.

Practice effects:
Any gained performance
improvement in a task upon
repeating it.

Working memory:
The cognitive system that allows for
the process of temporarily holding
and manipulating information.

Executive function:
Set of cognitive processes that allows
for directing thought and action
toward obtaining the goals of the task
at hand.

Neural process model:
A model that attempts to elucidate
the principles that underlie a certain
sensory/perceptual/cognitive process
based on information processing and
neural computations in the brain.

Criticality:
State of complex systems poised at
the brink of a phase transition
between order and randomness. Box 1.

Critical state in a dynamic network. Consider a physical system whose large-scale behavior is
not merely the sum of its smaller components (i.e., it is a network with interactions between
nodes). Such systems can be in different states based on whether the network configuration is
poised at minimum stability or not. As a toy example, the network in Figure 1 (left panel)
consists of nodes with active or inactive states, where network dynamics are configured such
that an active node becomes inactive at the rate of λ (i.e., decay rate), and activity in a node
spreads to a random neighboring inactive node at the rate of γ (i.e., propagation rate). In such
a network the time evolution of small-scale local activity can be spread chaotically if λ < γ or
be absorbed before resulting in global activity patterns if λ > γ. At the border between these
two regimes (λ = γ), the observed global patterns of activity tend to become self-similar over
different temporal and/or spatial scales, that is, they are scale-invariant as they follow the
power law distribution where power is directly proportional to frequency (Frette et al.,
1996; Muñoz, 2018). In other words, this ‘critical’ state (λ = γ) separates the subcritical phase
(λ > γ), where transient activity decays to a zero-activity steady state, from the supercritical
phase (λ < γ), where transient activity turns into sustained global activity (see Figure 1, right
panel, for examples of activity spread under each of these states). Therefore, the minimal
stability of the network at a critical state enables maximum susceptibility to perturbation by
environmental inputs while avoiding sustained global activity that prevents sensitivity to other
transient activity (Chialvo, 2004; Fraiman et al., 2009; Frette et al., 1996). One can conceive
of brain networks similarly: small-scale neuronal ensembles with short- and long-term inter-
actions (phase-coupled electro-chemical activity) give rise to the emergent large-scale activity
linked to cognitive functions (Chialvo, 2010; Cocchi et al., 2017; Fagerholm et al., 2015;
Gisiger, 2001; He, 2014; Shew & Plenz, 2013; Werner, 2010). There is evidence of self-
organized criticality in the human brain’s intrinsic activity (de Arcangelis et al., 2006;
Kitzbichler et al., 2009; Suckling et al., 2008), permitting dynamic reorganization into alter-
native states (i.e., further from criticality) depending on behavioral and cognitive demands
(Arviv et al., 2015; Fagerholm et al., 2015; Gollo, 2017; Hahn et al., 2017; Yu et al., 2017).
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A common way to measure the criticality of large-scale brain networks is via estimation of
timescale invariance (e.g., the 1/f component of power spectral density function) in brain activ-
ity. Specifically, scale-free brain activity has been successfully measured using the Hurst expo-
nent (H ) for both electrophysiological brain activity (e.g., EEG, MEG, ECoG) and blood oxygen
level–dependent (BOLD) fMRI signals, where higher H indicates more scale-free dynamics.
There is some evidence showing that operating near criticality may facilitate learning and plas-
ticity (de Arcangelis & Herrmann, 2010). Higher H characterizes more long-range temporal
correlations (LRTCs) corresponding to slowly attenuating autocorrelations in the signal, which
coexist with features of a critical state (Bak et al., 1987; Tian et al., 2022). Both criticality and
LRTCs have been used to describe brain network dynamics and states (Marinazzo et al., 2014;
Meisel et al., 2017b; O’Byrne, & Jerbi, 2022; Vohryzek et al., 2022; Zimmern, 2020). Impor-
tantly, operating close to or at a critical state in simulated neural networks has been shown to
provide multiple advantageous functional properties for the network. These include improved
information storage and transfer (Boedecker et al., 2012; Shriki et al., 2013; Shriki & Yellin,
2016; Tanaka et al., 2008), as well as increased dynamic range (Gautam et al., 2015; Kinouchi
& Copelli, 2006) in the network. Other studies have found that LRTCs in cortical activity sup-
port the integration of information in brain networks (see Meisel et al., 2017a), especially in
tasks engaging working memory that require processing of information over longer periods of
time (Chaudhuri et al., 2015; Kiebel et al., 2008; Kringelbach et al., 2015).

Lower H in brain activity has been reported for populations with substance use (Ide et al.,
2016), attention deficit (Sokunbi, 2018), depression (Wei et al., 2013), general psychopathol-
ogy (Stier et al., 2023), and mild cognitive impairment (Long et al., 2018) disorders, as well as
following sports-related concussions compared to healthy controls (Churchill et al., 2020).
Lowered H has been found to be correlated with distress and aging (Churchill et al., 2016;
Goldberger et al., 2002), and following sleep deprivation (Meisel et al., 2017a). Furthermore,
scale-free activity in electrophysiological and fMRI signals has been shown to be suppressed
(i.e., decreased H ) during the exertion of cognitive effort compared to more restful states
(Churchill et al., 2016; He, 2014; Kardan et al., 2020; Zhuang et al., 2022). For example,
Fagerholm et al. (2015) used combined EEG and fMRI to find that the resting state is associated
with near-critical dynamics while a focused cognitive task induces subcritical dynamics.

Figure 1. Left: Schematic of the dynamics of deactivation (λ) of an active node or propagation of activity (γ) to a neighboring node in a simple
network exhibiting nonequilibrium phase transition. Right: Simulating propagation and decay in a one-dimensional lattice of nodes shows how
different relationships between activation rate (γ) and deactivation rate (λ) results in the network to be in (A) subcritical (λ > γ), (B) critical (λ ≈
γ), or (C) supercritical (λ < γ) states.

Scale-free:
When brain activity does not contain
a predominant rhythmic temporal
scale but has a 1/f-like power
spectrum, it is called ‘scale-free’.

Autocorrelation:
The similarity between a signal and a
delayed copy of it as a function of
different lags.

Simulated neural networks:
Study of simulations on artificial
neural networks to model computing
in biological neural networks.

Large-scale brain network:
Collections of widespread brain
regions that are functionally
connected as shown by coordinated
activity.
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Additionally, Kardan et al. (2020) found that when individuals were performing a task with
trials of low, medium, or high working memory demands, global suppression of H in EEG brain
activity tracked the task loads, indicating that lowered H represents a departure from the state
of rest toward an ‘effortful’ state (i.e., potentially further away from criticality). Notably, the
degree of H suppression monotonically tracked task demands within individuals better than
specific EEG oscillatory components such as alpha power. Furthermore, differences in cogni-
tive performance of healthy individuals has been found to be associated with the H compo-
nent in both fMRI (Stier et al., 2023; Suckling et al., 2008), fNIRS (Zhuang et al., 2022), and
EEG (Ouyang et al., 2020), such that higher H reflected better working memory performance
and faster processing speed, respectively. None of these studies, however, have investigated
the relationship of H with changes in task performance due to learning from practice.

Taking these neural network simulation and human participant studies together, we hypoth-
esized that when an exogenous task demand suppresses slow-decaying autocorrelations or H,
the ability to process other exogenous or endogenous cognitive demands is diminished due to
the transition into a subcritical state (see Fagerholm et al., 2015; but also see Yu et al., 2017,
and Cocchi et al., 2017). Therefore, between two individuals initially performing equally well
in a working memory and attention task, the person with higher H while performing the task is
likely exhibiting more efficient information processing, as if performing an easier task despite
the apparent equal performance. Such an advantage will eventually emerge as higher perfor-
mance in the task, because efficient information processing facilitates any additional processes
required for improving the execution of task (Figure 2). In other words, we propose that more
scale-free brain activity accommodates cognitive resources for improving task performance,
hence characterizing individual differences in practice effects.

RESULTS

Scale Invariance Predicts Task Improvements in the Dual N-Back Task

In Study 1, participants performed an audio-visual dual n-back (DNB) task (Jaeggi et al., 2008)
two times and watched an intermission video in between the task as a break (N = 56). In this
task, participants had to press a button if a number (1–9) they heard was the same as the num-
ber they heard n trials ago (n = 2 or 3). Simultaneously, participants saw a square move across
a 3 × 3 grid, and they needed to press a different button if the square appeared in the same
location as it did n trials ago (n = 2 or 3; see Methods). We assessed brain H and task improve-
ment relationships to test our hypothesis that participants with higher H in their fMRI activity
during rest and task runs would show greater improvements in DNB performance from the first
run to the second run.

For each fMRI DNB task run, task performance was operationalized with a discrimination
index A0 averaged across all DNB task blocks (six blocks per run). There was an average
improvement of ΔA0 = 0.045, t(55) = 7.50, p < .001 in performance (5.5% improvement) from

Figure 2. Hypothetical relationship between differences in fMRI Hurst exponent (H ) and differences in task performance improvements with
practice. The participant shown in red, whose brain activity is more scale-invariant when performing the task compared to their blue coun-
terpart (left panel), is expected to improve their task performance to a greater degree than their counterpart (right panel).
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first run of DNB (A0 mean = 0.827, SD = 0.081) to second run of DNB (A0 mean = 0.872, SD =
0.081), with large variability in the amount of change in performance (ΔA0) across individuals
(SD = 0.045; Figure 3A). All performance levels (shown in Figure 3A) were above chance (A0 >
0.5), suggesting that the participants were engaged and compliant during the DNB runs.

Across the three fMRI runs, the average whole-brain H (across the 268 brain parcels from
Shen et al., 2013) was quantified for each participant and the values are plotted in Figure 3B.
This average Hurst exponent across all brain parcels is henceforth referred to as Hwb (wb =
whole brain). There is across-individual variability in the Hwb in both DNB task runs, but no
overall mean difference between the two runs (mean = .684, SD = .046 for fist DNB; mean =
.678, SD = .048 for second DNB; t(55) = 1.12, p = .267). The video run also showed across-
individual variability in Hwb (mean = .725, SD = .052), with mean Hwb being significantly
higher than the two task runs (t(55) = 6.44, p < .001 compared to first DNB and t(55) =
8.80, p < .001 compared to the second DNB). The higher Hwb for video watching compared
to DNB tasks follow previous findings of widespread decreased H with increased task difficulty
(Churchill et al., 2016; He, 2011; Kardan et al., 2020; Zhuang et al., 2022).

We then assessed how performance improvements (practice effects) are related to individ-
ual differences in scale-free brain dynamics. First, we looked at the relationship of Hwb with

Figure 3. (A) Performance on the dual n-back task (A0) for all participants in the first and second runs of the DNB. Each line connects a
participant’s performance in the first run to their performance in the second run. (B) Average Hurst exponent (H ) for all participants in the
first DNB run, the video run, and the second DNB run. Each line connects a participant’s average H across the runs. (C) Relationship of
adjusted change in performance (adj. ΔA0) with the average H across participants in each of the three fMRI runs (dots are individual partic-
ipants and each color is a separate run). The intercept of the regression of ΔA0 on initial performance (i.e., run1 A0) is added to adj. ΔA0 in this
figure to center the spread around the mean of adj. ΔA0 rather than zero. (D) The primary latent variable from behavioral partial least squares
(PLS) relating adj. ΔA0 to parcel-wise H in the DNB experiment shows a predominantly positive H pattern that is significantly positively
expressed in all imaging runs, that is, the first DNB run, the video run, and second DNB run. In the left panel, y-axis shows the correlation
of the PLS weight with adj. ΔA0 at each run and error bars show 95% confidence intervals as indicated by bootstrapping: *p < .05, **p < .001.
All red parcels in the right panel show bootstrap ratio ZBR values above +3 (total of five parcels) indicating a reliable positive association
between H and the contrast in the left panel, i.e., higher H in those brain regions across all three brain imaging runs was related to greater
performance improvements adjusting for baseline performance. There are no blue parcels with ZBR < −3, indicating an exclusively positive
direction for the H-to-adj. ΔA0 association. Cross-block covariance (σXY) shows the proportion of covariance between the left and right panel
explained by this LV, and the p value is calculated from a permutation test for the eigenvalue for this LV.
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performance change across participants from first to second DNB run. Importantly, we wanted
to assess practice effects independent of baseline performance, so we regressed A0

0 out of ΔA0

to make adj. ΔA0 scores that are linearly independent from baseline performance of the par-
ticipants. In Figure 3C, the relationship between the Hwb in each run with the adj. ΔA0 scores
across participants are shown with blue, orange, and yellow scatterplots for the first DNB, the
video, and the second DNB runs, respectively. There were no significant correlations between
the Hwb and performance improvement across participants, though all trends were positive (r =
.019, p = .888 for Hwb during first DNB; r = .213, p = .115 for Hwb during video; r = .199, p =
.142).

Second, we performed a multivariate analysis where H values were not averaged across the
brain for each individual, but kept at parcel-wise level (268-node whole-brain gray matter atlas
from Shen et al. [2013] spanning cortical, subcortical, and cerebellar regions). We conducted
PLS regression analysis simultaneously relating H in all brain parcels from all three runs to the
performance improvements across participants to find the multivariate pattern of parcel-wise H
that maximally predicts tasks improvements in a data-driven manner. The primary latent var-
iable from the PLS analysis (shown in Figure 3D) revealed an exclusively positive H pattern
(five parcels with Z > +3 compared to no parcel with Z < −3; Figure 3D right panel) that are
significantly correlated with higher task improvement (Figure 3D left panel). In DNB, higher H
in five parcels, one located in right prefrontal, one in left prefrontal, one in right motor, one in
left parietal and one in left cerebellum regions were reliably related to more task performance
improvement. The threshold of ±3 for bootstrap Z for statistical significance in the PLS brain
latent variable was chosen the same as prior work (Kardan et al., 2019), but the positive gra-
dient finding was consistent for less stringent threshold of Z = 2 (31 parcels with Z > +2 com-
pared to no parcel with Z < −2). Together, the Hwb and the PLS results provide support for our
hypothesis that higher H is related to more task performance improvement in the NDB task.

Scale Invariance Predicts Task Improvements in the N-Back Task

In Study 2, we tested if higher H was predictive of improvements in performance of the n-back
task (NBK) from first run to second run in the Human Connectome Project (HCP) sample (N =
599). In this task participants were shown a series of images, and they had to indicate whether
the current image matched the image shown n trials ago (n = 0 or 2).

The NBK performance in each run was operationalized as the response accuracy to the
2-back task across the task blocks (the other condition of the HCP n-back task is
0-back—essentially a target-detection task). Including the 0-back accuracy in the performance
accuracy does not change the relationship between Hurst exponent and Δ Accuracy or the
PLS results. The performance levels of participants across the two runs are shown in Figure 4A.
There was a significant average improvement in performance (8.6% improvement;Δ accuracy =
0.071; t(598) = 21.3, p < .001) from the first run of NBK (mean = 0.823, SD = 0.104) to the
second run (mean = 0.899, SD = 0.099), with relatively large variability across individuals in
the amount of change in performance (SD = 0.082; Figure 4A).

The average whole-brain Hurst exponent (Hwb) values in each NBK run are plotted in
Figure 4B for all participants. Similar to the DNB results, there is across-individual variability
in the Hwb in the NBK runs (mean = .795, SD = .050 for first NBK; mean = .804, SD = .049 for
second NBK). We found an overall mean difference between the two NBK runs where Hwb

was significantly higher for the second NBK (t(598) = 5.96, p < .001), which follows previous
reports of increased fMRI H upon increased task familiarity (Churchill et al., 2016).
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Next, we investigated how individual differences in scale-free brain dynamics were related
to the performance changes from the first NBK to the second NBK run in two ways. First, we
plotted the relationship of Hwb (which is averaged across all brain parcels) with performance
change across participants from first to second NBK run, with the run 1 performance regressed
out of the performance change. These relationships between the Hwb in each run with the adj.
Δ Accuracy scores across participants are shown with blue and orange scatterplots in
Figure 4C. Similar to Study 1, we found small positive trends between the Hwb and perfor-
mance improvement across participants, though the correlation for the second run was statis-
tically significant even at this coarse whole-brain level of analysis (r = .078, p = .056 for Hwb

during first NBK; r = .093, p = .023 for Hwb during second NBK run).

Second, we performed a PLS regression analysis to simultaneously relate H in all brain par-
cels from the NBK runs to the performance improvements across participants. As shown in
Figure 4D, the primary latent variable from the PLS analysis revealed an exclusively positive
H pattern (i.e., nine parcels with Z > +3 compared to no parcel with Z < −3; Figure 4D, right
panel) that are significantly correlated with higher task improvement (Figure 4D, left panel). In
NBK, the nine parcels in the latent variable were located in right and left parietal, right and left
temporal, right and left cerebellum, left occipital (two parcels), and left subcortex regions. This
positive direction was consistent at the threshold of Z = 2 (there were 48 parcels with Z > +2

Figure 4. (A) Performance accuracy in the 2-back task for the HCP participants across the two NBK runs. Each line connects a participant’s
performance in the two runs. (B) Average Hurst exponent (H ) for all participants in the two NBK runs. Each line connects a participant’s
average H across the runs. (C) Relationship of adjusted change in performance with their average H across participants in each of the two
fMRI runs (dots are individual participants and each color is a separate run). The intercept of the regression of Δ Acc. on initial performance
(i.e., run1 Acc.) is added to adj. Δ Acc in this figure to center the spread around the mean of adj. Δ Acc rather than zero. (D) The primary latent
variable from behavioral PLS relating adj. Δ Accuracy to parcel-wise H in the NBK data shows a predominantly positive H pattern that is
significantly positively expressed in the two runs. In the left panel, y-axis shows the correlation of the PLS weight at each run with adj. Δ
Accuracy and error bars show 95% confidence intervals as indicated by bootstrapping: *p < .05, **p < .001. All red parcels in the right panel
(nine total) show bootstrap ratio ZBR values above +3 indicating reliable positive H association with the contrast in the left panel. There are no
blue parcels with ZBR < −3, indicating exclusively positive direction for the H-to-adj. Δ performance association. Cross-block covariance (σXY)
shows the proportion of covariance between the left and right panel explained by this LV, and the p value is calculated from permutation
testing for the eigenvalue for this LV.
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compared to no parcels with Z < −2). Together, the NBK study results for both the Hwb and the
multivariate analysis again shows that higher H is related to greater task improvement.

Scale Invariance Predicts Task Improvements in the Word Completion Task

In Study 3, we used a dataset with a completely different task than the DNB and NBK, again
asking whether higher H is indicative of more task improvement. The study involved a sample
of participants performing six consecutive runs of Choose-and-Solve Task (N = 44) that tested
working memory and crystallized knowledge (CAST; Choe et al., 2019). Briefly, in this task1

words with omitted letters were shown to the participant and they had to choose the right letter
that would complete the word (see Methods).

For each of the six CAST (Choe et al., 2019) fMRI runs, task performance for a participant
was quantified as their accuracy * difficulty level of word completion questions they chose to
solve (i.e., weighted accuracy scaled to 0-to-1 range; see Methods). Another difference
between this dataset and those in Studies 1 and 2 was that difficulty of trials were tied to
the performance of the participant. Each two consecutive correct responses would increase
the difficulty of the following trials, and each two consecutive errors would decrease the dif-
ficulty of the following trials. The performance levels of participants across the six runs are
shown in Figure 5C. There was no significant average improvement of task performance from
the first run of CAST (mean = 0.451, SD = 0.196) to the last run (mean = 0.473, SD = 0.211).
An ANOVA showed no performance difference across the six runs (F(5,258) = .417, p = .837),
but there was large variability in the amount of change in performance (Δ Accuracy from first
run to sixth run) across individuals. In other words, some individuals showed improved per-
formance while others showed worsened performance; SD = 0.301 (see spread across y-axis in
Figure 5C).

The average whole-brain Hurst exponent (Hwb) values are plotted in Figure 5B for all par-
ticipants across the six CAST runs. Similar to the Studies 1 and 2 results, there is across-
individual variability in the Hwb in all CAST runs but also a slight overall mean difference
between the six runs (mean = .658, SD = .035 for first CAST; mean = .666, SD = .034 for
second CAST; mean = .673, SD = .038 for third CAST; mean = .676, SD = .038 for fourth
CAST; mean = .682, SD = .042 for fifth CAST; mean = .681, SD = .043 for sixth CAST; F(5,
258) = 2.52, p = .030). The difference is driven by the last three runs having significantly
higher Hwb compared to the first run (fourth run: t(43) = 3.13, padj = .047; fifth run: t(43) =
4.00, padj = .004; sixth run: t(43) = 3.46, padj = .019; p values are Bonferroni-adjusted for
15 pairwise comparisons). The higher H after task repetition follows previous reports of
increased fMRI H upon increased task familiarity (Churchill et al., 2016) and our results in
the Study 2 (HCP) dataset.

Next, we asked how performance changes from the first to the last CAST run are related to
individual differences in scale-free brain dynamics. Similar to Study 1, we first investigated the
relationship of Hwb with performance change across participants from first to sixth CAST run,
with the run one performance regressed out of the performance change. In Figure 5C, the rela-
tionship between the Hwb in each run with the adj. Δ Accuracy scores across participants are
shown with scatterplots in different colors. Similar to Study 1, there were no significant corre-
lations between the Hwb and performance improvement across participants, though all trends
were positive (r = .116, p = .453 for Hwb during first CAST; r = .204, p = .184 for Hwb during
second CAST; r = .143, p = .355; for Hwb during third CAST; r = .091, p = .556 for Hwb during

1 There is also a math equation completion component to this task that is not used in the current study.
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fourth CAST; r = .061, p = .693 for Hwb during fifth CAST; r = .239, p = .118 for Hwb during
sixth CAST run).

We then performed a PLS regression analysis to simultaneously relate H in all brain parcels
from all six CAST runs to the performance improvements across participants from the first to
the last run. The primary latent variable from the PLS analysis (shown in Figure 5D) again
revealed an exclusively positive H pattern (i.e., four parcels with Z > +3 compared to no parcel
with Z < −3, Figure 5D, right panel) that are significantly correlated with higher task improve-
ment (Figure 5D, left panel). In CAST, higher H in four parcels, one located in left prefrontal,
one in right motor, and two in the left temporal regions were reliably correlated with perfor-
mance improvements in the task. At the less stringent threshold of Z = 2 there were 19 parcels
with Z > +2 compared to 4 parcels with Z < −2). Together, the Hwb and the PLS results again
show that higher H is related to greater task improvement upon repetition in the CAST task.

Exploring the Stability of Spatial Patterns of H and Their Overlap Across Tasks

We performed some exploratory analyses to assess the stability of the spatial patterns of H in
the PLS regressions, as well as their overlap across different tasks. These results are outlined
below and detailed in the Supporting Information, sections 1–5.

Figure 5. (A) Performance on the word completion CAST for all participants across all six runs. Each line connects a participant’s perfor-
mance in the consecutive runs. (B) Average Hurst exponent (H ) for all participants in the six CAST runs. Each line connects a participant’s
average H across the runs. (C) Relationship of adjusted change in performance with their average H across participants in each of the six fMRI
runs (dots are individual participants and each color is a separate run). The intercept of the regression of Δ Acc. on initial performance (i.e.,
run1 Acc.) is added to adj. Δ Acc in this figure to center the spread around the mean of adj. Δ Acc rather than zero. (D) The primary latent
variable from Behavioral PLS relating adj. Δ Accuracy to parcel-wise H in the CAST experiment shows a predominantly positive H pattern that
is significantly positively expressed in all six runs, that is, higher H in those areas was related with improvements in performance. In the left
panel, y-axis shows the correlation of the PLS weight at each run with adj. Δ Accuracy and error bars show 95% confidence intervals as
indicated by bootstrapping: *p < .05, **p < .001. All red parcels in the right panel (four total) show bootstrap ratio ZBR values above +3
indicating reliable positive H association with the contrast in the left panel. There are no blue parcels with ZBR < −3, indicating exclusively
positive direction for the H-to-adj. Δ performance association. Cross-block covariance (σXY) shows the proportion of covariance between the
left and right panel explained by this LV, and the p value is calculated from permutation tests for the eigenvalue for this LV.
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Overlap of parcel-wise H latent variables across datasets. At the bootstrap ratio Z = 3, there were
no overlapping parcels (from the 268 parcels of the Shen et al. [2013] parcellation) in the
DNB, CAST, and NBK PLS latent variables (i.e., no overlap between parcels indicated in
Figures 3D, 4D, and 5D). The lack of overlap was independent of specific Z threshold, as
the nonthresholded primary brain PLS LVs across the three tasks were dissimilar (r1,2 =
−.016, p = .792; r1,3 = .032, p = .611; r2,3 = −.176, p = .004, where 1, 2, and 3 indices refer
to DNB, NBK, and CAST tasks, respectively). These exploratory results are discussed further in
the Discussion section.

Stability of parcel-wise H latent variables based on different analytic choices. First, to assess the
stability of the PLS results associating H in brain parcels to improvements in task performance,
we repeated the analyses with a different whole-brain parcellation consisting of 392 parcels
(Craddock et al., 2012). Across all three datasets, we found consistent PLS results with the Shen
268 version of the analysis where brain H positively loaded on higher task performance
improvements. However, the stability of the spatial brain pattern was low to moderate (r =
.375, p < .001 in DNB, r = .478, p < .001 in NBK, and r = .174, p < .001 in CAST). These
results are detailed in the Supporting Information, section 1.

Next, to assess if differences in the temporal structures of tasks contributed to the reported
findings, we recalculated the H exponents in the three datasets after regressing out the tempo-
ral block structure in each task run from the BOLD timeseries. We then repeated the PLS
regressions relating adj. Δ Accuracy to parcel-wise H. The spatial pattern in brain H latent
variable was highly correlated with the original analysis in all three datasets (r > .952, p <
.001). These results are detailed in the Supporting Information, section 2.

Finally, we repeated the PLS analyses using H estimated from Wavelet Leaders Multifractal
method (Jaffard et al., 2006; Wendt et al., 2007) instead of detrended fluctuations analysis
(DFA) to supplement our evaluation of linear fit of the H exponents (Supporting Information,
section 3) to the fMRI data. This analysis is detailed in Supporting Information, section 4, and
the PLS results showed medium to high correlation between the spatial patterns of H from the
WLMF method compared to our DFA-based results shown in Figures 3–5 (r = .647, p < .001 for
DNB; r = .757, p < .001 for NBK; and r = .473, p < .001 for CAST; see Supporting Information,
section 4.1, for details).

Comparing the mean H across tasks. When comparing the mean H values between different
tasks, we found that the NBK task from the HCP dataset had significantly higher Hwb compared
to the task runs in DNB (two-sample t(653) = 18.4, p < .001) and CAST (two-sample t(641) =
17.8, p < .001) datasets. Additionally, as expected, the video run in the DNB study had
significantly higher mean H compared to the DNB runs of the same participants (t(55) = 8.21,
p < .001) or the CAST runs of other individuals from the same scanner (two-sample t(98) = 5.89,
p < .001). These exploratory results are discussed further in the Discussion section.

DISCUSSION

Criticality is a unifying and therefore appealing framework, as it allows for the description of
the many ways in which information flows through the brain at different spatiotemporal scales
(e.g., Scott et al., 2014). Previous work has theorized that the shift from resting-state near-
critical dynamics to a focused, task-induced subcritical state may be to switch from the advan-
tage of higher dynamics range and state repertoire to a state of lower dynamic range that can
reduce interference during task performance (Fagerholm et al., 2015).
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Importantly, the variability in H across individuals is comparable to the size of task-induced
H suppression effects. Therefore, we think it is important to combine and compare state-like
and trait-like H differences to better understand the relationship of H with cognitive perfor-
mance. We hypothesized that the temporal and spatial efficiency of information transfer
between the nodes of brain networks is diminished when H is low. Specifically, given the mod-
ulation of H with cognitive exertion (Churchill et al., 2016; Kardan et al., 2020; Zhuang et al.,
2022), we hypothesized that between-individual differences in fMRI scale invariance when
performing equally well on a task could signal differences in the potential for further improve-
ment in task performance, as higher H may indicate the task is being performed more ‘easily’
and closer to a resting critical state.

Previous research has indicated trait-like patterns of higher H across participants being
related to superior cognitive performance (Ouyang et al., 2020; Stier et al., 2023; Suckling
et al., 2008; Zhuang et al., 2022). Here we explored a more nuanced topic: whether higher
trait H at baseline would predict improvements in task performance with practice, which com-
bines elements of state and trait factors. Across three datasets with different cognitive tasks,
differences in scale-free dynamics of the BOLD signal were reliably associated with cognitive
task improvement with higher H values being related to improved behavioral performance.
Patterns of higher H of fMRI activity were significantly associated with more task improvement,
even when adjusting for baseline task performance, in DNB, CAST, and NBK tasks. Taken
together, our findings provide evidence for our hypothesis that more scale-free brain activity
accommodates cognitive resources for improving task performance.

We also compared the differences in mean H across the three different studies. These results
are tempered by differences in signal-to-noise ratio (SNR) across fMRI datasets that could orig-
inate from different scanners, which are known to impact H (Meisel et al., 2017a). The NBK
task from the HCP dataset had significantly higher Hwb compared to the task runs in DNB and
CAST datasets. This is expected from previous studies showing H is suppressed more with
more difficult tasks (Churchill et al., 2016; Kardan et al., 2020), as the NBK data consisted
of 0-back and 2-back task blocks, both of which are considerably easier than the dual 2-back
and dual 3-back in the DNB dataset and the word completion task in the CAST dataset. As
expected, the video run in the DNB study had significantly higher mean H compared to the
DNB runs of the same or the CAST runs of other individuals from the same scanner. However,
it should be mentioned that scanner, image acquisition, SNR, and some preprocessing differ-
ences between the HCP dataset and the DNB and CAST datasets (which were collected using
the same scanner) may be related to the mean H values as well. For example, the video-
watching run in the DNB dataset still has lower mean H compared to the HCP dataset’s
NBK task (two-sample t(653) = 11.4, p < .001). One possibility for this could be due to the
delay of fMRI scale-free dynamics in returning to baseline H after performing a task, as the
video-watching run in the DNB study occurs shortly after the first DNB task (e.g., Barnes
et al. [2009] report ∼6 min delay of fMRI H to recover to rest levels after a 2-back task).

One question is whether these differences in H reflect state-based or trait-based factors with
respect to differences in practice effects. The state-based interpretation of these data is that
individuals who were in a higher H state at the time of the experiment processed the tasks
more efficiently, leaving cognitive resources available for additional learning of task charac-
teristics and forming better task-relevant memories and cognitive strategies. The higher state of
H could be due to, for example, lower stress or fatigue (Churchill et al., 2015). The additional
encoding of task-relevant information then enabled these individuals to perform better the sec-
ond time around.
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The trait-based interpretation of these data/results can be made in two related, but not
equivalent ways. Both relate to individual differences in an unobserved trait such as fluid intel-
ligence and/or white matter (WM) capacity. The first interpretation assumes no direct relation-
ship between H and trait WM/IQ absent from cognitive load. Under this account, the tasks
utilized here demanded less cognitive effort from task improvers due to them having higher
fluid intelligence or working memory capacity, which is in line with the neural efficiency intel-
ligence hypothesis (Neubauer & Fink, 2009a, 2009b). The lower amount of exerted effort then
led to less suppression of H (Barnes et al., 2009; Kardan et al., 2020). This means that lower H
during tasks for participants whose performance did not improve (or decreased) is a proxy for
their amount of cognitive exertion, which is high, and therefore they are not able to improve
due to their WM capacity limitations. As such, higher or lower H is not a cause for more or less
performance improvements, but a consequence of individuals being in different states of cog-
nitive effort exertion.

The second trait-based interpretation assumes a direct and rigid relationship between H and
WM capacity/IQ at all times. In other words, participants whose performance improved more
may have a more critically organized functional brain network dynamics at baseline due to
trait-level characteristics (e.g., higher WM capacity or IQ). These individuals then have con-
sistently higher H than others, even when not performing a task (e.g., during the video-
watching runs in the DNB study). Their higher H during cognitive tasks then enable them
to more readily improve their performance due to advantages of criticality discussed before
(He, 2011; Kitzbichler et al., 2009; Proekt et al., 2012). Based on this account, we may expect
the same spatial brain patterns of higher H to reflect the high-performance trait across the indi-
viduals regardless of the task. However, the involved brain regions in the PLS latent variable
from the DNB task and those in the PLS for NBK or CAST are not overlapping. We compared
the PLS loadings on the parcel-wise brain H values across the DNB, CAST, and NBK tasks to
determine if these positive H patterns that are predictive of performance improvements were
consistent across the tasks. We found that the spatial patterns of H related to higher perfor-
mance improvement in DNB, CAST, and NBK tasks were dissimilar. This suggests that unlike
the consistent direction of [higher H] ➔ [more performance improvement] across the tasks, the
predictive H↑ features (i.e., brain regions) are not task-general, though it is not clear if the pat-
terns are specific to task demands or noisy in any one dataset.

In addition to contributions to the criticality framework and theory, our findings also have
practical implications. Specifically, previous clinical research has proposed that variation in
practice effects provide unique diagnostic and treatment information for clinical populations.
For example, older adults that show the expected practice effects in a test respond more to
treatment for cognitive decline than those that do not show practice effects (Calero & Navarro,
2007; Duff et al., 2010; Fiszdon et al., 2006; Sergi et al., 2005; Watzke et al., 2008). However,
the same line of research has found individual differences in practice effects for many cogni-
tive tests to be uncorrelated with a wide range of demographic and cognitive ability scales that
typically influence cognitive scores themselves (Duff et al., 2012; but also see Calamia et al.,
2012). Our results suggest that H provides a promising avenue for future research in this field,
as higher H was indicative of performance improvements across different tasks irrespective of
initial task performance at baseline (see also Supporting Information, section 5).

There are a number of limitations to our study. First, it is important to consider alternative
processes unrelated to criticality that may yield power law scaling in empirical brain data (see
Cocchi et al., 2017; Farmer, 2015). This is particularly challenging to assess in the relatively
narrow-band fMRI data where, in addition to being inherently slow, drift and physiological
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noise are filtered out, thus restricting the temporal scales to fewer than two orders of magnitude
(roughly .01 to .1 Hz; see Cocchi et al., 2017). Additionally, when hypothesizing about poten-
tial benefits of higher brain H for improvements in task performance, we considered the find-
ings from Fagerholm et al. (2015). In this simultaneous EEG and fMRI study, Fagerholm et al.
posited that shifts toward a subcritical brain state occur when the participants are sustaining
attention to the task compared to rest. However, in a potential challenge to this view, Yu et al.
(2017) hypothesized that activity during cognitive processing still exhibits power law scaling
and that the apparent shift to subcriticality could be a result of unaccounted for changes in
firing rate rather than changes in dynamic range. Second, as we mentioned, distinguishing
state- versus trait-based contributions to individual differences in practice effects is difficult
in the current study. Future studies should investigate the state versus trait components of
between-subjects variability in H by assessing it across multiple days of testing in both
resting-state and task runs. Third, the spatial patterns of H (i.e., the brain regions involved)
were strictly data-driven and showed low to moderate stability with regards to the brain par-
cellations used (stability was moderate to high for other sensitivity analyses outlined in the
Results’ section Exploring the Stability of Spatial Patterns of H and Their Overlap Across Tasks
and detailed in the Supporting Information results’ sections 1–4). Future studies can interrogate
the degree to which H predictors of changes in performance vary specifically with different
cognitive tasks or share common nodes.

In conclusion, the current study investigated the relationship between differences in
practice-based improvements in cognitive task performance with respondents’ level of
scale-free BOLD activity. Across three groups of participants performing different tasks, we
found that individuals with higher fMRI H at the time of cognitive tests were more likely to
improve their task performance when repeating the same cognitive task. Importantly, this
was true even when controlling for baseline task performance, meaning that H provides
predictive power for individual differences in practice effects above and beyond baseline
behavioral performance. In addition, while building upon previous work relating brain scale
invariance with overall behavioral performance, these results are the first to show how mea-
sures of fMRI scale invariance relate to changes in behavioral performance. These results pro-
vide empirical support for the hypothesis that brain networks impart functional advantages
when their activity is in a more scale-free state. We propose that individual variability in H
across the brain may hold promise as a neuronal marker of learning potential, which has
wide-ranging theoretical and applied implications for cognitive neuroscience.

METHODS

Study 1: Dual N-Back Task (DNB) Dataset

Participants and procedure. In Study 1, we recruited 68 participants (41 female) aged between
18 and 40 years old (mean = 24.3 years, SD = 5.6 years). Twelve participants were excluded
from analysis due to the following reasons: two participants were excluded due to incomplete
fMRI data because of discomfort before the scanning session was finished; two were excluded
due to technical issues with audio/visual during a run; five were flagged for sleepiness during
the data acquisition as indicated by their eye-movement behavior by two on-site researchers
(eye movements were monitored using an MR-compatible EyeLink 1000 system); and five
were excluded after the primary data quality check (see fMRI Data Acquisition and Preprocess-
ing sections). Our final sample was N = 56. All participants had self-reported normal or
corrected-to-normal visual acuity and normal color vision. All participants provided their writ-
ten informed consent as approved by the University of Chicago Institutional Review Board and
were compensated $35 for participation plus a potential bonus of $10. Participants were
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informed before the scanning session that if they “stayed attentive and still” during scans they
would receive a $10 bonus. All participants who were not excluded based on the stated cri-
teria above successfully received the bonus.

Following the collection of anatomical scans, three functional runs were acquired: a 7-min
DNB run, a 10-min passive video-watching run, and a second 7-min DNB run. Participants
were randomly assigned to passively watch one of two videos during the video run: a video of
nonnature tourist attractions in Europe or a video of outdoor nature scenes. Videos were
roughly equated for aesthetic preference as rated by a different sample of 30 participants prior
to this study (Likert scale 1–7,Mnature = 5.47, SD = 1.14 andMurban = 4.77, SD = 1.38), and did
not include sound. After the scan session, participants were asked to give a preference rating
(1–7 scale) for the video they watched. Ratings were included in subsequent analyses as a
potential nuisance variable. At the beginning of each DNB run, participants were instructed
to perform the task to the best of their ability. Linear regression of ΔA0 on video type (i.e.,
nature vs. urban) and preference rating for the video failed to find a significant relationship
between video type or video rating and change in performance (t = 0.403, p = 0.688 for video
type and t = −0.870, p = 0.388 for preference rating). Therefore, we collapsed the participants
on the video types for the rest of the analyses.

Task. In an n-back task, participants are instructed to press a button if the current visual or
auditory stimulus matches the stimulus that was presented ‘n’ previous trials back. The dual
n-back (DNB) is a variant of this task in which two stimuli are presented simultaneously. Here,
these stimuli were spoken integers, 1–9, and a blue square whose position varied in a 3 × 3
grid (see Figure 5). The paradigm was implemented in MATLAB and its code is publicly avail-
able at https://enl.uchicago.edu/stimuli-software/ (Layden, 2018).

On each trial of the DNB task, participants pressed their right index finger, right middle
finger, both fingers, or neither finger, to indicate a position match, a number match, both a
position and number match, or no match. Each trial lasted 3,000 ms, and the button press
was permitted throughout the trial. Immediate feedback was provided to participants via red
(incorrect press) or green (correct press) text at the bottom of the screen (see Figure 6).

Each functional MRI run included six blocks of the DNB task (four 2-back blocks and two
3-back blocks). Each block contained 20 + n trials (n = 2 or 3), resulting in a total of 134 trials
per DNB fMRI run. Blocks were separated by a 10-s countdown that indicated whether the
upcoming task would be 2-back or 3-back. As in the practice, the discrimination index A0

(Stanislaw & Todorov, 1999) was used as the main performance measure. A0 is similar to other
sensitivity indices such as d 0, but is more robust to nonnormality of responses (Stanislaw &
Todorov, 1999). Furthermore, unlike d 0, A0 = 0.5 corresponds to chance level performance,
A0 = 1 corresponds to perfect performance, and A0 < 0.5 corresponds to performance that is
systematically worse than chance. A0 is calculated as follows:

A0 ¼ 0:5þ sign
Hit − FAð Þ � Hit − FAð Þ2 þ Hit − FAð Þj j� �

4 � max Hit ; FAð Þ − 4 �Hit � FAð Þ

where Hit is the number of correct button presses and FA is the number of false alarms for both
numbers and positions in a task block, where sign(Hit − FA) equals: +1 if (Hit − FA) > 0, 0 if
(Hit − FA) = 0, and −1 if (Hit − FA) < 0, and wheremax(Hit, FA) equals the bigger value between
Hit and FA.

Adjusted ΔA0. Consider y = (A0
2 − A0

1) and X = a matrix containing ones in the first column
and A0

1 in the second column (i.e., A0 from the first run of the task). Then adj. ΔA0 was the
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residual of regression of y on X: adj. ΔA0 = y − Xβ̂, where: β̂ = (X0X)−1X0y is the coefficients of
the least squares fit of y on X.

Study 2: N-Back Task (NBK) Dataset

Participants. In Study 2, we analyzed data from the Human Connectome Project (HCP)
release S1200, a multisite consortium that collected MRI, behavioral, and demographic data
from 1,113 participants (final N = 599 after scan exclusions based on head motion and quality
control).

Task. The n-back task in the HCP dataset (Barch et al., 2013) includes two runs of eight blocks
each with 10 trials in each block. A picture is shown in every trial and participants are
instructed to press a button for every picture. If the currently presented picture matches
thecued picture (0-back, four blocks in each run) or the same picture that was presented
two pictures before (2-back, four blocks in each run), participants press one button with their
right index finger. For nonmatching pictures, participants press a second button with their right
middle finger. At the start of each block, a 2.5-s cue indicates the task type (“2-back” or
“target=” and a photo of the target stimulus).

Two blocks of 0-back and two blocks of 2-back contain tools (one in each run), another two
in each task contain body parts, another two contain neutral faces, and another two contain
places. There are 24 unique stimuli per type presented in separate blocks, each trial is 2.5 s
(2 s-presentation of a stimulus, followed immediately by a 500-ms fixation cross) resulting in
160 total trials in 16 blocks of n-back. Four fixation blocks (15 s each) also occur in each run
after every other n-back block. Accuracy in each run was calculated as the proportion of cor-
rect responses in the 2-back trials across the four 2-back blocks of the run.

Adjusted Δ Accuracy. Consider y = (Acc2 − Acc1) and X = a matrix containing ones in the first
column and accuracy in the first run (Acc1) in the second column. Then adj. Δ Acc was the

Figure 6. Audio-visual dual n-back task paradigm. In this example of the first three trials in a dual 2-back round, the participant correctly
pressed their index finger for a match between the current and 2-back position of blue square, but falsely pressed their middle finger when they
should not have (i.e., 2 does not match 9; so the correct response was only an index finger response and not an index finger and middle finger
response). This is an example of one hit and one false alarm.
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residual of regression of y on X: adj. ΔA0 = y − X β̂, where β̂ is the coefficients of the least

squares fit of y on X: β̂ = (X0X)−1X0y.

Study 3: Word Completion Task (CAST) Dataset

Participants. In Study 3, an independent sample of subjects from the same site as Study 1 was
provided by Choe et al., (2019). This dataset consists of fMRI runs for 49 participants aged
between 18–35 (final N = 44 after scan exclusions based on head motion and quality control).
All participants provided their written informed consent as approved by the University of
Chicago Institutional Review Board.

Task. Participants performed a math and word Choose-and-Solve Task (CAST) for 6 minutes in
every run. The fMRI acquisition parameters and preprocessing pipeline were the same as in
Study 1. CAST involves choosing to solve math equation completion and word completion
tasks and is originally designed for detecting math anxiety and math avoidance behavior
(Choe et al., 2019). The participants performed the CAST in six runs in fMRI scanner, which
provided us with a different learning/practice paradigm to complement the DNB study. The
questions were designated as having a 1–7 difficulty level (Choe et al., 2019). The perfor-
mance of participants in CAST was quantified as their accuracy * difficulty level of questions
they solved, since the question difficulty was adaptive in a manner that two correct answers in
a row would result in an increase in difficulty and one wrong answer would result in decrease
in question difficulty. Because the number of trials where difficult math questions (with higher
reward) were chosen over easy math questions (with lower reward) was very sparse across
participants, performance was quantified only over word completion trials.

In word completion trials, participants see words with omitted letters replaced by ∼ and ☐

characters. The participant has to quickly choose (<2,000 ms) the correct letter that should be
in the square (i.e., ☐). For example, for E ∼ ☐DE ∼ CE, the correct choice is letter ‘I’ (the word
is ‘evidence’).

Adjusted Δ Accuracy. Similar to the other tasks, we regressed out accuracy in run one out of
the change in accuracy to construct adj. Δ Acc for CAST. Specifically, if y = (Acc6 − Acc1) and
X = a matrix containing ones in the first column and accuracy in the first run (Acc1) in the
second column, then adj. Δ Acc was the residual of regression of y on X: adj. ΔA0 =

y − X β̂, where β̂ is the coefficients of the least squares fit of y on X: β̂ = (X0X)−1X0y.

fMRI Data Acquisition and Preprocessing for Studies 1 and 3

Images were acquired on a Philips Achieva 3.0 T scanner with a standard quadrature 32-
channel head coil at University of Chicago MRI Research Center. AT1-weighted gradient echo
(MP-RAGE) was used to acquire high-resolution anatomical images for each participant (TR =
8 ms, TE = 3.5 ms, flip angle = 8°, FOV = 240 mm × 228 mm × 171 mm, matrix size = 240 ×
228, in-plane resolution 1.0 mm2, slice thickness = 1.0 mm, 171 sagittal slices). Functional
T2* weighted images were acquired using an echo-planar sequence (TR = 2,000 ms, TE =
26 ms, flip angle = 77°, FOV = 208 mm × 208 mm × 143.25 mm, matrix size = 64 × 64,
in-plane resolution 3.25 mm2, slice thickness = 3.25 mm with 0.25-mm gap, 41 transverse-
oblique slices parallel to the A-P line) during the DNB runs (241 volumes for each run) and the
video run (305 volumes).

Initial data quality checks were performed using MRIQC (Esteban et al., 2017), which
revealed excessive head movement and low tSNR (peak frame displacement > 2 mm, mean
frame displacement > 0.2 mm, or tSNR < 50) for five participants during at least one of the
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scanning runs. These participants were excluded from analysis. The first five volumes of each
functional run were discarded for all participants.

The preprocessing was performed using FMRIPREP version 1.5.0 (Esteban et al., 2019), a
Nipype (Gorgolewski et al., 2011) based tool. Each T1w (T1-weighted) volume was corrected
for INU (intensity nonuniformity) using N4BiasFieldCorrection v2.1.0 and skull-stripped using
antsBrainExtraction.sh v2.1.0 (using the OASIS template). Spatial normalization to the ICBM
152 Nonlinear Asymmetrical template version 2009c was performed through nonlinear regis-
tration with the antsRegistration tool of ANTs v2.1.0 (Avants et al., 2009), using brain-extracted
versions of both T1w volume and template. Brain tissue segmentation of cerebrospinal fluid
(CSF), white matter (WM), and gray matter (GM) was performed on the brain-extracted T1w
using fast (FSL v5.0.9).

Functional data was motion corrected using mcflirt (FSL v5.0.9). “Fieldmap-less” distortion
correction was performed by coregistering the functional image to the same-subject T1w
image with intensity inverted constrained with an average field-map template, implemented
with antsRegistration (ANTs). This was followed by coregistration to the corresponding T1w
using boundary-based registration with six degrees of freedom, using flirt (FSL). Motion cor-
recting transformations, field distortion correcting warp, BOLD-to-T1w transformation, and
T1w-to-template (MNI) warp were concatenated and applied in a single step using antsApply-
Transforms (ANTs v2.1.0) using Lanczos interpolation.

Frame-wise displacement (Power et al., 2012) was calculated for each functional run using
the implementation of Nipype. Following Power et al. (2014), we performed a 36-parameter
confound regression that included the time courses of mean CSF signal, mean global signal,
mean WM signal, the six standard affine motion parameters (x, y, z, pitch, roll, and yaw), their
squares, their derivatives, and their squared derivatives of these signals. We also simulta-
neously regressed out linear and quadratic trends to remove drift related signals. This was
followed by the application of a band-pass filter with a high-pass cutoff of .008 Hz and a
low-pass cutoff of .12 Hz via the 3dBandpass command in AFNI.

After preprocessing, the whole brain was parcellated by applying a 268-node whole-brain
GM atlas spanning cortical, subcortical, and cerebellar regions (Shen et al., 2013). fMRI data
acquisition and preprocessing for Study 3 was the same as Study 1. Six of the 268 parcels had
significant signal dropout in nine of the participants and were excluded from further analyses
to preserve sample size. The fMRI signal time course in each run was averaged across brain
voxels within each of the 262 nodes (i.e., brain parcels), and H was estimated in each parcel
for all the runs in each participant.

fMRI Data Acquisition and Preprocessing for Study 2

In Study 2, we analyzed data from the HCP release S1200. We downloaded the minimally
preprocessed, open-access n-back fMRI data from connectomeDB (https: / /db
.humanconnectome.org/). The details of the acquisition parameters and prepossessing of these
data can be found in Glasser et al. (2013), and the additional p reprocessing steps to the min-
imally preprocessed data are the same as Kardan et al. (2022). Briefly, preprocessing for task
data included gradient nonlinearity distortion correction, field-map distortion correction,
realignment, and transformation to a standard space. In addition, we applied additional pre-
processing steps to the minimally preprocessed task data. This included a high-pass filter of
0.001 Hz, via fslmaths (Jenkinson et al., 2012), and the application of the ICA-FIX denoising
procedure using the HCPpipelines (https://github.com/Washington-University/HCPpipelines)
tool, which regresses out nuisance noise components effectively, similar to regressing out
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motion parameters and tissue type regressors (Parkes et al., 2018). The cleaned volumetric
BOLD images were spatially averaged into 268 predefined parcels (Shen et al., 2013) similar
to Studies 1 and 3.

For participants to be included in the Study 3 analyses, both of their n-back fMRI runs had
to have low head motion (mean FD < 0.2 mm and max FD < 2 mm similar to the DNB and
CAST datasets). Additionally, we removed participants with any quality control flags from the
HCP quality control process (variable QC_Issue), in either of their n-back fMRI runs, resulting
in a final sample of N = 599 participants.

Estimation of Scale-Free Activity (H)

Following our hypothesis, to evaluate the degree of scale-free dynamics of BOLD and its rela-
tionship to practice effects between individuals, we estimated the Hurst exponent (H ) of the
fMRI time series from all three functional runs in for each participant (i.e., DNB-1, video
watching and DNB-2). There are many different methods to estimate H. Here we used both
DFA and wavelet leader multifractal (WLMF) formalisms, both of which are robust to signal
nonstationary and low-frequency confounds (Churchill et al., 2016; Hardstone et al., 2012;
Jaffard et al., 2006; Peng et al., 1995). The estimations were done on a parcel-wise level,
and the DFA estimations of H were highly correlated with the first-order cumulant (i.e.,
mono-fractal) estimations of H from the WLMF. As such, further analysis was carried out using
the DFA estimates, as this method is more computationally efficient.

To elaborate DFA, consider the linearly detrended BOLD timeseries x(t) in a parcel over a
run of total length T. There are three runs in the DNB study (the first dual n-back run, the video
run, and the second dual n-back run), with the task runs including three blocks of dual 2-back
and three blocks of dual 3-back each. In the HCP dataset there are two runs of the n-back task
(each containing four blocks of 0-back and four blocks of 2-back). Finally, in the CAST dataset
there are six runs of the choose-and-solve word completion task containing 20 blocks in total.
This signal is first integrated and transformed into a cumulative sum y(t), where y(t) =Pt

i¼1 x ið Þ − xaveð Þ; t ¼ 1;…; T. x(i) is the ith data point in the time series and xave is the average

amplitude over all of the time series. Next, y(t) is divided into windows of equal length n. A
least-square linear regression is fit to each subdivision of y(t) with length n, with the fitted
values denoted as ŷn tð Þ. Next, we detrend the integrated time series y(t) by subtracting the
local trend (i.e., the local least squares straight-line fit) ŷ n tð Þ in each window. The root-
mean-square magnitude of fluctuations on the detrended data F(n) is then computed over a
range of window sizes:

F nð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT
t¼1

y tð Þ − ŷn tð Þ½ �2
vuut

were n = 50 TRs is maximum window size corresponding to 0.01 Hz minimum frequency in
the current study, and n = 3 TRs is minimum window size for fitting a line with a nonzero
residual. Finally, the linear fit of log(n) versus log(F(n)) is calculated, and the slope of this fitted
line is used as the estimate of the degree of scale invariance (H ) for the parcel time series x(t). A
slope of H = 0.5 indicates no long-range correlation in the signal (i.e., a random walk), while H
values closer to 1 indicate greater scale invariance.

Partial Least Squares Analysis

Multivariate methods applied to fMRI data offer a novel opportunity to discover meaningful
associations between distributed patterns of brain activities and behavioral measures across
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runs in a single statistical model (e.g., Kardan et al., 2019, 2020), as opposed to univariate
methods where conditions are regressed on every cluster of voxels separately. PLS (Krishnan
et al., 2011; McIntosh & Lobaugh, 2004) analysis was used to identify the relationship
between the set of parcel-wise H values with group-by-run treatment levels. The PLS imple-
mentation software was downloaded from Randy McIntosh’s lab at https://www.rotman-baycrest
.on.ca/index.php?section=84. In PLS, the goal of the analysis is to find weighted pat-
terns of the original variables in the two sets (termed “latent variables” or “LVs”) that maximally
covary with one another. Briefly, PLS is computed via singular value decomposition (SVD).
The covariance between the two data sets X (parcel-wise H values across runs) and Y (contin-
uous Δ Accuracy values) is computed (X’Y ) and is subjected to the SVD:

SVD X 0Yð Þ ¼ USV 0

where U and V (the right and left singular vectors) provide weights (or “saliences”) for the two
sets (parcel-wise H across runs and Δ Accuracy), respectively. The scalar singular value on the
diagonal matrix S is proportional to the “cross-block covariance” between X and Y captured by
the LV, and is naturally interpreted as the effect size of this statistical association (reported as
σXY). Additionally, we corelated the U scores with the V scores in each PLS latent variable to
calculate the pseudo R2 in that LV.

In our study, a set of 1,000 covariance matrices were generated by randomly permuting
condition labels for the X variables (brain set). These covariance matrices embody the null
hypothesis that there is no relationship between X and Y variables. They were subjected to
SVD resulting in a null distribution of singular values. The significance of the original LV
was assessed with respect to this null distribution. The p value was estimated as the proportion
of the permuted singular values that exceed the original singular value.

Bootstrapping was used to determine the reliability with which each parcel’s H contributes
to the overall multivariate pattern. A set of 5,000 bootstrap samples were created by resam-
pling subjects with replacement within each run (i.e., preserving Δ Accuracy values). Each
new covariance matrix was subjected to SVD as before, and the singular vector weights from
the resampled data were used to build a sampling distribution of the saliences from the original
data set. The purpose of a constructed bootstrapped sampling distribution is to determine the
reliability of each salience (i.e., saliences that are highly dependent on which participants are
included in the analysis will have wide distributions). For the brain parcels, a single index of
reliability (termed “bootstrap” ratio, or “Z” value) was calculated by taking the ratio of the
salience to its bootstrap estimated standard error. A Z for a given connection is large when
the connection has a large salience (i.e., makes a strong contribution to the LV) and when
the bootstrap estimated standard error is small (i.e., the salience is stable across many resam-
plings). Here, parcels with Z > 3 or Z < −3 (equivalent to p ∼ 0.0025, two-tailed, under normal
distribution assumptions) were selected as showing reliable H relationship to Δ Accuracy, sim-
ilar to Kardan et al. (2019, 2022). However, we also assessed Z > 2 or Z < −2 threshold (p ∼
0.05) to assess whether positive associations were dominant for less conservative thresholds.

DATA SHARING STATEMENT

The curated data (fMRI parcel-wise Hurst exponent matrices and behavioral measures) for all
participants in the three studies will be made available on Open Science Framework upon
publication here: https://osf.io/zsxfj. Raw data for Studies 1 and 3 can be requested from
bermanm@uchicago.edu. The Human Connectome Project dataset (used in Study 2) is avail-
able at https://db.humanconnectome.org. Scripts to produce the results and figures in the
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manuscript will be available on Github upon publication here: https://github.com/okardan
/Practice_Hurst.
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