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ABSTRACT The study proposes an energy management system of pelagic islands network microgrids
(PINMGs) based on reinforcement learning (RL) under the effect of environmental factors. Furthermore, the
day-ahead standard scheduling proposes an energy-sharing framework across islands by presenting a novel
method to optimize the use of renewable energy (RE). Energy sharing across islands is critical for powering
isolated islands that need electricity owing to a lack of renewable energy supplies to fulfill local demand.
A two-stage cooperative multi-agent deep RL solution based on deep Q-learning (DQN) with central RL
and island agents (IA) spread over several islands has been presented to tackle this difficulty. Because of its
in-depth learning potential, deep RL-based systems effectively train and optimize their behaviors across
several epochs compared to other machine learning or traditional methods. As a result, the centralized
RL-based problem of scheduling charge battery sharing from resource-rich islands (SI) to load island
networks (LIN) was addressed utilizing dueling DQN. Furthermore, due to its precise tracking, the case
study compared the accuracy of various DQN approaches and further scheduling based on the dueling DQN.
The need for LIN is also stochastic because of variable demand and charging patterns. Hence, the simulation
results, including energy scheduling through the ship, are confirmed by optimizing RE consumption via
sharing across several islands, and the effectiveness of the proposed method is validated by state and action
perturbation to guarantee robustness.

INDEX TERMS Deep reinforcement learning, pelagic island, microgrids, EMS, renewable energy.

NOMENCLATURE
ri,t,m The energy level of the storage cluster

at time t.
ELbi,t,m The energy level of each battery at the

time t.
NCS
i,t,s/N

BS
i,t,s/N

Ship
i,t Number of batteries at CS/BS/Ship at

time. t
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NCS,C
i,t,s /N

CS,D
i,t,s CS charge/discharge batteries at time t.

NBS,C
i,t,s /N

BS,D
i,t,s BS charge/discharge batteries at time. t

NC
i,t,s/N

D
i,t,s Ship charge/discharge batteries at time. t

Pch,bi,t,m/P
dis,b
i,t,m Charging/discharging of each battery.

ηch/ηdis Charging/discharging efficiency of each
batter.

CTOU
t /Cship Swapping cost of b /battery shipping

cost of b.
Cde Charging cost of degradation cost of b.
Gi,t,m/Bi,t,m Conductivity/admittance of line m.

86196 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-7480-1845
https://orcid.org/0000-0002-0923-1476
https://orcid.org/0000-0002-1373-6477
https://orcid.org/0000-0002-6863-497X
https://orcid.org/0000-0001-5950-0016
https://orcid.org/0000-0002-4863-3419


M. A. Amin et al.: Renewable Energy Maximization for Pelagic Islands Network of Microgrids

ℜ Replacement cost of the battery.
PDGEi,t,m /Q

DGE
i,t,m Active/reactive power of DGE at time t .

PµTi,t,m/Q
µT
i,t,m Active/reactive power of MT at time t .

υ
µT
i,t,m/υ

DGE
i,t,m Cost of fuel or maintenance for

MT/DGE at time t .
Pli,t,m/Q

l
i,t,m Active/reactive power of loads at time t .

Qbi,t,m The battery at time t provides reactive
power.

Pl,shti,t,m/Q
l.sht
i,t,m Active/reactive power of shut loads at

time t .
uµTi,t /u

DGE
i,t Control variables of MT/DGE at time t .

θi,t,m The phase difference at the bus m.
PPV

′

i,t /P
WT ′
i,t Predicted power generation of PV/WT at

time t .
Vi,t,m Voltage magnitude at bus m.
Pcuri,t Renewable energy curtailment at time t .
loc Ship location as

(
lx , ly

)
.

ϖ r ,ϖ SH ,ϖ l Cost coefficient of storage limit, ship-
ping violation, and load curtailment.

ωi→v,t,s Binary variable for the virtual node for
transition between multiple islands i
through ship s.

ωi,t,s Binary variable for the arriving at island
i through ship s.

ζ l Load importance factor.
sit/a

i
t/π State space/action space/ policy.

ρli,t Load curtailment in the resource-rich
island.

α/β Parameters of connected layers of DNN.
θ/γ Weight function of prediction/discount

factor.
Q(s, a, θ) State-action weighted function of Q-

network.

Notion and Indices:

BS Battery swapping station.
CS Charging station.
C Charge batteries.
D Discharge batteries.
b Individual battery parameter.
s Ship number.
ship Used for the batteries at the ship.
i, j No. of islands.
m No. of bus.
t Time step.
v Virtual node for ship transition.
l Connected loads.
b ϵNCS

i,t /N
BS
i,t Index of No. of batteries.

i ϵNCS /NBS Index of island number.
sϵShip Index of ship.
m, nϵ9 Bus nodes of microgrids on islands.
lϵL Number connected loads.

I. INTRODUCTION
Renewable energy offers exciting solutions to the 21st cen-
tury’s fundamental and significant environmental issues.
Their incorporation into the current system poses several
technological and societal hurdles regarding safe and efficient
energy management. Because of the high integration of dis-
tributed energy resources (DERs) and renewable generators
has changed distributed energy storage facilities into power
systems, and the grid has been upgraded from passive to
active. Where dispersed resources are deployed close to the
consumer load [1].

Researchers have discovered that extensive penetration
could weaken the grid’s stability and result in blackouts
because renewable energy sources are intermittent. For a
microgrid (MG), mitigating is viewed as a quick fix. It has
several advantages over the primary grid, including durability
and dependability, advantages against unsettling cycles of
events brought on by nature or humans, and operation as a
controllable border [2].

Due to the climate and geographic position, it might be
difficult to electrify rural settlements and isolated areas, such
as islands, which are often powered by diesel generators. Due
to generator aging issues, higher fuel prices, logistical diffi-
culties, and higher emissions of greenhouse gases, few people
have access to just power resources. AMILP-based challenge
was put up in the literature [3] for the isolated microgrid to
implement demand response and renewable energy to reduce
generating costs. To reduce prediction error and improve
accuracy, which would impact MG operation, a coordinated
model predictive control (MPC)-based architecture has been
explored [4]. Most of the research has concentrated on many
features, such as load curtailment, energy storage, demand
response, and forecasts of renewable energy for the electri-
fication of remote areas or islands based on diverse applica-
tions. However, there has not been a distributed strategy for
PINMGs that considers the load demand and the intermittent
nature of RES via network storage system collaboration with
nearby islands.

Throughout the next ten years, it will be necessary to cut
CO2 emissions, stop using fossil fuels, and improve sustain-
able power sources due to the rising need for energy. While
a few islands have installed RE-like photovoltaic (PV) and
wind turbines (WT), they cannot meet the power demand.
Some islands based on available resources, such as source
Islands (SI), have been enhanced with renewable energy
resources and certain natural gas exploration operations set
up close or on the islands. Another load island network (LIN)
has a high local energy demand. These islands have a big area
and local restoration, but the locally produced energy is insuf-
ficient to meet the demand. The grid or neighboring islands
must aid in satisfying LIN demand since local generation on
LIN is inadequate to supply the local market.

PINMGs are islanded microgrid networks that function
together between SI, SLI, and LIN to transfer charged bat-
teries at LIN to meet demand. It also encourages using local
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diesel generators and microturbines (MT) to meet urgent
energy demands. Diesel generators and gas-powered power
plants must be reduced to maintain a clean atmosphere and
reduce CO2 emissions. The swapping of batteries between
islands encourages the usage of RE. It was not considered
an economical option, but as time progressed, it gained pop-
ularity since it reduced the need to charge for wait periods.
The Chinese government supports the battery-swapping busi-
ness model; 1400 stations must be operational by February
2022 and 26000 by 2025 [5].

Several researchers have worked on multi-microgrids to
address the energy management challenge. Several solutions
and suggested methods addressed the deficiencies described
above [6], [7], [8]. There is not enough common platform
to consider the pelagic island’s energy management, load,
and demand response. A mobile energy storage system has
recently gotten much attention, and a joint-disaster network
structure for scheduling MGs production and reconfigura-
tion is expected to lower total costs [9]. A resilient routing
two-stage architecture explored mobile power dispatching
and distribution system operators to test the efficacy of
routing and flexibility augmentation in the literature [10].
The decentralized energy management system uses two-stage
stochastic programming to offer a steady demand-supply for
grid-connected and islanded operations [11].
According to the research method and contribution

based on the collaborative structure, participation, and
load, management has been discussed in the litera-
ture [12], [13], [14], [15], [16], [17], [18], [19] and shown
in Table 1. The comparison indicates that several research
gaps still need to be filled for the optimal operation of pelagic
islands. Most of the work is based on the island microgrid
operation in literature, and there is no standard platform
for the pelagic island’s optimized structure and techniques.
It is worth noting that many methods have considered the
energy-sharing problem and studied many different aspects
regarding the participation and sharing structure given in
Table 1 from [12], [13], [14], [15], [16], [17], [18], and [19].
The most relevant literature has considered many different
methods to schedule appropriate battery sharing among dif-
ferent islands. The existing methods deliberate only the SI
or SLI but do not consider the island network or distribution
system without sharing structure between islands. Likewise,
the proposed approaches hold drawbacks as they are not
cost-effective and exclude the use of power flow parameters.

According to United Nations Goal 7, it is critical to
ensure that every user has simple access to clean and cheap
energy [20]. According to European Research and Innovation
magazine, the islands suffer high power prices while utilizing
a large amount of imported fossil fuel. As a result, distant
islands begin energy independence and rely on large RE
to keep the ecosystem clean and green [21]. In [22], the
Indonesian commitment to the Paris Agreement to cut carbon
emissions by 29% by 2030 has begun the electrification of
1000 islands to encourage RE. As a result, a robust and
secure energy-sharing infrastructure that is cost-effective and

maximizes RE consumption on the island level or between
islands is required.

The difficulty is to execute adequate scheduling across
numerous islands while managing energy locally on each
island. There has recently been a tremendous breakthrough in
the computationally demanding job of solving challenges like
Atari [23], StarCraft [24], and AlphaGo [25] utilizing deep
RL-based techniques. As a result, the computationally diffi-
cult tasks used by the deep RL multi-agent-based resource
management job are considerably simpler and smaller than
those used by other traditional systems, making it ideal for
more accurate and real-time scheduling of large-scale issues.
This paper proposes a multi-agent-based deep reinforcement
learning-based distributed approach for multiple islands to
share their energy.

Most importantly, the power flow constraints have been
considered while formulating the discussed problem. In the
following Table 1, the comparison of the related literature and
its shortcomings has been discussed. This proposed problem
has been considered to minimize the power generation cost
DERs, batteries, andDGs and support the load locally on each
island. The significance and contribution of this paper:

• A novel energy management framework for pelagic
islands is being developed, emphasizing the availability
of various intermittent supplies based on environmental
conditions.

• Due to environmental constraints affecting energy trans-
fer via ship, a simplified approach is presented to
minimize local load and power exchange with neigh-
boring islands using the proposed grid-based deep RL
approach.

• The suggested structure illustrates and tracks the day-
ahead forecast, matched with hour-based scheduling
to satisfy the real-time demand for approaching ships
through load curtailment/management, or DEG/MT.

• To overcome the computational expense and minimize
training time in RL agents, a ship traveling between
islands is justified using the discrete state and action
space.

The following assumption was taken for the case study to
simplify the assumptions:

• Only one ship may be linked with each island at a time.
• The renewable forecasting error has not been consid-
ered, and the loads are flexible to adjust based on critical
and non-critical demand to meet the real-time schedule
demand.

• All of the batteries are the same kind and can only
be shared until completely charged at the CS, and it
continues to discharge until the SOC at the BS hits the
lower level.

This paper is organized as follows: Section II outlines
the pelagic island structure, Section III explains the
energy-sharing structure in detail, and Section IV orga-
nizes the energy management system (EMS) and expresses
energy management at the individual island level. Section V
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TABLE 1. Comparison of a related work in the existing literature.

FIGURE 1. Structure of pelagic island microgrids.

additionally discusses the proposed deep RL-based tech-
nique, the reward and loss functions, and ship scheduling
for accurate scheduling. Furthermore, the suggested issue
flowchart has been designed to show the flow of the proposed
problem in Section VI. Section VII presents a case study of
the suggested issue, then follows Section VIII’s conclusion.

II. PELAGIC ISLAND STRUCTURE
The structure of the pelagic islands network microgrids PIN-
MGs has been shown in Figure 1. This networked microgrid
has considered three types of pelagic source Islands (SI), load
islands (LIN), and a combination of both load and source
islands (SLI). Sources islands are enriched with renewable
energy resources such as solar and wind. The load island has
considered residential and commercial users such as hospitals
and critical industries. The islands’ energy trading is done
with ship swapping to transport the storage batteries from the
enriched islands to the load islands.

It is essential to highlight that energy sharing across islands
plays a significant role when resources are inadequate to meet
local demand or insufficient RE production. As a result, the
resources with abundant production distribute excess energy
through the charged storage cluster via ships to other distant

islands to fulfill local demand and achieve net-zero emission
by maximizing renewable energy resources.

A. GOAL OF THE PROPOSED PROBLEM
For the proposed work, this problem is designed to opti-
mally schedule and transfer electricity from resource-rich to
load-rich islands. To achieve the objective, the centralized
RL-agent-based energy management is proposed to ensure
local energy fulfillment in each island and share the surplus
energy with the neighboring island by charging at charging
stations and sharing the batteries with the neighboring islands
through battery swapping using the ship.

The extra energy is stored in the storage cluster batteries
using the energy balance equation provided in the EMS level
formulation. The storage cluster functions as an energy stor-
age warehouse, transferring energy locally and storing excess
power from the surrounding island. The load islands may
be motivated to sell electricity by storing it in the storage
cluster and making it accessible for exchange with neigh-
boring islands. It is accomplished by lowering aggregated
load demand in each island during peak hours to reduce
power reliance or interaction during off-schedule times. Its
choices on additional charges and discharges are routed via
the islanded microgrid operator (IMGO), and loads on each
load island control their capacity. Individual decisions are
required to reduce energy use during peak hours. It transfers
the data to the centralized RL agent in the energy-sharing
layer, as shown in Figure 2.

B. OBJECTIVE
The energy management challenge is separated into two
stages with the pelagic islands. To begin, the energy-sharing
system will address the problem of energy transmission
across the various islands through the RL centralized agent.
Second, as an IA agent, the IMGO/EMS level structure con-
trols the island’s power flow and supply-demand balance.
It makes it easier for market clearing, transactive exchange,
and analogues to (ISO) independent system operators.
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FIGURE 2. Transactive energy-sharing structure.

FIGURE 3. Battery swapping platform using a ship.

IMGO also serves as an aggregator for the interconnected
system, which includes DER (distributed energy resources)
and MG generators such as DEGs (diesel generators). Fur-
thermore, distributed system consumers in the local MG act
as agents of local energy management in each MG. Through
the IA agent, IMGO, on the other hand, may control the dis-
tribution system’s local resources and transactive interaction
depending on its state and time-of-use (TOU) pricing. The
main goal function will assess the most cost-effective method
of balancing two layers and use the available resources at the
demand end. IMGO and IA agents collaborate to satisfy local
generation and demand scheduling through battery swapping
with other islands in a day-ahead profile.

III. ENERGY SHARING
Ship swapping between islands allows for energy sharing by
exchanging charged batteries via the ship from the source
island and from the ship to the load island to fulfill demand
and supply balance by raising the storage cluster state-of-
charge (SOC).

Furthermore, by providing a better distribution of bat-
tery swapping by utilizing the ship on a certain island and
joining with adequate batteries for circulation, the problem
of capacity and charging delay might be eliminated. Every
island has its battery-swapping station, and surplus power
produced on the SI/SLI is used to charge the drained bat-
teries. Figure 3 depicts the battery flow. In the case of
pelagic islands, electricity transfer between islands through
battery swapping is being studied. It is anticipated to fulfill
the energy demand in each microgrid, and a mismatch in
power and demand balance might result in power flow across
islands.

FIGURE 4. Demand fulfillment at BS through several CS collaboration.

A. BATTERY SWAPPING MODEL
Furthermore, the battery count also affects the swapping
contribution because it defines its maximum capacity. This
approach’s main objective is to deal with the optimal use of
individual batteries and make the environment more sustain-
able [26]. The main contribution is to propose the battery
swapping (BS) system’s infrastructure, which comprises slots
for a swapping station and maximum holding capability to
yield a total and stable profit. The objective function for
shipping profit can be expressed at BS,

BSproi,t,BS

=

T∑
t=0

CTOU
t

 ∑
j∈Ni,j̸=i

NBS,C
ij,t,s ×ELj,t

−CshipN Ship
i,t,s −CdeN

BS
i,t,s


(1)

The first term is the total revenue earned by the b batteries
swapping with TOU price at BS, the number of available
batteries in CS, the battery shipping cost between islands, and
the battery degradation cost (38) used at the BS, respectively.
Batteries’ degradation costs can be minimized by reducing
the full battery discharging and overnight charging. In addi-
tion, the profit is counted as the batteries sail from CS and
reach BS. This swapping process starts with the ship’s arrival,
enters the CS, exchanges the discharged batteries with the
fully charged batteries, leaves the CS, and sails towards the
BS station. On the other hand, the batteries at the ship at any
time can be calculated N Ship

i,t,s = NC
i,t,s + N

D
i,t,s.

In addition, the battery swapping service comprises
discrete cumulative path methods, including the fulfilled
demand and redirected demand, respectively.
Definition 1 (Fulfilled Demand): The fulfilled demand is

the total number of batteries fulfilled through the CS at the
BS in the time interval T.

NCS,C
i,t,s = ND

i,t,s (2)

Definition 2 (Redirected Demand): The redirected request
is the total number of batteries not swapped at CS and
redirected to another CS to swap the remaining uncharged
batteries in the time interval T .

ND
i,t,s≥N

CS,C
i,t,s (3)

Therefore, the flow of demand fulfillment through the ship
can be visualized in Figure 4.
The grid-based RL scheduling for energy sharing between

islands is proposed in SECTION V. In addition, C (inter-
island scheduling) collaborates with the neighboring islands
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to swap the discharge batteries before leaving for the BS
station.

However, the total number of batteries counted at BS can
be calculated as follows:

NBS,D
i,t,s =

∑
j∈Ni,j̸=i

NBS,D
ij,t,s , ∀i∈NBS , s∈Ship (4)

NBS,C
i,t,s =

∑
j∈Ni,j̸=i

NBS,C
ij,t,s , ∀i∈NBS , s∈Ship (5)

NBS,D
i,t,s + N

BS,C
i,t,s =N

BS
i,t,s, ∀i ∈ NBS , s ∈ Ship (6)

NBS,rem
i,t,s =NBS,D

i,t,s −N
C
i,t,s, ∀i∈NBS , s∈Ship (7)

NBS,D
i,t,s ≤ N

C
i,t,s, ∀i ∈ NCS , s ∈ Ship (8)

NBS,rem
i,t,s ≥ 0,NBS,rem

i,t,s = NBS
i,t,s, ∀i∈NBS , s∈Ship

(9)

where (4)-(5) are the total number of discharge and charge
batteries that flow between the ship and storage cluster at BS
for the time t . In addition, the total number of batteries at BS is
calculated through (6), (7) gives the remaining batteries count
at BS, and (8) depicts that the discharge batteries count at the
BS must be fulfilled through battery swapping.

B. CHARGING STATION MODEL
The modeling of a battery CS on an island is a discrete
model with a limited number of batteries on different islands
based on the available capacity with the single row of ships
to share the charged batteries with neighboring islands [20].
This swapping process starts with the ship’s arrival, enters the
CS, exchanges the discharged batteries with the fully charged
batteries, leaves the CS, and sails towards the BS station [21].

NCS,D
i,t,s =

∑
j∈Ni,j̸=i

NCS,D
ij,t,s , ∀i∈NCS , s∈Ship (10)

NCS,C
i,t,s =

∑
j∈Ni,j̸=i

NCS,C
ij,t,s , ∀i∈NCS , s∈Ship (11)

NCS,D
i,t,s + N

CS,C
i,t,s =N

CS
i,t,s, ∀i ∈ NCS , s ∈ Ship (12)

NCS,rem
i,t,s =NCS,C

i,t,s − N
C
i,t,s + N

D
i,t,s,

∀i ∈ NCS , s ∈ Ship (13)
t−(Tc−1)∑
t=1

NCS,C
i,t,s ≥

T∑
t=1

ND
i,t,s, ∀i ∈ NCS , s ∈ Ship (14)

NCS,rem
i,t,s ≥0,NCS,rem

i,t,s = NCS
i,t,s, ∀i∈NCS , s∈Ship

(15)

where (10)-(11) are the total number of discharge and charged
batteries that flow between the ship and storage cluster at CS
in time t . In addition, the total number of batteries at CS is
calculated through (12), (13) gives the remaining batteries at
CS to be charged, and (16) gives the time for the battery to
stay undercharging for at least Tc time slot, and it is calculated
as follows:

Tc =
[
ELbi,t,m − EL

b
i,t−1,m

/
ηchPch,b,max

i,t,m

]
(16)

(15) expresses that the number of charged batteries at the
CS must equal the total battery capacity after the swap-
ping [30].

C. SHIP-BASED BATTERY SCHEDULING
In a scheduling model for a ship between CS and BS using
grid-based scheduling, two nodes are considered: the transit
node (enabling battery transfer between CS/BS through the
ship) and the parking node (loading and unloading of bat-
teries at CS/BS). The mathematical modeling for the ship is
formulated as follows:

∑
i∈CS/BS

ωi,t,s =


∑

i∈CS/BS

ωi,t,s, if NCS,C
i,t,s = ND

i,t,s∑
i∈CS/BS

ωi→v,t+1,s, if ND
i,t,s ≥ N

CS,C
i,t,s

(17)∑
i∈CS/BS

ωi,1,s = ωi,0,s, ∀s ∈ Ship (18)

(17) depicts that ship s is at transit nodes or parking nodes
by fulfilling the demand and the flow between CS/BS through
the virtual node v with a binary variable ωi→v,t+1,s at t+1.
In addition, (18) gives the initial position of the ship.∑

j∈Ni,j̸=i

ND
ij,t,s=

∑
j∈Ni,j̸=i

NBS,D
ij,t,s −

∑
j∈Ni,j̸=i

NCS,D
ij,t,s ,

∀s∈Ship, t ∈T (19)∑
j∈Ni,j̸=i

NC
ij,t,s=

∑
j∈Ni,j̸=i

NCS,C
ij,t,s −

∑
j∈Ni,j̸=i

NBS,C
ij,t,s ,

∀s ∈ Ship, t ∈ T (20)∑
j∈Ni,j̸=i

NC
ij,t,s=N

C
i,t,s,

∑
j∈Ni,j̸=i

ND
ij,t,s = ND

i,t,s ∀i (21)

ND
i,t,s + N

C
i,t,s=N

ship
i,t,s , ∀s ∈ Ship, t ∈ T (22)

ND
i,t,s≥0,N

C
i,t,s ≥ 0, ∀s ∈ Ship, t ∈ T (23)

ND
i,T ,s=0,N

C
i,T ,s = 0, ∀s ∈ Ship, t ∈ T (24)

(19)-(20) provides the charge and discharge batteries car-
ried by the ship s; the total batteries (22), (23) give the stock at
the ship should be non-negative, and (21) is the default which
gives the sum of batteries either at the CS or BS. In (24), the
charge and discharge batteries should be unloaded from the
ship at time T .

0 ≤ NBS,D
i,t,s ≤ Cs.ωi,t,s, ∀s ∈ Ship, i ∈ NBS (25)

0 ≤ NBS,C
i,t,s ≤ N

C
i,t−1,s.ωi,t,s, ∀s ∈ Ship, i ∈ NBS (26)

0 ≤ NCS,D
i,t,s ≤ N

D
i,t−1,s.ωi,t,s, ∀s ∈ Ship, i ∈ NCS (27)

0 ≤ NCS,C
i,t,s ≤ Cs.ωi,t,s, ∀s ∈ Ship, i ∈ NCS (28)

Therefore, the (25)-(26) gives the feasible set of charge
and discharge batteries swapping between the ship and BS.
Similarly, (27)-(28) provide the possible batteries swapping
between the ship and CS [32].
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Remark 1: It is important to note that battery swapping can
only be performed while the ship reaches the parking node,
either at BS/CS with ωi,t,s = 1 and ωi,t,s = 0 otherwise.
Remark 2: It is assumed that fully charged/discharged bat-

teries unloading at BS/CS are placed at the start of time t ,
whereas loading of charge/discharge batteries CS/BS is done
at the end of time slot T .

D. INTER-ISLANDS PATH SCHEDULING
For ship sailing and inter-island scheduling, the RL-based
methods with a 2D grid-based approach are considered, and
ship location as loc =

(
lx , ly

)
with an agent starting at

LIN (BS) to collect the batteries NCS
i,t,s after sailing at the

ship from SI or SLI (CS) by following the binary variable
ωi,t,s in a minimal number of steps lx + ly, and return to
BS. Therefore, the agent must take action left, right, up, and
down by covering grid spaces to collect the charge batteries
from CS within a minimum time. The proposed validation is
discussed through the proposed RL algorithm and the case
study.

IV. EMS LEVEL
The various islands anticipate attaining demand and supply
balance, and the discrepancy between demand and supply
represents energy transfer between other islands through ship
swapping.

A. STORAGE CLUSTER
Because the primary goal of a storage system is to maintain
energy balance on a tiny island, and battery life falls exponen-
tially with the depth of discharge and battery efficiency [33],
consider extending battery life by limiting the discharge cycle
and battery model, which are specified as:

1) CS & BS CONSTRAINTS
To ensure the storage cluster energy level for each period on
both BS and CS within the bound and expressed as:

rmin
i,t,m ≤ ri,t,m ≤ r

max
i,t,m (29)

ri,t,m=
∑

j∈Ni,j̸=i

NBS
ij,t,s×ELj,t,m+(N

CS
i,t,s−N

Ship
i,t,s )×ELi,t,m, ∀i

(30)

(29) expresses the storage cluster’s SOC boundary limits,
and (30) the SOC level of different islands concerning several
batteries.

2) ENERGY CONSTRAINTS AT CS
To meet the demand at the CS, the energy consumed at each
time instant t should be fully used for the charge batteries
offered for the swapping as follows:

t−T∑
t=1

[
ηchPch,bi,t,m − P

dis,b
i,t,m

/
ηdis

]
1t

≥

τ∑
t=1

NCS,C
i,t,s × ELi,t,m, ∀t ∈ T (31)

In addition, (32) indicates that by the end of each operation
period at time T , most of the energy at CS is utilized to
produce fully charged batteries.

T∑
t=1

[
ηchPch,bi,t,m − P

dis,b
i,t,m

/
ηdis

]
1t

=

T∑
t=1

NCS,C
i,t,s × ELi,t,m, ∀t ∈ T (32)

In (33), the maximum energy consumed by the CS for the
time t cannot exceed the total discharge batteries available at
the CS before swapping to the ship.

t−T∑
t=1

NCS,C
i,t,s × ELi,t,m ≤

t−T∑
t=1

ND
i,t,s × ELi,t,m, ∀t ∈ T (33)

The battery charging and discharging with ELbi,t,m power
limits are bound between upper and lower limits to main-
tain battery life [23] with charging/discharging efficiency,
and each battery at BS or CS should follow the following
constraints:

ELb,min
i,t,m ≤ EL

b
i,t,m ≤ EL

b,max
i,t,m (34)

Pch,b,min
i,t,m ≤ Pch,bi,t,m ≤ P

ch,b,max
i,t,m (35)

Pdis,b,min
i,t,m ≤ Pdis,bi,t,m ≤ P

dis,b,max
i,t,m (36)

To avoid malfunction [24], charging and discharging at the
same time can be avoided as follows:

Pch,bi,t,m × P
dis,b
i,t,m = 0 (37)

It is important to note that frequent charge/discharge cycles
could shorten battery life. Therefore, the degradation cost per
depth of discharge (DoD) is as follows:

Cde = ℜ
/
Ncyc (38)

It gives the cost per cycle for every DoD. We calculate
the whole storage cluster and store the cost every cycle until
we get the capital cost and replace the battery and the cycle
number given in [25].

B. LOCAL IA FORMULATION
For this problem, the goal is to maximize utilization of RE,
energy sharing from the local DGs would not be so high
and related to µT (micro-turbine), DGE (diesel generator
energy), and consider the individual generator’s cost propor-
tional to the power generator by them. To trade-off with these
costs, the cost function to be minimized and formulated for
the time t can express as,

FDGi,t,m = min

 MT∑
µT=1

υ
µT
i,t,mP

µT
i,t,m +

G∑
DGE=1

υDGEi,t,m P
DGE
i,t,m

 ,
∀i ∈ NCS/NBS , t ∈ T (39)
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Hence, the power balance equations are described as fol-
lows (40)-(43):∑

PV ′
PPV

′

i,t,m +
∑
WT ′

PWT
′

i,t,m +
∑
µT

PµTi,t,m +
∑
DGE

PDGEi,t,m

−

∑
l

Pli,t,m +
∑

b∈NCS
i,t,s/N

BS
i,t,s

Pdis,bi,t,m
−Pch,bi,t,m

+

∑
l

Pl,shti,t,m

−

∑
i

Pcuri,t,m=Pi,t,m; ∀m, n∈ψ, ∀i∈NCS/NBS (40)∑
µT

QµTi,t,m +
∑
DGE

QDGEi,t,m −
∑
l

Qli,t,m +
∑

NCS
i,t,s/N

BS
i,t,s

Qbi,t,m

+

∑
l

Qshti,t,m=Qi,t,m; ∀m, n ∈ ψ, ∀i∈NCS/NBS (41)

uDGEi,t PDGE,min
i,t,m ≤ PDGEi,t,m ≤ u

DGE
i,t PDGE,max

i,t,m (42)

uµTi,t P
µT ,min
i,t,m ≤ PµTi,t,m ≤ u

µT
i,t P

µT ,max
i,t,m (43)

Furthermore, the Pi,t,m/Qi,t,m gives the active/reactive
power injection at the bus m, respectively. Therefore, the
backup provided by DGE and MT is given in (42)-(43). It is
important to note that the devices at the bus m should follow
the node power balance.

1) IA OPERATION CONSTRAINTS
Conventionally, the objective function of optimal power flow
(OPF) is to minimize the total production cost of active power
generation. Therefore, the power flow model is adopted [38]
to model the network topology and power flow constraints.
This proposed model can simultaneously formulate the nodal
voltage and branch power flow and helps to protect the power
system’s security. Hence, IA adopts the power flow model
that does not affect the solvability of the optimization prob-
lems with the polar coordinates for voltage is Vi,t,m ̸ θi,t,m
for busm and the branch Pi,t,mn/Qi,t,mn active/reactive power
flow from the bus m to bus n can be expressed as (44)-(45):

Pi,t,mn = Vi,t,mVi,t,n
[
Gi,t,mn cos

(
θi,t,m − θi,t,n

)
+ Bi,t,mn sin

(
θi,t,m − θi,t,n

)]
(44)

Qi,t,mn = Vi,t,mVi,t,n
[
Gi,t,mn sin

(
θi,t,m − θi,t,n

)
− Bi,t,mn cos

(
θi,t,m − θi,t,n

)]
(45)

where Gi,t,mn and Bi,t,mn are the real and imaginary parts of
the admittance matrix Yi,t,mn = Gi,t,mn + jBi,t,mn. Therefore,
the net injection at each node is equal to the power that leaves
each node and expressed as:

Pi,t,m = V 2
i,t,mGi,t,mm +

∑
m=1,m̸=n

Pi,t,mn (46)

Qi,t,m = −V 2
i,t,mBi,t,mm +

∑
m=1,m̸=n

Qi,t,mn (47)

where the first term in (46)-(47) gives the contribution from
the nodal shunt element and f

(
Pi,t,m,Qi,t,m,Vi,t,m, θi,t,m

)
=

0 for nodal power balance equations (40)-(49).

TABLE 2. Different islands resources capacities.

FIGURE 5. Available batteries energy level estimation for energy sharing
at different islands.

2) IA SECURITY CONSTRAINTS
The voltage magnitude and branch power flow should flow
the security constraints (48)-(49) for the economic operation
with the branch line capacity Si,t,9 .√

P2i,t,mn + Q
2
i,t,mn ≤ Si,t,ψ (48)

Vmin
i,t,m ≤ Vi,t,m ≤ V

max
i,t,m (49)

3) IA AGENT PARAMETERS
Obtaining data for renewable energy and load profile, which
fluctuates dependent on variables such as climate, latitude,
and load demand variation such as critical and non-critical
loads, is crucial to ensuring proper energy management.
Table 2 shows the renewable energy capacity for several
islands and data sets obtained from the National Renewable
Energy Laboratory (NREL) [27].

4) AVAILABLE BATTERIES ESTIMATION THROUGH IA
The available battery estimation is utilized for energy shar-
ing among different islands. The source islands depict the
available charge battery for energy sharing among source
islands to load islands from SI→LIN or SLI→LIN. The No.
of batteries at SI is available to share at 13 hrs. Moreover, start
charging swapped batteries again at 15 hrs.
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Available battery estimation is given in Figure 5. From the
SOC bar graph, the battery replaces with the next discharge
battery until the 10th battery gets charged. In addition, the
LIN discharges the battery at 19th hrs., and by adjusting the
load profile and considering the shipping time, the swapped
batteries from the ship start discharging at 23rd hrs. In the
case of SLI, it does not have sufficient batteries because of
available local critical load demand and cannot participate in
energy sharing. It will raise the flag of energy sharing once
the full-charge batteries are available at SLI/SI.

V. REINFORCEMENT LEARNING
In a multi-agent system (MAS), an individual agent acts
according to the distributed policy in a typical environment
through the central RL agent. Meanwhile, it does not keep the
fixed or deterministic approach over time due to its stochas-
tic behavior. It changes its policy over time to maximize
the expected reward through the Markov Decision Process
(MDP).

A. RL-BASED ENERGY SHARING
In the pelagic island structure, the individual agent will
depend on its activities and learn from neighboring island
agents’ actions to sharpen its policy with each time step.
Meanwhile, it does not keep the fixed or deterministic
approach over time due to its stochastic behavior.

1) DEEP REINFORCEMENT LEARNING
In this work, (PINMGs) is the environment of distributed IA
agents and centralized RL agents to maintain energy balance
in each island for the microgrids’ network by RES and DGs
and provide observation system states to each agent. Based
on the PINMGs, this network has a Markov property and
represents a tuple (A, S,R, γ ). For the discrete-time steps,
the agent chooses an action space ait ∈ A = {1, . . . |A|} from
the state space sit ∈ S and observes the reward R with the
γ [0, 1] discount factor to trade-off the immediate and future
reward R =

∑
∞

t=τ R
i
τ . Hence, the agent behaves based on

the policy π, and the state-action pair (50) and value function
(51) are demonstrated as:

Qπ (S,A) = E
[
R|sit = S, ait = A, π

]
(50)

Vπ (S) = EA∼π

[
Qπ (S,A)

]
(51)

Similarly, the advantage function related to value and
Q-function to measure the importance of each action (52):

Aπ (S,A) = Qπ (S,A)− Vπ (S) (52)

2) GRID-BASED PATH SCHEDULING
In the grid-learning environment E(M ,BS,CS), the reward
depicts the model working efficiently in a map M . In our
path scheduling, it focuses on reaching the destination within
a minimum time, considered as an obstacle to receiving a
negative reward −rei,t,path for wrong decisions and positive
+rei,t,path on the right decision with a feasible sequence of

actions CS to/from BS as policy (BS ⇋ CS) [41]. Therefore,
the sparse reward for the path schedule is expressed as (53):

rei,t,path =


+rei,t,path, if loc = (BS ⇋ CS)
−rei,t,path, if loc ̸= (BS ⇋ CS)
0 Otherwise

(53)

In addition, the proposed approach follows the ϵ-greedy
policy to balance the exploration.

3) STATE-SPACE
It is a set of all the possible states in an environment and
shows the Markovian state for 24 hrs. Furthermore, energy
sharing depends on available batteries at CS, BS, ship, and
ship locations. From the environment, the current possible
states si,t can be expressed as (54):

si,t =
[
NCS
i,t,s,N

BS
i,t,s,N

Ship
i,t,s , loc

]
(54)

where NCS
i,t,s = NCS,C

i,t,s +N
CS,D
i,t,s , NBS

i,t,s = NBS,C
i,t,s +N

BS,D
i,t,s , and

N Ship
i,t,s = NC

i,t,s+N
D
i,t,s, respectively. It is worth noting that the

decision variables are related to the batteries being delivered
or charged at the charging station. On the other hand, the
ship’s location is important in deciding the decision of battery
swapping at the CS/BS.

4) ACTION-SPACE
Action space ai,t ∈ A is the set of all the possible actions (55)
that an agent takes to achieve the required states si,t with the
probability transition from one state to another, and it has the
dimensions |S| × |S| × |A|.

ai,t =
[
NCS
i,t,s,N

Ship
i,t,s ,N

BS
i,t,s, loc, u

µT
i,t , u

DGE
i,t

]
(55)

As a result, the intended actions are proportional to the
number of batteries available at the CS, BS, and ship. Fur-
thermore, the position of the ship influenced the choice of
the availability of batteries at the stations. Based on avail-
ability, energy sharing controls are actions such as switching
MT/DGE or critical and non-critical load management to
meet demand at time t .

5) REWARD FUNCTION
The (56) reward function Ri,t ∈ R is incurred based on the
constraint violation to do the excellent action and maximize
the profit over the period. 1ρi,t,m constitute storage limit
violation based on energy demand (57), not fully exchanging
the discharge batteries through the ship, and load curtailment
in the resource-rich island ρli,t,m = (1− ζN )Pli,t,m with a low
importance factor.

Ri,t=max
∑
i

∑
t

[
BSproi,t,BS+rei,t,path−

[
1ρi,t,m+κ(
PµTi,t,m+P

DGE
i,t,m

)]]
(56)

1ρi,t,m
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=

ϖ r
[
rmax
i,t,m − N

CS
i,t,s × EL

b
i,t,m

]
+

ϖ SH
[
rmax
i,t,m − N

Ship
i,t,s × EL

b
i,t,m

]
+ϖ lρli,t,m

 (57)

where ϖ r ,ϖ SH , and ϖ l are the cost coefficient updated
through the neural network for storage limit, shipping viola-
tion, and load curtailment, and κ is the penalty of renewable
energy absence supported by DEG/MT.

Furthermore, the physical meaning of the reward is to
maximize the profit share through the battery exchange;
the second part is also given a positive reward for success-
fully following the shortest path to the destination; and the
third part is associated with storage limit violation and the
DEG/MT running time to meet demand by giving a negative
reward along with the load curtailment. As a result, since the
DEG/MT and load curtailment provide a negative reward, the
suggested reward function attempts to maximize the reward
by depending less on them.

6) ATTACK MODEL
To show the vulnerability of the proposed work, we verify
the effectiveness of the attack model through access to the
RL agent action (58) stream Rat,a (3t) , and (59) state-space
Rat,s (3t). The attacker can directly perturb the nominal agent
action or state space, and this attack aims to perturb and mini-
mize the long-term discounted reward. Therefore, the attacker
greedily designed the perturbation without considering the
future concern [42]. Hence, the attacker created the pertur-
bation 3t to minimize the future reward at each time, step t:

min
3t

Rat,s (3t) = Ri,t
(
si,t ,3t + ai,t

)
+

T∑
k=t+1

Ri,t
(
si,k , ai,k

)
(58)

min
3t

Rat,a (3t) = Rit
(
si,t +3t , ai,t

)
+

T∑
k=t+1

Ri,t
(
si,k , ai,k

)
(59)

The reward profoundly depends on the evolution of the
state trajectory. It is considered a static attack and strictly
myopic [44].

B. DUELING DEEP Q-LEARNING (DQN)
Since the value and Q-function are given in (50)-(52). There-
fore, the deep Q-network: Q(s, a, θ) estimates the network
through the loss function (60) with the target network yDQNj
parameter θj−1.

Lj
(
θj

)
= Esi,t ,ai,t

[(
yDQNj − Q(si,t , ai,t ;θj)

)2]
yDQNj

= E(si,t)′
[
Rit+γ max

(ak)
′

(
Qj

((
si,t

)′
,
(
ai,t

)′)′
; θj−1

)
| si,t , ai,t

]
(60)

Furthermore, the network updates the parameters online
by freezing the parameter of the target network by gradient
descent (61).

∇θjLj
(
θj

)
= Esi,t ,ai,t

[(
yDQNj − Q

(
si,t , ai,t ;θj

))
∇θiQ(si,t , ai,t ;θj)

]
(61)

DQN uses the deep neural network to approximate the
action-value function. It takes input from the state of the
environment and gives the Q-value from the output for all
the possible actions to be taken. For optimizing the possi-
ble actions, it uses an experience replay and target network
to stabilize the in-depth learning process [45]. In addition,
the improved Double DQN (DDQN) [46] uses the yDDQNj

because yDQNj use the max operator to select and evaluate an

action, and yDDQNj is defined as (62):

yDDQNj

=E(si,t)′

Rit+
γ argmax

(ai,t)
′

Qi
((
si,t

)′
,
(
ai,t

)′)′
θj; θj−1


(62)

For the dueling DQN network, the stream of one fully
connected layer output a scalar V

(
si,t , θ, β

)
, other stream

output an |A|-dimensional vector A
(
si,t , ai,t , θ, α

)
connects

to make a stream with θ parameters of convolutional layers,
and α, β are parameters of connected layers [47]. Its aggre-
gated module is expressed as (63):

Q (S,A,θ, α, β) = V (S,θ, β)+ A (S,A,θ, α) (63)

(58) cannot use directly because of notability and force the
advantage function to have zero advantage at chosen action.

Q(S,A, θ, α, β)

= V
(
si,t , θ, β

)
+ A

(
si,t , ai,t , θ, α

)
− max

ai,t∈|A|
A

(
si,t , ai,t ′, θ, α

)
(64)

Therefore, the original V and A lose their originality
because they are constantly off-target. Still, it also increases
the optimization problem’s stability, and the advantage only
needs to change the mean instead of the optimal action advan-
tage (64). Hence, it provides the estimation for the value
function stream, and the alternative module is replaced with
the max operator as follows (65):

Q(S,A, θ, α, β)

= V
(
si,t , θ, β

)
+

 A
(
si,t , ai,t , θ, α

)
−

1
|A|

∑
ai,t A(si,t ,ai,t ,θ,α)

 (65)

Dueling DQN is also an extension of DQN, which sep-
arates the action values into two different estimates, one
estimation used for the state-dependent value function and
the other used for the action-dependent advantage function.
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FIGURE 6. Flowchart of proposed Dueling DQN algorithm
implementation.

It helps to effectively learn the behaviors of different actions
and effectiveness in a different state of the environment [47].
While the TD error is the critical mistake, the reinforce and
Actor loss functions, as expected, represent the implementa-
tion of the Policy Gradient Theorem and are given as:

∇θiJ (θi) = Eπ [Gi,t∇θi lnπθi (ai,t |si,t )] (66)

VI. ALGORITHM IMPLEMENTATION
An RL-based algorithm schedules the ship to transport the
batteries from resource-rich to load-rich islands in the pro-
posed framework. Simultaneously, the energy demand from
the OPF is determined to calculate the available or deficient
energy to sustain energy balance. To best execute the energy
sharing framework, the CS and BS stations manage to adapt
demand depending on demand availability.

The proposed approach’s environment, built on several
islands, was created using Python programming and the Pan-
dapower module. The usual TensorFlow and Keras libraries
are used for the RL-based scheduling. As a result, Figure 6
depicts the flow chart of the suggested algorithm for schedul-
ing energy sharing across islands. It details the algorithmflow
after obtaining the state space from the individual agent’s
environment and how a centralized RL-based algorithm is
used to optimize the scheduling for the optimized route to
satisfy demand at the LIN. Furthermore, the Duelling DQN
is an extension of DQN that divides the action values into
two estimates, one for the state-dependent value function and
the other for the action-dependent advantage function. It aids
in efficiently learning the behaviors of various acts and their
efficacy in various environments [47].

One of DQN’s constraints is that the action space must
be intrinsically discrete since the value of each action is
evaluated using a neuron. An alternate way is to express the
output as a probability distribution of the anticipated return,

FIGURE 7. Architecture of Dueling DQN algorithm implementation.

with each action assessed individually. It also works on dis-
crete action spaces when using SoftMax distributions. When
modeling this way, we shall maximize the value outputs rather
than the cost. Modeling in this manner offers advantages and
disadvantages. On the one hand, it is simpler since target
networks, replay buffers, and exploration are unnecessary.
On the other hand, bias may be induced due to the substantial
variety in reward signals and correlations among states within
the same episode.

An illustration of a Dueling Q-Network’s architecture.
Keep in mind that value and advantage are modeled differ-
ently. Only one neuron is employed to estimate V (si,t), and
we require as many neurons to estimate A (si,t , ai,t) and Q
(S, A,θ ,α,β) as possible. Hence, the architecture of dueling
D-network is given in Figure 7.

A. ASSESSMENT STRATEGY
A comprehensive hyperparameter space search would be
inefficient due to the agent’s many parameters. According to
the protocol, we will test one parameter at a time while freez-
ing the others. For comparison, each combination is tested
three times for 50 episodes, and the average of the Return’s
finalmovingmean (100-episodewindow) is chosen. The final
model picks the best value calculated for each parameter.

Once we have identified the models’ optimum parameters,
we compare four distinct seeds and 100 episodes. Themoving
mean, and 95% confidence interval will be used to compare
the agents. For example, a random proposal baseline is pre-
sented five times, and the agent is trained for 70K.

B. ALGORITHM FOR THE PROPOSED APPROACH
The RL algorithm for the proposed method is described
below, and the parameters used in the algorithm are detailed
in Table 3. In contrast, Figure 6 depicts the EMSmodel imple-
mentation, which serves as the foundation for the whole flow
of the proposed technique for PINMGs. The organized agent,
a Duelling DQN implementation with buffers, an RL imple-
mentation with discounted episode rewards as a baseline, and
an actor-critic implementation with a value-estimator as the
critic will be used to assess the performance of our RL agents.
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TABLE 3. Selected parameters for algorithms.

Algorithm 1 Dueling DQN With Experience Buffer
for AI Agent
Start with Q(si,t , a) for all si,t , ai,t .
The state and action spaces follow the (54)-(55).
Get an initial state si,t and main network with the weight θi.
Choose the buffer size, batch size, α, β.
A sequence of main network training and target network
update was chosen.

Count the steps for iteration as j.
Choose the learning rate η.
Initialize action-value Q with random and target value θi.
for every time instant t, si,t , γ ϵ(0, 1)

select random action ait by ϵ probability.
otherwise, select ait = argmaxait

Q
(
si,t , ai,t ;θi

)
apply ait and calculate the reward.
j← j+1
if network training = 0

store transition si,t , ai,t ,Ri,t ,
(
ai,t

)′ in memory.
Sample random mini batch from the reply memory.
Training and target value construct using (58)-(60).
perform the gradient descent step (59).

end
if target network updated = 0

update the θi−1→θi at every 10,000 steps.
end
store (si,t , si,t+1, ai,t ,Ri,t )

end

VII. FLOW CHART
Figure 8 depicts the flowchart for the proposed PINMGs
problem, representing the proposed work’s overall architec-
ture. The suggested model expresses the individual compo-
nent using the following equation number. The one-island
model represents the EMS level in detail, while SLI lacks
a distribution network for the SI. It follows the flow from
the energy-resources→IMGO→IA agent and the dispatch
signal sent to the storage cluster through the direct command,
and its number ranges from 1 to i. On the other hand, the
energy-sharing system is linked with island nature, whether

FIGURE 8. Flowchart for the proposed model of PINMGs.

FIGURE 9. Relative position with pelagic island and LIN structure.

a resource or a load island. It then talks with the RL agent
based on the nature.

VIII. CASE STUDY
In this work, pelagic island network microgrids (PINMGs)
are the environment of different agents to maintain energy.
Each IA is equipped with standby DEG with a ramp rate of
80kW/h (the peak value of the non-interrupt load is 60kW)
with a DEG average fuel cost is 0.6 $/liter. In addition, the
MT with a fixed capacity of 10kW to meet the load demand
charge the available batteries to meet the demand. It has a
100kWh capacity, ten batteries, and 100 $/kWh installment
investment with battery DoD cycles [43] and its Ef = 89 as
a round trip efficiency, and Life = 1344 battery lifetime
throughput (kWh). In this case, the lead-acid battery has a
charge efficiency of 95% or 0.95 [48].

Therefore, the equidistance islands are considered for the
case study as 80kmwith a speed of 20km/h. The ship’s sailing
time is 4hrs with a 30$ per battery sailing cost. In addition,
the operation cost mainly affects power production through
renewable energy and load demand at the load islands. Like-
wise, energy charging is considered a cost of 0.05$/kWh for
resource-rich islands. The sodium-sulfur batteries are used
on the island with a total capacity of 1000kWh. The LIN
network structure is given in Figure 9with a battery-swapping
station at bus 6; DEG and MT are connected at buses 1 and 4,
respectively.

Hence, the critical loads are connected at bus 6, and the
non-critical at buses 3 and 5. The swapping batteries are
allowed to work within the 0.2-0.9 SOC with a maximum
depth of discharge of 80%. Initially, the batteries are in the
LIN, and the ship moves towards the resource-rich islands
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FIGURE 10. Maximizing the usage of RE resources with RE curtailment.

FIGURE 11. RL grid-base ship movement from LIN to/from SI/SLI.

SI or SLI to utilize the RE generation to meet the demand
at LIN and SLI. It is assumed that the ship sailed towards
the source-enriched islands for battery swapping and collab-
orated to meet the demand at LIN. Therefore, the net power
flow and voltage on each bus can be depicted through the
OPF and provide details about the demand and generation on
each island to cooperate with neighboring islands by storage
cluster.

The number varies from 1 to ship for the ship, and each ship
schedules dispatch from the centralized RL agent. Further-
more, the viability of the RL agent is also verified through the
attack model. The impact of the proposed model is discussed
in the case study.

The simulation was conducted on an RYZEN 7 (5000
series) with 16 GB RAM and an RTX 3070 GPU, using
Python 3.7 with Spyder IDE. Furthermore, the proposed
model’s validity is justified by the suggested cases, which
include renewable energy curtailments of 20% and 50%,
to test the proposed algorithm’s robustness and recovery
to standard operation and energy management by maxi-
mizing renewable energy resources. Furthermore, as seen
in Figure 10, SI realizes less on non-RE resources while
maximizing RE use. Meanwhile, the RE is reduced when
the charge batteries at SI are at their maximum. Due to the
scarcity of discharge batteries, it is impossible to charge them
at CS.

FIGURE 12. Available battery scheduling from SI, SLI→LIN.

A. GRID-BASED SHIP TRAVELING
It can be seen from Figure 11 that the ship is at the (2 × 3)
location with a total of 0 to 9 charge batteries on the ship
N Ship
i,t . Moreover, moving towards the LIN by receiving a

positive reward. In the proceeding flow, it can be depicted that
the ship reached LIN, and charged batteries were swapped
at LIN. The swapping batteries NBS

i,t,s is exchanged based on
the greedy on-policy in the grid-based environment. It can be
seen from Figure 11 that the ship is at the (2 × 3) location
with a total of 0 to 9 charge batteries on the ship N Ship

i,t .
Furthermore, moving towards the LIN by receiving a positive
reward. In the proceeding flow, it can be depicted that the
ship reached LIN, and charged batteries were swapped at
LIN. The swapping batteries NBS

i,t,s is exchanged based on
the greedy on-policy in the grid-based environment (58)-(63).
Furthermore, the appropriate actions are taken through one
week of RL agent training.

B. ANALYSIS OF SCHEDULING RESULTS AT LIN
The effectiveness of the proposed work is verified through the
dueling DQN, and its validity in meeting the goal is depicted
through the different algorithms such as DQN, DDQN, duel-
ing DDQN, and Dueling DQN are shown in Figure 12. It can
be seen that batteries swapped through the resource-rich
islands to LIN are gradually improved by reducing non-RE
usage from DQN to dueling DQN. The in-depth modeling
of the proposed RL methods is discussed in section V, along
with their benefits and advantages over the other methods.

As battery swapping depends on the available charge bat-
teries at CS, it is important to note that during the first
24 hours, the LIN starts to rely on non-renewable energy
resources. After the sailing period, batteries are available at
LIN. Moreover, the sailing time and battery swapping time
are considered together. It is important to note that the impor-
tance factor prioritizes energy trading through swapping as
critical and non-critical loads, and all end-user’s nominal
demands can be satisfied. It can be compared from Figure 12
that energy demand is to be fulfilled at LIN, and it receives
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FIGURE 13. Total profit incurred over the successful dispatch delivery
(LIN).

the batteries only once the swapping batteries at LIN are ready
to be swapped. Otherwise, it kept waiting until the discharge
batteries were ready to be swapped.

Similarly, the comparison with the other methods shows
that after the first 24 hrs., the ship keeps sailing and then tries
to reach an island for the battery dispatched but fails again
to start sailing in the DQN method without considering the
available charge batteries. Nevertheless, for the DDQN, the
ship started sailing and then dispatched again without con-
sidering the charged batteries and whether available batteries
were charged completely. However, after 48 hrs., it learns to
take the battery and sail towards the load islands but fails
because of uncharged batteries’ availability [49].
On the other hand, the dueling DDQN-based method fails

to start the sailing after getting batteries to charge and dis-
patch batteries before the charge battery at the LIN. It can
be seen that the ship keeps sailing and turns back to the
island instead of waiting for the batteries to discharge fully.
However, the pattern using the proposed method dueling
DQN can be seen that the ship reaches the island once the
batteries at the LIN discharge completely, but while battery
swapping to meet some critical loads, it can be seen that MT
and DEG run to support it.

The ship swapping poses the time-delayed with discrete
characteristics. Every round trip is between a resource-rich
island and LIN, with a maximum of 10 batteries to be
swapped. The energy flow at LIN has a real-time power
balance in the islanded microgrid by scheduling and meeting
the actual power demand.

In addition, the DQN, DDQN, and dueling DDQN
have made many wrong decisions at the BS without
considering the discharged batteries at LIN and utilized
many non-renewable energy resources. For the DQN-based
algorithm, the ship waited long at the LIN but could not dis-
patch batteries for 96 hrs. and failed to earn a profit because
of the penalty received through the RL agent. To meet the
demand at LIN, the predicted demand at LIN is 10 times a
week to swap at BS.

FIGURE 14. Average reward profile for the proposed RL algorithm.

From Figure 13, the profit incurred over the successful
dispatch has been shown by comparing different proposed
methods, and its viability can be seen from it. Because the
amount is only transferred to the owner once the complete
batteries swap with the charge batteries at the load island or
the required number of batteries, swap at the BS. By compar-
ing, it can be seen that DQN fails to provide any successful
delivery and cannot ensure profit. Similarly, the DDQN and
dueling DDQN try to act precisely but fail to provide constant
support by dispatching batteries at the CS. At the same time,
the proposed dueling DQNmethod outperformed all the other
RL-based methods by showing the most successful deliveries
and incurring profit.

Figure 14 shows that the ship has started improving the
scheduling through the DDQN to duel the DQNRL algorithm
and earn profit based on the energy collaboration between
SI and SLI at BS. The training process in the deep learning
model is considered at every time step by following the
greedy policy with the probability of 1−ϵ and random action
chosen on ϵ decreasing value. Furthermore, the average
reward profile comparison is compared, and the DQN-based
method fails to maximize constant reward. From the profile
comparison, the dueling DQN based outperforms the other
methods and accumulates the constant andmaximum average
reward compared with other algorithms.

It is very important to note that a penalty is incurred
for every deviation to maintain the energy balance during
decision-making. In addition, the improving discount factor
stabilizes and advances the reward function for every dis-
crete action. Hence, the reward profile with decreasing ϵ is
given in Figure 15. In addition, the decreasing learning rate
through the given epochs with the rising discount factor pro-
vides decreasing training loss, as shown in Figure 15. More-
over, the increasing discount factor improves further reward
function through 70,000 iterations. Furthermore, the deep
RL-based methods analyze and compare the naive policy
and parameters used for the DNN-based algorithms listed in
Table 3.
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FIGURE 15. Training loss of PINMGs under Q-learning-based algorithms.

FIGURE 16. The cooperative energy comparison during energy
curtailment.

C. EFFECT OF RENEWABLE ENERGY CURTAILMENT
It is a common phenomenon of curtailment with the rising
penetration of renewable energy to meet the power balance
issues, as PV production is higher during the afternoon. Wind
produces more power at night and pushes DEG and MT
to meet the energy demand during peak hours to meet the
downward reserves unable to provide renewable [30].
Therefore, the cooperative energy management between

islands is justified through renewable energy curtailment to
verify the effectiveness of the proposed approach. The com-
parison has been drawn based on the 0%, 20%, and 50%
curtailment. With 0% curtailment, the battery was swapped
on the LIN after the first 24 hours. While curtailment reaches
20%, it takes 24 hours to readjust the resources, collabo-
rate between resource-rich islands, and provide downward
reserves.

Our proposed algorithm enables islands and resource col-
laboration while minimizing the usage of non-renewable
resources [31]. In addition, with 50% renewable energy cur-
tailment, our RL agent spends more time learning to reduce
the use of DEG and MT and maximize the renewable usage
to meet the demand at LIN. It can be seen from the resource
adjustments in Figure 16. On the other hand, with the cur-
tailment of 0%, the agent learns very fast and starts to adjust

FIGURE 17. State attacks with single/multiple time step every 20 hrs.

FIGURE 18. Multiple actions attack every 10 and 20 hrs.

their resources in the first 24 hrs. Likewise, for the curtailment
of 20%, the agent learns in the first two days and starts
performing the best possible ways to adjust the resources to
meet the demand by scheduling between battery swapping
stations and battery charging stations [50].

D. DISCUSSION ON THE ATTACK MODEL
The robustness of the RL agent is verified through the series
of attacks over the action and state space to degrade the
performance of the trained RL agent (58)-(59). Therefore, the
perturbation in the state attack is applied at the time step 20th
hrs. for the charged batteries at the resource-rich island and
trained RL agents to act under the nominal conditions through
the gradient computation.

It can be observed from Figure 17 that trained RL agents
mitigate the single attack and allow the ship to dispatch the
charge batteries at the LIN without relying much on non-RE.
In addition, multiple state attacks were applied at every 20th-
hour time step to verify the RL viability further. Under the
worst attack situation, the RL agent relies upon the non-RE
but manages the cooperation between SI and SLI to dispatch
batteries at LIN to meet the load demand and minimize the
non-RE [32]. At first, the attack did not impact the ship’s
movement much. During the second attack, it had much
impact and again started using the non-RE resources. After
learning for a day, the agent returned to normal and started
working normally.
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Hence, the further validity of the proposed approach is ver-
ified through the action attack by perturbing the final decision
of battery dispatches from source islands to LIN in Figure 17.
The action attack applied to the learned RL agent and the si,t
and ai,t are not independent during the transition but depend
on the evolutions of state trajectories. It can be observed from
Figure 18 that the single-action attack is more stable because
the agent learns the correct actions very quickly.

Therefore, multiple attacks at every 5th and 10th hour are
applied to perturb the battery dispatch decisions. The ship
followed the wrong dispatch decision with action perturba-
tion, but after a few steps, the ship learned the appropriate
policy to dispatch batteries at the right time. Therefore, the
viability of the proposed algorithm is justified to manage the
energy resources and ship to LIN to maximize the RE usage
and minimize the non-RE at LIN. The RL algorithm was
trained for a week and performed well under state and action
perturbations attacks during standard operating conditions.

IX. CONCLUSION
This study presents a two-stage energy management strategy
for PINMGs based on ship swapping across resource-rich
islands to load islands (to fulfill demand) with the help of a
centralized RL agent and IA agents. As a result, by optimizing
the usage of RE and overcoming RE intermittency using
RL-based scheduling and energy storage during RE availabil-
ity, the simulation maximizes profit through energy sharing
across various islands. This technique is effective compared
to other typical RL algorithms for day-ahead scheduling.
Consequently, the simulation results demonstrate the prac-
ticality and efficiency of the proposed work. Finally, the
robustness of the trained RL agent is validated by perturbing
the single/multiple states and actions to undertake energy
trading across distinct pelagic islands.

Furthermore, as a future study, this research gives a begin-
ning motivation for the PINMGs-based challenge to be
extended on a broad scale for the island’s electrification.
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