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Abstract——Potential malicious cyber-attacks to power systems 
which are connected to a wide range of stakeholders from the 
top to tail will impose significant societal risks and challenges. 
The timely detection and defense are of crucial importance for 
safe and reliable operation of cyber-physical power systems 
(CPPSs). This paper presents a comprehensive review of some 
of the latest attack detection and defense strategies. Firstly, the 
vulnerabilities brought by some new information and communi‐
cation technologies (ICTs) are analyzed, and their impacts on 
the security of CPPSs are discussed. Various malicious cyber-at‐
tacks on cyber and physical layers are then analyzed within 
CPPSs framework, and their features and negative impacts are 
discussed. Secondly, two current mainstream attack detection 
methods including state estimation based and machine learning 
based methods are analyzed, and their benefits and drawbacks 
are discussed. Moreover, two current mainstream attack de‐
fense methods including active defense and passive defense 
methods are comprehensively discussed. Finally, the trends and 
challenges in attack detection and defense strategies in CPPSs 
are provided.

Index Terms——Cyber-physical power systems, security threat, 
attack detection, attack defense, state estimation, machine learn‐
ing.

I. INTRODUCTION 

WITH the accelerated development of information and 
communication technologies (ICTs), a critical mass 

of instruments and devices with communication functions 
have been widely deployed in power systems to enhance the 
state observability, control responsiveness, and operation 
flexibility in the face of increased penetration of renewable 
generations at all voltage levels and mass roll-out of electrifi‐
cation plans across many end user sectors. This trend is 
transforming power systems to cyber-physical power sys‐
tems (CPPSs), allowing seamless integration and interaction 
between power system assets covering physical infrastruc‐
ture, information sensing and mining as well as system oper‐
ation and control in cyber space [1]. This will promote opti‐
mal power flow calculation [2], [3] and optimal integration 
of distributed renewable energy [4], [5], and support decarbon‐
ization of other sectors such as the transportation [6], [7]. 
Eventually, CPPSs can intelligently integrate the behaviors of 
all stakeholders in the energy supply chain, thereby providing 
economic and safe power supply, and promoting the sustain‐
able development of the environment and economy [8], [9].

It is evident that CPPSs would profoundly change the op‐
eration method of conventional power systems, yet the inte‐
gration of communication and computation technologies will 
also bring new cybersecurity challenges to CPPSs. Firstly, 
the control equipment in conventional power systems is of‐
ten designed without considering cybersecurity issues since 
conventional power systems have been working in an isolat‐
ed physical environment for a long period of time in the his‐
tory. Secondly, when communication and computation devic‐
es are coupled with conventional control systems of power 
system infrastructure, the existing security technologies can‐
not be directly extended to almost defenseless control devic‐
es, leading to inherent cybersecurity vulnerabilities. Further, 
due to multi-point, multi-type, and multi-layer features of 
CPPSs, the attackers may easily identify these cybersecurity 
vulnerabilities and hence launch malicious cyber-attacks. As 
a consequence, new cybersecurity issues may emerge from 
time to time as a price of the increasing digitalization of 
power systems and continual development of CPPSs.

As illustrated in Fig. 1, cyber-attack events have exhibited 
the features of increasing the frequency and impact in the 
last decades. In 2000, 150 sewage pumping stations of 
Malucci sewage treatment plant in Australia were hijacked 
by the attackers. As a result, over one million liters of sew‐
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age were directly discharged from the storm drain into the 
natural water system without the treatment, causing serious 
damages to the local environment. The stuxnet virus at‐
tacked Iran’s nuclear power plant in 2010, and over 1000 
centrifuges have been scrapped [10]. In 2015, the hackers in‐
truded into supervisory control and data acquisition (SCA‐
DA) system and caused a wide blackout in Kiev and west 
Ukraine [11]. Another cyber-attack was launched in 2016 
again to part of Kiev Ukrainian capital. The attack led to the 
shut-down of 200 MW power generation [12]. Recently, the 

765 trunk line of Venezuela’s national grid was attacked in 
2020, causing blackouts in all eleven states except the capi‐
tal Caracas. According to a Clark school study at the Univer‐
sity of Maryland [13], hacker attacks every 39 s on average. 
Furthermore, it is found that cybercrime will cost companies 
world wide from 3 trillion USD in 2015 to an estimated 
10.5 trillion USD annually by 2025 [14]. These attack 
events have shown that although CPPSs can bring signifi‐
cant and societal benefits, new cybersecurity threats to these 
critical infrastructure need to be cautiously dealt with.

Cybersecurity methods of CPPSs have been intensively 
studied in the past decade, and review papers on these meth‐
ods are summarized in Table I. While most of these review 
papers [15] - [26] focus on one aspect of attack analysis, at‐
tack detection, and attack defense. Considering that attack 
detection is the premise of defense, it is necessary to include 
these aspects. However, these are still not analyzed in depth 
by considering the characters of CPPSs.

TABLE I
REVIEW OF PUBLISHED LITERATURE RELATED TO ATTACK DETECTION AND 

ATTACK DEFENSE

Topic

Attack 
detection

Attack 
defense

Reference

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Content

Analysis of false data injection attack and 
corresponding detection methods

Analysis of physics-based anomaly detection

Analysis of attack detection methods

Analysis of centralized and distributed attack 
detection methods

Analysis of attack detection, estimation, and 
control for industrial CPPSs

Analysis of attack detection based on 
deep learning

Analysis of prominent attack methods

Analysis of power systems against 
malicious attacks

Security threats for smart metering 
infrastructure

Security issues of advanced metering 
infrastructure

Analysis of security requirements and 
attack defense methods

Analysis of secure control for CPPSs

This paper presents an overview of attack analysis, attack 
detection, and attack defense methods for CPPSs, and their 
challenges are elaborated in detail. The research framework 
of cyber-attacks on CPPSs is illustrated in Fig. 2. 

The main ideas are as follows. When a system suffers 
from cyber-attacks, the impacts of cyber-attacks on CPPSs 
are firstly discussed. The characteristics of cyber-attacks are 
then analyzed, and the attack detection is implemented to di‐
agnose and identify cyber-attacks. After the detection, differ‐
ent defense methods are proposed to guarantee safe opera‐
tion of CPPSs. Different from the existing review papers, 
this paper focuses on the attack detection and cybersecurity 
defense of CPPSs. 

Specifically, the rest of this paper is organized as follows.
Section II presents the development and security risks of 
CPPSs. Section III presents the characteristics and impacts 
of cyber-attacks on CPPSs. The cyber-attack detection is pre‐
sented in Section IV. For cyber-attack defense, a survey is 
conducted on the popular methods including active defense 
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Location: Iran
Impact: more than 1000 

centrifuges were scrapped.

Impact: more than a million 

liters of sewage were leaked.

 Location: Kiev, Ukraine
Impact: 60 substations were 

shut down.

Location: Venezuela
Impact: the attack on route 

765 led to a blackout.

Location: Malucci, Australia

Fig. 1. Timeline of major attack events.
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Fig. 2. Research framework of cyber-attacks on CPPSs.
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and passive defense methods in Section V. The conclusion 
and challenging issues are given in Section VI.

II. DEVELOPMENT AND SECURITY RISKS OF CPPSS

This section firstly analyzes the key factors that drive the 
rapid development of CPPSs, and compares CPPSs with con‐
ventional power systems. The evolution of CPPSs involves 
the deployment of new technologies, which also brings a 
number of security vulnerabilities.

A. Emergence of CPPSs

There exist many factors that drive the rapid development 
of CPPSs, while the most influential ones include the rapid 
deployment of renewable generation technologies, the grow‐
ing number of prosumers, and the mass roll-out of demand-
side management technologies.

First of all, the biggest challenge facing sustainable develop‐
ment is climate change which is the most important drive for 
the transformational change of conventional energy structure 
to a low-carbon energy structure [27], [28]. To facilitate the 
transition, many new technologies, including energy-saving 
technologies and other low-carbon technologies, have been 
widely utilized [29], [30]. For example, wind and solar energy 
are two most popular renewable energy sources [31], while 
connecting these renewable power generations to the existing 
power system leads to both technical and economic challeng‐
es. One trend to modernize the distribution system is to devel‐
op a number of microgrids and effectively interconnect them 
through point of common coupling (PCC). The growing num‐
ber of microgrids to integrate renewable energies at medium- 
and low-voltage levels advances the development of 
CPPSs [32].

Further, considering the consumers’  expectations of in‐
creased power supply while meeting more strict legislations 
on both pollutant and carbon emissions. Utility grids are 
moving progressively to connect renewable generations as 
much as possible, so as to reduce the carbon footprint of 
power generation while meeting the growing public demands 
for both generation sustainability and more generation capac‐
ity. However, traditional solutions are difficult to cope with 
the increased complexities of the utility grid under the transi‐
tion to a low-carbon system, the concept of CPPSs have 
then been proposed to offer a potential better framework to 
operate and control such a complex system. As the aggrega‐
tion of advanced monitoring systems, home area networks, 
two-way communication, and remote control technology, 
CPPSs can enable the intelligent demand-side management 
(DSM) and offer a seemly integrated platform for the con‐
sumers to actively participate in the ancillary services of 
power systems through two-way interaction [33], resulting in 
an intelligent distribution grid, which benefits both power 
system operation and the consumers.

B. Comparison Between Conventional Power System and 
CPPSs

The emergence of CPPSs is to meet the needs for power 
system digitalization as well as more sustainable low-carbon 

power supply. In fact, CPPSs are power systems that can in‐
telligently integrate the behavior of all stakeholders in the en‐
ergy supply chain, so as to provide satisfactory power sup‐
ply to the consumers [34]. Hence, with the increasing inte‐
gration of modern technologies into the existing power sys‐
tems, CPPSs transform the current power systems to be 
more interactive, responsive, and organic.

Conventionally, power system is an one-way centralized 
system delivering the power from the generator set to the 
end users [35]. Power flow in conventional power systems is 
in one direction—from power supply system to the customer 
point of interconnection. However, bi-directional power flow 
in CPPSs is in two opposite directions like tide. When pow‐
er sources like photovoltaic (PV) and electric vehicle (EV) 
are connected to power supply system at the utility custom‐
er’s site, power has the potential to flow in the opposite di‐
rection—from the customer to power supply system, i. e., 
this reverses original direction of power flow [36], [37]. 
Therefore, the current energy management requires a smarter 
grid, and CPPSs are the solution that enables digital intelli‐
gence in power systems. As shown in Fig. 3, CPPSs are 
composed of both a physical layer and a cyber layer (the 
control functionality is a part of cyber layer). Physical layer 
refers to specific physical infrastructure and assets such as 
generation substation, transmission substation, distribution 
substation, and smart meter, etc., while the cyber layer refers 
to the information exchanges across the whole energy chain 
from generation units to the end users or service providers 
through wired or wireless networks. Moreover, it also inte‐
grates analytical tools to support the monitoring and control‐
ling of the energy flow from the generators to the end users. 
In Fig. 3, ops is short for operator; EMS is short for energy 
management system; BSM is short for bulk storage manage‐
ment; ISO is short for independent system operator; RTO is 
short for regional transmission organization; LFC is short for 
load frequency control; ED is short for economic dispatch; 
AMI is short for advanced metering infrastructure; CIS is 
short for customer information system; WAN is short for 
wide area network; FAN is short for field area network; 
LAN is short for local area network; NAN is short for neigh‐
borhood area network; HAN is short for home area network; 
IED is short for intelligent electronic device; PMU is short 
for phasor measurement unit; RTU is short for remote termi‐
nal unit; PLC is short for programmable logical controller; 
DG is short for distribution generation; and ES is short for 
energy storage.

In general, CPPSs can maximize the reliability, availabili‐
ty, and efficiency of grid operation, bringing tangible bene‐
fits to the economy and the society as a while. A comprehen‐
sive comparison of two systems is presented in [34], and a 
summary of the differences is given in Table II.

C. New Features of CPPSs

CPPSs are expected to bring a number of benefits to the 
operation and control of power systems with significant pen‐
etration of renewable generations at different voltage levels 
and to support the decarbonization of different sectors. 
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Many technical challenges, which are related not only to 
control and communication but also to real-time monitoring 
and management, need to be tackled such as real-time moni‐
toring of demand-side power consumption changes, mi‐
crogrid management, charging support of electric vehicles 
[38], and the utilization of renewable energy [39] and bat‐
tery storage systems [40]. To address these challenges, a 
range of new technologies have been developed.

1) New CPPS technologies: in recent years, some new 
CPPS technologies [41], [42] have been developed for the 
construction of smart grids. Specifically, these technologies 
cover power generation, transmission, distribution, and de‐
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Fig. 3. Framework of CPPSs under multi-type attacks.

TABLE II
COMPARISON BETWEEN CONVENTIONAL POWER SYSTEMS AND CPPSS

Character‐
istic

Measure‐
ment

Communi‐
cation

Power 
flow mode

Control

Conventional power system

Electromagnetic meters

One-way communication 
between power systems 

and users

Unidirectional power flow

Centralized control

CPPS

More two-way communication 
smart meters

Two-way communication 
between power systems 

and users

Bi-directional power flow

Centralized and distributed 
control
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mand side.
To achieve efficient grid management, it is necessary to 

apply advanced smart meters and control technologies in 
smart grids at all levels. DSM is one of the efficient grid 
management technologies, which aims to lower the power 
demand by taking effective incentive and inducement mea‐
sures and appropriate operation mode. It in turn avoids the 
cost of building new generators and transmission lines, saves 
customers’  money, and lowers the pollution from electric 
generators [43]-[45]. Demand response (DR) is one key pro‐
gram in DSM. According to Federal Energy Regulatory 
Commission [46], DR is defined as “changes in electric us‐
age by end-use customers from their normal consumption 
patterns in response to changes in the price of electricity 
over time, or to incentive payments designed to induce low‐
er electricity use at times of high wholesale market prices or 
when system reliability is jeopardized”. According to differ‐
ent response modes of the users, DR in electricity market is 
roughly classified into two categories: price-based DR strate‐
gy and incentive-based DR strategy [47]. The former refers 
to that the users change and adjust power load in term of 
electricity price and respond to power supply. The latter re‐
fers to that the contracted users receive direct compensation 
or other preferential tariffs and the suppliers are allowed to 
reduce their power loads [43]. Specially, when the system re‐
liability is threatened, the power supplier can directly control 
and manage part of the user’s power load through direct 
load control (DLC) [48]. Some other technologies can be 
employed to reduce the electrical losses such as superconduc‐
tive power transmission or control with appropriate utiliza‐
tion of dispatchable resources (distributed generation, load, 
and storage) [49], [50].

Furthermore, distributed energy resources (DERs) can be 
flexibly connected to smart grids, so that the power suppli‐
ers and the users can effectively manage energy utilization. 
For example, a current-controlled voltage-mode control meth‐
od for dispatchable electronically coupled DER units is pro‐
posed, which can quickly stabilize the terminal voltage and 
frequency [51]. To regulate the voltage, a model-free optimal 
strategy is proposed by the output power of inverter-inter‐
faced DERs [52]. A fast frequency control framework of dis‐
tributed DERs is proposed, which optimizes the inertia coef‐
ficients of each DER [53]. Considering the aggregation and 
disaggregation processes of massive DERs of small capacity, 
a model predictive control (MPC) strategy is proposed for re‐
al-time secondary frequency regulation in an islanded mi‐
crogrid [54]. An architecture for controlling hybrid energy 
storage system integrated with PV DERs is proposed to 
achieve frequency regulation [55]. More distributed control 
strategies for DERs are summarized in [56].

2) New features of CPPSs: the incorporation of these tech‐
nologies into CPPSs brings many new features. As summa‐
rized in Fig. 4, these features [57] can be summarized as fol‐
lows: compatibility implies that CPPSs are compatible with 
different types of power generation solutions and needs; flex‐
ibility refers to the ability of CPPSs to flexibly apply power 
resources and involve users; efficiency refers to the utiliza‐

tion of advanced information technologies to dynamically op‐
timize power system resources and thus improve the opera‐
tion efficiency. Moreover, some new technologies are uti‐
lized to reduce power losses: applicability refers to the abili‐
ty of CPPSs to support new products, services, and markets 
such as integrated smart home appliances and consumer de‐
vices, ensuring the necessary power quality for a variety of 
needs; and security means that CPPSs shall have self-healing 
ability, and be resilient to the attacks and natural disasters.

The first three are the basic features of CPPSs, “applica‐
bility” is the purpose of CPPSs, and “security” is the key 
step to ensure the reliable operation of CPPSs. These new 
features are vital for interacting with power consumers, meet‐
ing power quality requirements, and supporting modern elec‐
tricity markets.

D. Security Risks of CPPSs

The large-scale structure and complex networked environ‐
ment of CPPSs increase their complexities and vulnerabili‐
ties, giving the attackers new opportunities to launch mali‐
cious cyber-attacks. Therefore, security assessment can en‐
able the defenders to better identify security vulnerabilities 
of CPPSs, thereby improving defense strategies.

Firstly, there are loopholes in CPPSs. For example, [58] 
considers the vulnerabilities at different layers of microgrid 
as well as various factors relating to power system resil‐
ience, and proposes a cyber-physical security assessment 
metric (CP-SAM). By investigating the relevance of electrici‐
ty and meteorological data, a data-driven model is developed 
to predict and detect security vulnerabilities of power sys‐
tems [59]. A dynamic security assessment method is pro‐
posed to evaluate the safety performance of wind power gen‐
eration system based on deep learning [60]. From the per‐
spective of complex network theory, a vulnerability analysis 
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method is presented based on power system topologies [61]. 
This method examines the influence of the entire grid struc‐
ture on fault propagation, and can be used to study the cas‐
cading fault propagation mechanism in large power systems. 
Moreover, a smart grid standard on cybersecurity assess‐
ments is proposed [62].

Secondly, the vulnerabilities of CPPSs will be greatly ag‐
gravated under malicious cyber-attacks. Therefore, the securi‐
ty assessment of CPPSs under cyber-attacks is also extreme‐
ly important. An intrusion and defense model based on mar‐
kov decision process (MDP) is proposed to evaluate the se‐
curity of substations in the harsh network environment [63]. 
A dynamic security assessment method is proposed [64], 
which can quickly achieve dynamic security classification. A 
security index for vulnerability assessment is proposed to as‐
sess the risk of data attacks on power system state estima‐
tion [65]. Finally, cyber resilient communication network for 
CPPSs is proposed to quantify the security risk of denial-of-
service (DoS) attacks on intelligent devices and networks [66].

III. CHARACTERISTICS AND IMPACTS OF CYBER-ATTACKS 
ON CPPSS

As cyber-attacks could pose a huge threat to CPPSs, it is 
essential to analyze these attacks in much more details. In 
this section, we firstly discuss the structure of CPPSs, and 
comprehensively analyze possible cyber-attacks to each net‐
work layer and extract their features. Then, we further ana‐
lyze the specific impacts of different cyber-attacks on CPPSs.

A. Analysis of Cyber-attack Features

According to propagation methods of cyber-attacks [17], 
these attacks can be classified into communication-based, cy‐
ber-based, physical-based, and network-based cyber-attacks. 
As illustrated in Figs. 3 and 5, cyber-attack features are first 
extracted and analyzed below.

Due to physical isolation of CPPSs from the external envi‐
ronment, the attackers need to break through the physical 
isolation and enter into the internal network firstly, before 
they can launch any cyber-attacks. At this stage, a popular 
method taken by the attackers is to use phishing emails to 
plant a back door in the system and breaks through physical 
isolation with an unintentional click by the operator. Another 

method is to search for vulnerabilities of physical isolation 
technology such as firewall security vulnerabilities, to break 
the protection barrier between the internal and external net‐
works by using password cracking. Once having gained an 
access to the internal network, the attackers can attack physi‐
cal devices and communication devices connected with the 
internal network in the smart grid. Then, the key features of 
cyber-attacks are summarized below.

1) Multi-point: multi-point means that the attacker can 
launch cyber-attacks by weakly protected/unprotected devic‐
es or nodes in power generation, transmission, distribution 
and consumption. For example, PMU is usually deployed in 
the 330 kV and above backbone network, and important 
power plants and substations. RTU is installed in power 
plant or substation, and IED is necessary for substation auto‐
mation system. These smart measuring meters and devices 
with communication are connected to each other [67]. How‐
ever, under open network environment, CPPSs can be ex‐
posed to the attacks, which provides the opportunity to in‐
vade the weak nodes. Regarding Ukrainian blackout in 2015, 
the attackers firstly launched phishing emails to implant 
BlackEnergy malware, and several key hosts were captured 
in the monitoring and device area to obtain the control abili‐
ty of SCADA system, causing a wide blackout. Therefore, 
cyber-attacks can be launched against weakly protected/un‐
protected devices, as shown in Fig. 3, indicating that the fea‐
ture of cyber-attacks can be multi-point.

2) Multi-layer: multi-layer means that cyber-attacks can 
spread across different layers due to the high coupling 
among physical, cyber, and control layers. The above smart 
measuring meters and devices in physical layer are intercon‐
nected through wired/wireless networks, e. g., Ethernet [68], 
profibus [69], NB-IoT [70], a hybrid wired/wireless combin‐
ing time triggered Ethernet and 5G [71], etc, in cyber layer, 
supporting the running of control center in control layer 
[72]. When the information are exchanged among these 
three layers, they are easily attacked. For example, the at‐
tackers launched DoS against the renewable energy power 
company in Utah by exploiting known vulnerabilities in Cis‐
co firewall [73]. Therefore, as shown in Fig. 3, multi-layer 
is another feature of cyber-attacks.

3) Multi-type: multi-type means that the types of attacks 
against different devices are also heterogeneous. In the physi‐
cal layer, the attackers can launch different cyber-attacks 
aiming at destructing physical devices such as measuring me‐
ters, protection devices, and so on [15], [74], and different 
potential cyber-attacks against physical devices are also sum‐
marized [75]. In the cyber layer, the attackers often launch 
some typical attacks such as DoS [76], black hole and gray 
hole attacks [77], false data injection attack (FDIA) [78], 
etc, which will destroy the stable operation of CPPSs. In the 
control layer, the attackers can launch command manipula‐
tion attacks by injecting false command, causing the opera‐
tor to perform wrong operations [79]. In summary, as shown 
in Fig. 3, another feature of cyber-attacks is multi-type.

4) Cross: it should be noted that the above three features 
are coupled with each other in Fig. 5. For example, multi-
layer and multi-point mean that the attackers can invade dif‐

Multi-point Multi-layer

Multi-type

Multi-layer

and

multi-type

Multi-point

and

multi-type

Multi-point and multi-layer

Multi-point, multi-layer, and multi-type

Fig. 5. Analysis of cyber-attack features.
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ferent vulnerable nodes not only in the same layer but also 
in different layers. Multi-layer and multi-type mean that the 
attackers can launch different types of attacks for vulnerable 
nodes in different layers to achieve different purposes. Multi-
point and multi-type mean that the attackers can launch dif‐
ferent types of attacks against different vulnerable nodes. Fi‐
nally, multi-layer, multi-point, and multi-type are the compre‐
hensiveness of the above three cases. It is clear from the 
above analysis that the diversity and complexity of the three 
features of cyber-attacks coupled to each other make them 
difficult to detect and defend, which bring huge challenges 
for CPPSs.

Therefore, extensive research works on the security of 
CPPSs have been conducted to hedge against attacks by ana‐
lyzing the vulnerabilities and exploring reliable solutions, 
which are reviewed in Sections IV and V.

B. Analysis of Popular Attack Models

To better illustrate the characters of multi-type of cyber-at‐
tacks, we list several popular attack models such as FDIAs, 
replay attacks (RAs), and DoS.

The following linear discrete model of CPPSs [80] is con‐
sidered as:

ì
í
î

xk + 1 =Axk +ωk

zk =Hxk + νk
(1)

where xk and zk are the system state and measurement output 
vectors at the sampling instant, respectively; A is the state 
transition matrix; H is the Jacobian matrix; and ωk and νk 
are the independent process and measurement noise, respec‐
tively. For system model in (1), three cyber-attacks are ana‐
lyzed as follows.

1) FDIAs [15]: FDIA means that the attackers can tamper 
with system measurement zk. This type of attacks transmits 
incorrect values to the control center, resulting in wrong con‐
trol commands. When the attackers are able to hack part of 
all measuring meters to achieve FDIA [81], the correspond‐
ing model is usually described as:

z a
k = zk +Γak =Hxk + νk +Γak (2)

where Γ = diag(γ1γ2γn ), γi = 1 represents the ith measur‐
ing meter is attacked, otherwise, γi = 0; and ak is the attack 
vector designed by the attackers.

2) RAs [82]: RAs are done by stealing the already trans‐
mitted information, which is used to forge and ultimately 
achieve the attacker’s purpose. The attackers will implement 
the following attack steps.

Sept 1: the attackers record the measured output zk for 
enough time without giving the system desired attacked con‐
trol commands ua

k.
Sept 2: the attackers inject the desired attacked control 

commands ua
k into the system while replaying previously re‐

corded data zk to eliminate the effects of the attack, which 
makes it difficult to detect.

The attack model is described as:

ì
í
î

ïïxk + 1 =Axk +ωk + ua
k

z a
k = zk - α

(3)

where the subscript α denote a large enough replaying peri‐
od.

3) DoS: DoS means that the attackers continuously send 
forged packets on communication network channel, which 
makes the communication unavailable and the information 
cannot be exchanged normally. In this case, once the attack‐
ers successfully block the communication channel, zk will be 
lost. The corresponding model is usually described as:

z a
k = λk zk (4)

where λk = diag(λk (1)λk (2)λk (n)) is a diagonal matrix 
with elements 0 or 1, i.e., λk (i)= 1 represents that the corre‐
sponding measurements are successfully transmitted, other‐
wise, λk (i)= 0.

The above three attack models are popular, and some liter‐
atures had done detailed research on these attack models, at‐
tack scenario, and specific detection methods, e. g., FDIA 
[15], [17], DoS [19], and RA [20], [25].

In summary, the diversity of attack methods is due to dif‐
ferent vulnerabilities of CPPSs considered by the attackers. 
However, the essence of the attack method is the malicious 
manipulation of data on different devices with security vul‐
nerabilities in CPPSs, including data tampering, e. g., FDIA 
and RA, and interruption of transmission, e.g., DoS.

C. Impacts of Cyber-attacks on CPPSs

As mentioned above, cyber-attacks pose a huge security 
threat to CPPSs. Recent research on cyber-attacks clearly in‐
dicates that the impact of cyber-attacks on CPPSs is increas‐
ing. Generally, the impacts of cyber-attacks include systems 
stability, i.e., the destructive behavior induced by the attack‐
ers can affect system stability such as cascading failure, and 
the economy, i.e., the profit-making of the attackers.
1) Cascading Failure Caused by Cyber-attacks

Cyber and physical layers of CPPSs are highly coupled, i.e., 
the control of power systems depends on communication net‐
works, and the power supply of communication networks al‐
so relies on power systems, which brings unprecedented im‐
provement and functionalities to power systems. However, 
such interdependent systems are also vulnerable to the fail‐
ures, natural disasters, and especially cyber-attacks with the 
above features. When an attack occurs in an interdependent 
system, a failure caused by cyber-attacks in one network 
may cascade down to a dependent node in another network 
[83], eventually leading to the collapse of the entire system 
[84] and ultimately to a blackout. For example, a blackout 
occurred in Italy in 2003, some communication nodes were 
initially lost as the result of the shut-down of the correspond‐
ing power station, and the loss of this communication infor‐
mation led to a wider power outage [85]. Therefore, the cas‐
cading failures caused by cyber-attacks would be the most 
direct result.
2) Impacts on Stable Operation

The cascading failures caused by cyber-attacks can affect 
the stable operation of power systems. The impacts on stable 
operation are related to misleading data and information af‐
ter cyber-attacks successfully hack into CPPSs. For example, 
the attackers may implement unnecessary generation opera‐
tion and load shedding by injecting false data [86]. The oper‐
ation and control of CPPSs may conduct improper response 
or no response, eventually leading to unstable conditions. 
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The fake measurements from cyber-attacks will lead to the 
secondary voltage controller to take wrong setting values, 
which compromises the overall system stability [87]. The im‐
pacts of cyber-attacks on the frequency control of CPPSs are 
extensively studied [88], and it also shows how a frequency-
based cyber-attacks can lead to a wide-area blackout.
3) Impacts on Economy

The cascading failures caused by cyber-attacks can lead to 
wide-area blackouts, hence affecting the economy, which is 
also a major concern. Most of the attackers pursue some eco‐
nomic goals such as seeking for personal interests or being 
employed by hostile countries to influence the economic de‐
velopment of other countries. The economic impact of cyber-
attacks can be summarized as follows.

Firstly, energy theft is a major target for many attackers. 
The attackers can modify the data in CPPSs or modify their 
own smart meter readings directly to pursue economic bene‐
fits. Both situations will bring illegal profits to the attackers 
[89], [90]. On this basis, a new locational marginal price 
(LMP) attack model is proposed [91]. With this model, cyber-
attacks have a significant impact on the energy market even 
without the need for a complete knowledge of power systems.

Secondly, cyber-attacks may change grid topology and 
even generation plans, which eventually have a significant 
impact on grid operational cost. For example, the failures 
caused by cyber-attacks may cascade down interdependent 
systems, leading to large-scale outage [92]. Moreover, the 
load redistribution attack is utilized to trip off a critical lines 
or breakers by misleading the control center to make improp‐
er dispatch actions [93]. It should be pointed out that the sta‐
bility impact and the economy impact often coexist. To miti‐
gate the challenges and negative impacts of cyber-attacks, 
many attack detection methods have been proposed.

IV. CYBER-ATTACK DETECTION

In response to potential threats induced by cyber-attacks, 
many methods have been proposed for cyber-attack detec‐
tion, and these can be categorized into two groups, e. g., 
model-based and machine learning based detection methods. 
Model-based detection method aims to quantify the changes 
of the internal state of the system under cyber-attacks, so as 
to achieve the purpose of attack detection. For the latter, ma‐
chine learning based detection method is utilized to train the 
classifier for attack detection.

A. Model-based Detection Methods

Model-based state estimation of power systems uses mea‐
surement sets and system models to estimate internal states, 
and they can be categorized as static and dynamic state esti‐
mation models. Traditional state estimation of power sys‐
tems usually adopts static estimation methods [17]. Howev‐
er, as real CPPSs constantly change in real time, dynamic 
state estimation is becoming more important [94]. Hence, at‐
tack detection methods can also be based both on static and 
dynamic state estimation.

State estimation based detection methods often have two 
steps: ① estimating or predicting the internal states of the sys‐
tem; and ② processing the measured state information, and 

comparing the differences based on various similarity tests.
1) Static State Estimation

Weighted least square (WLS) estimation is perhaps the 
most popular static state estimation method. It has been 
widely used in attack detection. For FDIA detection, WLS-
based detection method is utilized to detect FDIA [95], [96]. 
Some other static estimation methods include the median fil‐
ter (MF) [97] and the maximal likelihood (ML) estimation 
[98], which are used to achieve the detection for FDIA. 
These estimation methods have advantages of simplicity and 
versatility, but their performances will be seriously degraded 
when there exist uncertainties in the system parameters.
2) Dynamic State Estimation

Compared with traditional static state estimation methods, 
dynamic state estimation methods are gaining more populari‐
ty in power systems. Kalman filter (KF) and its variants 
such as extended Kalman filter (EKF) and unscented Kal‐
man filter (UKF) are among the most popular methods. The 
specific process of KF can be described as:

ì
í
î

ïï x̂ -
k =Ax̂k - 1

P -
k =APk - 1 AT +Q

(5)

ì

í

î

ïïïï

ïïïï

Kk =P -
k H T (HP -

k H T +R)-1

Pk =P -
k -Kk HP -

k

x̂k = x̂-
k +Kk (zk -Hx̂-

k )

(6)

where the prior estimation state vector x̂-
k  is the estimation at 

time instant k by using the measurements up to time instant 
k - 1; the posterior estimation state vector x̂k is the estima‐
tion at time instant k by using measurements up to time in‐
stant k; P -

k  and Pk are the prior and posterior covariances of 
the estimation error, respectively; Q is the process noise co‐
variance matrix; R is the measurement noise covariance ma‐
trix; and Kk is the Kalman gain.

The operation of KF includes the following two steps: ① 
a state prediction is built upon time update; and ② the up‐
dated measurement is used to modify the state prediction.

A number of extend detection methods have been pro‐
posed based on KF. For FDIA detection, a FDIA detection 
method is proposed by using KF [99], and an online detec‐
tion method based on KF is used to detect FDIA [100]. A 
model prediction method based on KF is proposed to detect 
electromechanical abnormal oscillations caused by FDIA 
[101]. An online CUSUM attack detection method based on 
KF is proposed for hybrid FDIA or jamming attacks [102].

Next, considering the error caused by the linearization of 
CPPS model, EKF and UKF are also proposed to achieve at‐
tack detection. For FDIA detection, according to successive 
batch-mode regression representation of EKF, a statistical 
outlier method based on S-estimator is implemented to de‐
tect FDIA [103]. An anomaly detection including Luenberger 
observer and EKF is proposed, which improves the ability to 
detect FDIA [104]. A novel dynamic watermarking (DW) 
based EKF detection method is proposed to detect FDIA 
[105], and an adaptive UKF method is proposed to detect 
FDIA [106]. A method based on UKF and WLS is proposed 
to estimate system state and identify FDIA according to the 
difference of estimation results [107].

734



DU et al.: A REVIEW ON CYBERSECURITY ANALYSIS, ATTACK DETECTION, AND ATTACK DEFENSE METHODS...

To reduce the communication burden and computational 
complexity, a distributed Kalman filter (DKF) is proposed to 
achieve global accurate estimation. It has been widely used 
in attack detection. For FDIA detection, DKF is combined 
with blockchain technology to protect network databases and 
network communication channels from FDIA [108]. For RA 
detection, a DKF with trust-based dynamic combination strat‐
egy is proposed to detect RA [109], [110]. For DoS detec‐
tion, a distributed dynamic state estimator is proposed, 
where the generalized cumulative sum method is used to de‐
tect DoS [111].

For FDIA detection, interval state estimation (ISE) is em‐
ployed to carry out attack detection. An ISE combined with 
deep learning method is proposed to improve the detection 
accuracy for FDIA [112], [113]. A generalized ISE method 
based on UKF is proposed to quantify the normal fluctuation 
of all states, which is then used to detect FDIA [114]. An 
ISE forecasting method is proposed to approximate the possi‐
ble largest variation bounds of each state variable to achieve 
FDIA detection [115].

Moreover, KF selects the minimum linear variance gain as 
Kalman gain, while the optimal gain of unknown input ob‐
server (UIO) is obtained by pole configuration. In addition, 
UIO can take attack signals as unknown inputs and detect it 
by estimating attack signal [116]. For FDIA detection, a 
UIO-based attack detection method is proposed to detect 
FDIA, where the adaptive threshold is set to improve the de‐
tection accuracy [117]. Some UIO-based attack detection 
methods are proposed to detect FDIA or RA [118]-[122]. In‐
terval observer (IO) can also be used for FDIA detection. 
For example, an IO-based detection method against FDIA is 
proposed, where the traditional residual evaluation functions 
are replaced by interval residuals [123]. A method based on 
stochastic UI estimator is proposed to detect FDIA for auto‐
matic generation control (AGC) system [124]. Furthermore, 
some IO-based detection methods are proposed to estimate 
the interval state and to detect FDIA [125], [126].
3) Detection Tests

Detection test is to detect cyber-attacks by processing the 
estimated state and comparing its similarity against actual 
measured value. The popular detection schemes can be 
grouped into the following categories [17].

Euclidean distance (L2 norm) detection test [97], [118] is:

fL2
(zk )=

ì
í
î

ïï
ïï
1     zk -Hx̂k 2

> f̄1

0    otherwise
(7)

where fL2
(zk ) is the Euclidean distance detector, and 1 means 

that the attacks are detected, 0 otherwise; Hx̂k is the estimat‐
ed value;  zk -Hx̂k 2

 is the L2 norm of the difference; and f̄1 

is a prior threshold value, which is generally given by the 
experienced operators according to practical situations.

The largest normalized residual (LNR) detection test [127] 
is:

fLNR (zk )=
ì

í

î

ïïïï

ïïïï

1    





 




zk -Hx̂k

Nk ¥

³ f̄2

0    otherwise

(8)

where Nk is covariance matrix of residual rk.
χ2-detection test [96] is:

fχ2 (zk )=
ì
í
î

1    J(x̂k )³ f̄3

0    otherwise
(9)

where fχ2 (zk ) is the χ2-detector; and J(x̂k ) is the objective 

function.
Cumulative sum (CUSUM) detection test [103] is:

fCUSUM (zk )=
ì
í
î

1    St = St - 1 + (zk -Hx̂k )³ f̄4

0    otherwise
(10)

where St is the collected measurement at time instant k. This 
method is usually used to monitor the variations in the col‐
lected measurements.

Kullback-Leibler distance (KLD) detection test [99] is:

fKLD (zk )=
ì

í

î

ïïïï

ïïïï

1    ∑
zk

p(xk ) In
p(xk )
Q(xk )

³ f̄5

0    otherwise

(11)

where p(xk ) is the probability distribution of historical state 
changes; and Q(xk ) is the probability distribution of the state 
changes at previous moment and current moment. This meth‐
od uses probability distribution functions to detect cyber-at‐
tacks.

Cosine similarity detection test [128] is:

fsim (zkẑk )=
ì

í

î

ïïïï

ïïïï

1    1 -
zk × ẑk

 zk  ẑk

³ f̄6

0    otherwise

(12)

where the numerator in (12) is dot product of vectors zk and 
ẑk; and the denominator denotes the product of their euclide‐
an lengths. When there are no cyber-attacks, 
zk × ẑk ( ) zk  ẑk  is equal to 1; and the prior thresholds f̄ i 

(i = 126) is discussed in [129]. It is worth noting that the 
setting of threshold will affect the detection rate of cyber-at‐
tacks. If too high threshold is set, the detection rate will be 
decrease; otherwise, it can lead to a higher false alarm rate.

B. Machine Learning Based Detection Methods

Different from the aforementioned state estimation based 
detection method, machine learning based detection method 
does not need mathematical model of physical system, and it 
completely depends on historical data of the system under 
test. Machine learning is an interdisciplinary field of statis‐
tics, artificial intelligence, and computer science, which can 
be used to extract the knowledge from data. Machine learn‐
ing methods can be utilized for classification and regression. 
The essence of regression is to realize numerical prediction, 
which has been widely applied to power system load fore‐
casting. The classification is to divide the predicted values into 
specific categories, and cyber-attack detection is a typical clas‐
sification task. For example, we can use historical data to train 
a machine learning based classifier, which is then utilized to 
detect abnormal changes in the data for identifying potential 
cyber-attacks in CPPSs. In general, machine learning based de‐
tection methods include the following three categories: super‐
vised, unsupervised, and semi-supervised learning methods.
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1) Supervised Learning
Generally, the users provide paired input and expected out‐

put, i.e., {uiz i }, to train the method, so that the method will 
give the expected output according to the given input. For at‐
tack detection, the expected output describes whether there 
is an attack or not. For FDIA detection, linear regression 
(LR) is employed to detect FDIA by comparing the differ‐
ence between the measurement vector and model predictions 
based on historical data [130]. Support vector machine 
(SVM) is also used to detect FDIA [131], and K-nearest 
neighbour (KNN) is also used to detect FDIA [132]. Deci‐
sion tree (DT) is used to detect electricity stealing caused by 
FDIA [133], [134], and naive bayes classifier (NBC) is used 
to detect FDIA [135]. For DoS detection, a big data frame‐
work using SVM, NBC, and DT is proposed to detect traffic 
anomalies caused by DoS [136].

In addition to the aforementioned methods, as an extreme‐
ly popular tool, artificial neural network (ANN) has also 
been widely used for classification and prediction. The ANN 
model could be a simple feedforward neural network (FNN) 
or a deep neural network (DNN). Their model can be ob‐
tained by the optimization problem, which can be solved by 
different local and global methods such as gradient based 
search techniques [137], genetic method [138]. The ANN 
has also been widely used in attack detection. For FDIA de‐
tection, FNN is employed to detect FDIAs [139], and recur‐
rent neural network (RNN) can be used to achieve FDIA de‐
tection [140], [141]. DNN is used to detect FDIA [136], 
where the hidden layers determine the accuracy of attack de‐
tection. Convolutional neural network (CNN) has been used 
to detect FDIA by extracting different features from the sam‐
ples [142]. For DoS detection, FNN is used to detect FDIA 
[143], and RNN is employed to detect DoS [144]. For RA 
detection, CNN is proposed to detect RA [145].
2) Unsupervised Learning (UL)

UL refers to learning some useful patterns from unlabeled 
data, i.e., learning valuable information such as effective fea‐

tures, categories, and structures directly from the original da‐
ta without any manual guidance such as tags or feedback. 
For cyber-attacks, the classes of abnormal data are different 
from normal data. For FDIA detection, K-means clustering 
(KMC) is employed to achieve FDIA detection [146]. Con‐
sidering large-scale data sets, isolation forest (IF) is used to 
isolate anomalies caused by FDIA by analyzing the data dif‐
ference between various IF [147]. Other classic UL methods 
such as autoencoder (AE) have also been used for FDIA de‐
tection [148], [149]. For DoS detection, deep belief network 
(DBN) is employed to detect abnormal network traffic 
caused by DoS [150]. Some existing attack detection meth‐
ods based on DBN have been reviewed in [151].
3) Semi-supervised Learning (SSL)

SSL is also an important branch of machine learning. It 
falls between supervised learning and UL and uses both la‐
beled and unlabeled data to fit the model. This method is al‐
so widely utilized in attack detection. For FDIA detection, a 
semi-supervised adversarial autoencoder (SSAA) based meth‐
od is proposed to detect FDIA [152]. The generative-adver‐
sarial based semi-supervised (GBSS) learning framework is 
proposed to detect FDIA [153]. A semi-supervised deep 
learning method for intrusion detection (SS-deep-ID) is pro‐
posed to improve detection efficiency for FDIA [154]. A ro‐
bust semi-supervised prototypical network (RSSPN) classifi‐
er is proposed to detect FDIA [155].

Finally, state estimation based detection method versus 
machine learning based detection method is shown in Fig. 6. 
The specific implementation process of the two detection 
methods based on state estimation and machine learning are 
shown in Tables III and IV, and their advantages and disad‐
vantages are analyzed. Especially, dynamic state estimation 
is divided into centralized and distributed state estimations, 
and their advantages and disadvantages are discussed, respec‐
tively. Moreover, the computational complexity and detec‐
tion rate of these methods have also been summarized [17].

(a)

(b)
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Fig. 6. State estimation based detection method versus machine learning based detection method. (a) State estimation based detection method. (b) Machine 
learning based detection method.
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V. CYBER-ATTACK DEFENSE

To further improve the security of CPPSs and reduce the 
threat of cyber-attacks, many corresponding defense strate‐
gies have been developed based on the aforementioned at‐
tack detection methods. Similar to the aforementioned detec‐
tion methods, the defense methods can be grouped into two 
categories: ① active defense methods, aiming at eliminating 
the possibility of any successful cyber-attacks; and ② pas‐
sive defense methods, quickly locating and isolating the at‐
tacked locations and taking appropriate measures to ensure 
the normal operation of CPPSs when cyber-attacks are suc‐
cessfully launched.

A. Active Defense Methods

From the previous analysis of cyber-attacks, it is evident 
that three features of cyber-attacks, including multi-point, 
multi-type, and multi-layer, bring challenges to attack de‐
fense. Moreover, due to the limited defense resources, the 
common active defense strategies often select a limited num‐
ber of specific facilities for protection to achieve the best de‐
fense effect.

For FDIA defense, a hidden moving target defense (HM‐
TD) method is proposed to maintain power flow, which pre‐
vents FDIA intrusion by changing the susceptance of trans‐
mission lines [156]. The defender actively learns different at‐
tack scenarios, which can tolerate some attacks [157]. More‐
over, game theory (GT) is also employed to defense FDIA 
[158] - [160]. To avoid the key services in CPPSs suffering 
from FDIA, a polymorphic heterogeneous security architec‐
ture (PHSA) is proposed to improve its security [161]. For 
DoS defense, when the attacker resources are uncertain, a 
multiple-attack-scenario (MAS) defender-attacker-defender 
(DAD) model is proposed to protect the transmission system 
from DoS [162].

B. Passive Defense Methods

Different from active defense methods, the primary goal 
of passive defense methods is to locate and isolate the at‐
tacked nodes as quickly as possible, and to take the corre‐
sponding attack-tolerant measures for reducing the damage 
caused by cyber-attacks.
1) Isolation of Attacks

In general, attack detection can be performed simultane‐
ously with isolation. For FDIA defense, a prediction-based 
attack isolation method is proposed [163] to achieve FDIA 
detection and isolation. For distributed CPPSs, an FDIA de‐
tection and isolation method based on UIO is proposed 
[164]. An FDIA detection and isolation method based on un‐
known input IO interval observer and logical judgment ma‐
trix is proposed [165]. Furthermore, a topology-based power 
system subregion division method is proposed to reduce the 
difficulty in FDIA detection and isolation [166], and a super‐
vised FDIA isolation method combining statistical metrics 
and ensemble tree model (ETM) is proposed [167]. A deep 
learning based locational detection architecture (DLLD) is 
proposed to detect the exact locations of FDIA [168], which 
combines bad data detector (BDD) with CNN.
2) Attack Tolerance

Based on the above cyber-attack location and isolation 
methods, certain attack tolerant technologies also need to be 
utilized to ensure the stable operation of CPPSs. Attack toler‐
ant technologies are quite similar to the fault tolerant con‐
trol. In general, the fault tolerant control adopts the corre‐
sponding control measures for different fault sources to en‐
sure normal operation of the equipment before or after the 
equipment failure, or the equipment can still perform basic 
functions within the specified time at the cost of sacrificing 
the performance loss. Similar to the fault tolerant control de‐
scribed above, attack tolerance technologies also have the 

TABLE III
STATE ESTIMATION BASED ATTACK DETECTION

Category

Static

Dynamic

Method

WLS [95], [96], MF [97], ML [98]

Centralized: KF [99]-[102], EKF [103]-[105], 
UKF [106], [107]

Distributed: DKF [108]-[111], ISE [112]-[115], 
UIO [116]-[122], IO [123]-[126]

Advantage

① Low time complexity② High implementation

① High estimation accuracy② High applicability to nonlinear models③ High detection rate

① High estimation accuracy② High suitability for large systems③ High detection rate

Disadvantage

① Low estimation accuracy② Low suitability for large system

① High time complexity② Easy divergence

① High time complexity② Easy local optimization

TABLE IV
MACHINE LEARNING BASED ATTACK DETECTION

Category

Supervised

Unsupervised

Semi-supervised

Method

LR [130], SVM [131], [136], KNN [132], 
DT [133], [134], NBC [135], ANN [139], [144]

KMC [135], FC [146], IF [147], 
AE [148], [149], DBN [150]

SSAA [152], GBSS [153], SS-deep-ID [154],
RSSPN [155]

Advantage

① System models are not required② Known attack detection is fast

① System models are not required② New attack detection is applicable

① System models are not required② Known attack detection is fast③ New attack detection is  applicable

Disadvantage

① Data set with label is required② New attack detection is not applicable

Large number of training is required

Unlabeled data are extensively trained
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similar features. However, this research work is still at its in‐
fancy, and only a very limited results have been reported so 
far, hence deserving further exploration.

For FDIA defense, a parametric feedback linearization 
(PFL) control is proposed to achieve the stability of power 
systems under FDIA [169]. A controlled switching unit is 
proposed to ensure the frequency stability under FDIA 
[170]. A recovery strategy based on deep reinforcement 
learning (DRL) framework is proposed to reclose the tripped 
transmission lines caused by FDIA, which has the adaptabili‐
ty and real-time decision ability for uncertain cyber-attack 
scenarios [171]. To eliminate the influence of FDIA, a state 
reconstruction method is proposed to filter out FDIA [172]. 

A method based on synchronous input and state estimation 
is proposed to detect FDIA, and the estimated value is used 
to reduce the effect of the attack [173]. For FDIA defense 
and DoS, considering hybrid cyber-attacks from FDIA and 
DoS, a distributed estimation method based on the alternat‐
ing direction method of multipliers (ADMM) is proposed to 
improve the security of CPPSs [174]. For FDIA defense and 
RA, an optimal two-stage Kalman filter (OTS-KF) is pro‐
posed to achieve the defense against FDIA and RA in AGC 
systems [175].

Finally, Table V is a summary of the aforementioned cy‐
ber-attack defense methods, including their advantages and 
disadvantages.

VI. CONCLUSION AND CHALLENGING ISSUES

Due to the landscape change of power systems and the in‐
creased utilization of new ICTs, attack detection and defense 
for CPPSs have become a research hotspot in the recent 
years. This paper presents a comprehensive literature review 
in regards to cybersecurity of CPPSs and three key methods, 
including attack analysis, attack detection, and attack de‐
fense, are discussed in detail. The attack defense has gained 
substantial attention in the academic community, and a range 
of detection and defense methods have been proposed. How‐
ever, there still exist several unsolved open problems in this 
area, which are summarized as follows.

1) Holistic design of CPPSs: with the support of modern 
communication resources and technology, CPPSs integrate 
various physically dispersed computing and control resourc‐
es to provide system support for core tasks, resulting in sig‐
nificantly improved capacity to solve more complex prob‐
lems than ever before. Compared with the conventional pow‐
er systems, CPPSs promote the goals such as intelligent re‐
source allocation and energy management through the inte‐
gration of communication, computation, and control. Based 
on this, ICTs can quickly and effectively provide supports 
for control tasks at a global scale, guaranteeing the feasibili‐
ty and effectiveness of the global optimization and regula‐
tion of CPPSs. However, it also brings more challenges and 
difficulties to its security control and defense. Therefore, the 
design and planning of CPPSs should not only consider the 
development of resource strategic plans, the characteristics 
of consumers, and the dynamic operation characteristics of 
power systems, but also the holistic design of security de‐
fense mechanism to further strengthen the distributed, inter‐
active, and dynamic features of CPPSs.

2) The gaming between attackers and defenders: the rela‐

tionship between the attackers and defenders is also worth 
exploring. For the defenders, it is necessary to ensure the se‐
curity of CPPSs as much as possible by analyzing and evalu‐
ating the vulnerability of CPPSs and configuring the limited 
defense resources. For the attackers, identifying the weakest 
point in power systems is the main target. From the perspec‐
tive of GT, the above behaviors of the attackers and defend‐
ers can be modeled by a static zero-sum game. However, in 
actual situations, the attackers may not know the defense 
strategies partially or fully, and the defenders may also know 
nothing about the attack strategies. Therefore, in the case of 
information asymmetry, investigating the interactions of the 
attackers and defenders is an interesting topic. Moreover, 
multiple defenders and multiple attackers may be involved. 
Thus, it is necessary to investigate dynamic gaming such as 
Markov games, to describe the process of dynamic interac‐
tions between the attackers and defenders.

3) Analysis of new attacks mechanism: with the signifi‐
cantly increasing intelligence of CPPSs, more security vul‐
nerabilities are also identified, offering new opportunities for 
attackers. Meanwhile, with the continuous update of cyber-at‐
tacks means, novel cyber-attacks against CPPSs emerge end‐
lessly. By analyzing the vulnerability of system detection 
mechanisms, the attackers can build covert attacks to bypass 
common detection mechanism such as the popular FDIA. 
Moreover, due to the high coupling between cyber layer and 
physical layer of CPPSs, any small fault caused by the at‐
tacks may propagate rapidly due to the strong coupling of 
dual networks and may result in more frequent large-scale 
blackouts, seriously endangering the security, stability, and 
economic operation of CPPSs. Therefore, the analysis of the 
attack mechanism and cascading failure is one of the re‐
search trends that deserve further investigation.

TABLE V
SUMMARY OF CYBER-ATTACK DEFENSE METHODS

Category

Active defense

Passive defense

Reference

HMDT [156], MFD-based [157],
GT-based [158], [160], 
DAD model-based [162]

VAR [163], UIO [164]-[166],
ETM [167], DLLD [168],

PFL [169], DRL [171],
ADMM [174], OTS-KF [175]

Advantage

① Low utilization of defense resources② Simple operation for defender

① Fast location of attacked nodes② Normal operation of system under 
attack

Disadvantage

① Inconsistency between attacked and protected objects② Imbalance between attack resources and defense 
resources on the same target

① Easy to incorrectly isolate safe nodes② Prone to attack-tolerance delay③ Easy to exacerbate the instability of system
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4) Detection and defense based on physical mechanism: 
the current attack detection methods are still limited. The 
state estimation based detection methods can only detect spe‐
cific cyber-attacks, and their generalization is poor. In practi‐
cal applications, it is desirable to develop the detection meth‐
ods independent of system models and parameters. The ma‐
chine learning based detection methods can only detect the 
existing cyber-attacks, but they have difficulties in meeting 
the needs against the endless novel cyber-attacks. However, 
multi-type cyber-attacks designed by the attackers always di‐
rectly or indirectly affect physical properties of power sys‐
tems. Therefore, it is necessary to analyze physical proper‐
ties based on physical mechanism of the systems, and to de‐
velop the detection methods that can be easily scaled up. 
Further, most research works only focus on attack detection, 
while there are limited preventive measures. In general, 
whether an attacker can compromise a device in reality de‐
pends on the level of protection that the defender has de‐
ployed on the device. Therefore, it is worth considering 
which devices shall be protected and how many layers of 
protection shall be deployed so that no state variables can be 
altered by the attackers. Besides, a limited number of re‐
search works have studied attack location and isolation, 
which is very important for the defenders to take the corre‐
sponding attack-tolerance methods for ensuring the normal 
operation of the system under cyber-attacks. CPPSs are re‐
quired to have fault-tolerance and attack-tolerance, which 
can ensure that it can still operate normally in extreme cas‐
es. Therefore, it is important for the defenders to utilize the 
fault-tolerant control to enhance the robustness of CPPSs.

5) Verification and application of attack/defense strategies: 
most of the existing literatures primarily focus on theoretical 
investigation. However, the practical applications are limited. 
To investigate the practicality of these methods, microgrid 
has attracted much attention. Through the PCC, microgrid is 
connected with the distribution system as a complementary 
controllable subsystem to the main grid. Microgrids there‐
fore can enhance the overall control performance of the sys‐
tem during grid-connected mode, achieving the coordinated 
operation of microgrid and the main grid. When microgrid is 
in islanded operation mode, it can also meet the power quali‐
ty requirements of local users, ensure the reliable operation 
of loads, avoid the negative impact of distributed generation 
on power systems, and thus play an important role in sup‐
porting the distribution network.
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