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LightMixer: A novel lightweight
convolutional neural network
for tomato disease detection

Yi Zhong1, Zihan Teng2 and Mengjun Tong1*

1College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou, China, 2School
of Design, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
Tomatoes are among the very important crops grown worldwide. However,

tomato diseases can harm the health of tomato plants during growth and reduce

tomato yields over large areas. The development of computer vision technology

offers the prospect of solving this problem. However, traditional deep learning

algorithms require a high computational cost and several parameters. Therefore,

a lightweight tomato leaf disease identification model called LightMixer was

designed in this study. The LightMixer model comprises a depth convolution with

a Phish module and a light residual module. Depth convolution with the Phish

module represents a lightweight convolution module designed to splice

nonlinear activation functions with depth convolution as the backbone; it also

focuses on lightweight convolutional feature extraction to facilitate deep feature

fusion. The light residual module was built based on lightweight residual blocks

to accelerate the computational efficiency of the entire network architecture and

reduce the information loss of disease features. Experimental results show that

the proposed LightMixer model achieved 99.3% accuracy on public datasets

while requiring only 1.5 M parameters, an improvement over other classical

convolutional neural network and lightweight models, and can be used for

automatic tomato leaf disease identification on mobile devices.

KEYWORDS

tomato leaf disease, lightweight model, convolutional neural networks, deep learning,
disease detection
1 Introduction

Tomatoes are one of the most widely grown and consumed crops worldwide and are a

high source of income for many agricultural countries (Al‐Gaashani et al., 2022).

According to the United Nations Food and Agriculture Organization, the global

production of tomatoes alone is expected to exceed 180 million tons by 2020 (Nations,

2020). China is currently ranked first among tomato-producing countries (Faostat, 2022).

However, tomatoes are susceptible to various diseases during cultivation, which can

significantly affect their yield (Xu et al., 2022). The early identification and detection of

diseases can reduce the infection and spread of tomato crops and reduce the use of

unnecessary agrochemicals. Early disease characteristics are expressed on plant leaves, and
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farmers or pathologists with extensive experience in tomato

cultivation can effectively diagnose the type of crop disease and

take necessary measures through visual inspection of various

infected leaves (Cap et al., 2021). Although such traditional

methods of disease inspection have a positive effect on the

prevention of tomato diseases, they are only usable by

professionals or empiricists, especially in developing countries

where farmers in many regions are often unable to make effective

diagnoses of plant diseases. In addition, subjective factors in

personal perception, inefficiency, and labor costs are also issues

that should be considered (Abbas et al., 2021). Therefore, the design

of a simple, efficient, and accurate automatic tomato leaf disease

diagnosis system that requires few computational parameters is of

great importance to help farmers detect tomato diseases and

improve tomato production. A lightweight model called

LightMixer is proposed in this study. This model uses lightweight

convolution to extract disease features, passes them to the deep

network, and introduces the designed residual blocks to further

reduce the number of parameters of the network and accelerate the

computational efficiency of the model. The contributions of this

study are as follows:
Fron
1. A novel lightweight deep learning model called LightMixer

was proposed for the automatic detection of tomato leaf

diseases under field conditions.

2. The depth convolution with Phish (DCWP) and light

residual (LR) modules were carefully designed to improve

deep feature fusion while reducing the number of model

parameters.

3. Phish activation function was used to replace the

commonly used rectified linear unit function to reduce

the information loss of tomato leaf disease features and

improve the nonlinear expression of the model.

4. Compared with other classical convolutional neural

network (CNN) models, the proposed model achieved

minimum memory cost and highest accuracy, making it

more suitable for deployment in mobile devices or small

embedded devices.
2 Related work

In recent years, with the development of machine learning and

deep learning, the extensive use of computer vision techniques in

agriculture has achieved remarkable results, particularly in the field

of plant disease identification. Bhatia et al. (2020) proposed a hybrid

support vector machine and logistic regression algorithm to extract

the disease features of tomato powdery mildew to diagnose tomato

diseases, achieving a 92.37% identification accuracy. Bhagat et al.

(2020) used a grid search technique to optimize the support vector

machine algorithm to classify plant leaf diseases. Chopda et al.

(2018) built an Android application based on a decision-tree

algorithm to effectively solve the classification problem of cotton

crop diseases for local farmers. However, traditional machine

learning image processing algorithms require the manual
tiers in Plant Science 02
construction of disease features, which increases labor costs and

cannot be adapted to identify multiple types of plant diseases.

Therefore, deep learning algorithms that do not require manual

feature construction are increasingly used to identify and diagnose

plant diseases. Darwish et al. (2020) achieved a 98.2% recognition

accuracy on a dataset containing five types of maize leaf images

based on a combination of an integrated VGGNet architecture and

an orthogonal particle swarm optimization algorithm to overcome

the limitations in sample size and diversity. Fan et al. (2022)

investigated migration learning and feature fusion to recognize

plant leaves; the experimental results showed that the accuracy of

the method exceeded 97% on a publicly available dataset. Chen et al.

(2020) proposed the INC-VGGN network architecture for rice

disease recognition by fusing the VGGNet architecture with the

Inception module and achieved good recognition accuracy. Karthik

et al. (2020) designed an attention-based deep residual network to

identify tomato diseases; experimental results showed that the

designed network architecture was able to identify the disease

types with 98% accuracy. Zhao et al. (2021) improved the ResNet

network architecture based on the attention module to extract

various disease features of tomato leaves, achieving an average

recognition accuracy of 96.81%. Lee et al. (2020) explored the

identification of plant diseases using a recurrent neural network

incorporating an attention mechanism, which has better

generalization over public datasets compared to the classical CNN

approach. L Lakshmanarao et al. (2021) applied the Convnets

network architecture to identify nine tomato diseases. Agarwal

et al. (2020) pre-trained the VGG16 network architecture,

compressed the selected model, and validated it on a public

dataset; experimental results showed that their proposed network

architecture achieved an accuracy of 98%. Liu et al. (2022) chose the

ResNext50 network architecture as the backbone and introduced

expanded convolution and CA attention modules to design a

DCCAM-MRNet network to identify six tomato leaf diseases. The

experimental results showed that the classification accuracy of

DCCAM-MRNet reached 94.3% with fewer parameters than the

ResNext50 network architecture, which has a notable

performance advantage.

Although the aforementioned studies strongly demonstrate the

effectiveness of CNN architectures in the field of plant disease

identification, these architectures are inevitably problematic

because of their large number of parameters and high

computational complexity. Therefore, designs focusing on

lightweight CNNs have been widely proposed. Kamal et al. (2019)

constructed lightweight CNNs for plant disease recognition on

public datasets based on deep separable convolution using the

MobileNet architecture, which has fewer parameters compared to

other classical CNNs. Chen et al. (2022) replaced the standard

convolutional approach in the DenseNet architecture, and Singh

et al. (2021) verified the effectiveness of their lightweight model by

fine-tuning several pre-trained models and comparing them with

other classical CNNs. Barman et al. (2020) proposed the use of the

MobileNet and SSCNN architectures to detect citrus leaf diseases in

stages to achieve the efficiency of lightweight models. The

experimental results showed that the algorithm had lower

computational complexity and achieved a high accuracy of 99%.
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With similar accuracy, Bi et al. (2022) demonstrated a lower

computational complexity using a MobileNet network

architecture with deeply separable convolutions to identify two

classes of apple diseases. The use of superior performance loss

functions to optimize network architectures has also been proposed

for the development of lightweight deep learning network

architectures. For example, Zeng et al. (2022) used a new loss

function to optimize the proposed lightweight LDSNet network

architecture to recognize corn disease images based on a public

dataset. The experimental results showed that the optimized

network architecture achieved an accuracy of 95.4%,

outperforming other classical lightweight models. Chen et al.

(2021) used an enhanced loss function to optimize the

MobileNetV2 model to identify rice diseases in complex

backgrounds; they achieved an average accuracy of 98.48%,

outperforming other classical methods. The aforementioned

studies performed well in the field of plant disease identification,

but the lightness of the model and accuracy of identification can be

further explored.
3 Materials and methods

3.1 Image dataset acquisition
and pre-processing

The data in this study were obtained from the PlantVillage

public dataset (Arun Pandian and Gopal, 2019), which has 18835

tomato leaf images classified into ten categories, one healthy

category and nine categories corresponding to different tomato

leaf diseases. Table 1 shows the details of the dataset. Supplementary

Figure 1 shows sample images for each tomato leaf category and
Frontiers in Plant Science 03
describes the relevant information in the dataset, including the

category labels, names of the diseases, and number of images used

in the study for each category. To validate the generalization of the

deep learning model, the image dataset in this study was randomly

divided into an 80% training set, 10% validation set, and 10%

test set.

For a deep learning model, the more training data input into the

model, the better the model learns. Therefore, several data

enhancement methods were used to perform data enhancement

on the training dataset before the deep learning model started

training, including random image cropping, horizontal random flip,

vertical random flip, and random rotation. All images were resized

to 224 × 224 pixels. Supplementary Figure 2 shows the results

obtained after applying the data enhancement methods to the

tomato leaf images in the training set.
3.2 LightMixer model

In this study, a lightweight CNN model called LightMixer is

proposed for identifying tomato leaf diseases in complex

environments. The proposed LightMixer model focuses on both

lower memory cost and higher accuracy to address the migration

difficulties for mobile or small embedded devices. By designing and

assembling the DCWP and LR modules, LightMixer can accurately

extract features from tomato leaf disease images with complex

backgrounds and achieve high accuracy with low-memory cost.

LightMixer is a lightweight CNN model that is suitable for mobile

and cross-connected wireless communication devices. The

LightMixer structure is shown in Figure 1. It mainly consists of a

convolutional block, a DCWP module, an LR module, a mean

pooling layer, a Flatten layer, and a fully connected layer. A 3 × 3
FIGURE 1

The structure of the LightMixer model.
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convolutional layer is used in the first convolutional block of

LightMixer to obtain a rich feature representation of the image.

After the first convolution block, the DCWPmodule is connected to

extract the deep feature information of the feature map without

parameter redundancy. The LR module is connected after the

DCWP module to increase the depth of the CNN with a small

number of parameters to improve the nonlinear representation of

the model while reducing the number of network parameters. The

average pooling layer is used to reduce the spatial dimensionality of

the feature map and increase the perceptual field of the model. The

last classifier block uses the softmax function to implement disease
Frontiers in Plant Science 04
classification. The configuration of the LightMixer model is listed

in Table 2.
3.3 Phish activation function

The activation function is a key component for minimizing the

loss in deep neural networks and can both enhance the nonlinear

representation and accelerate the computational efficiency of the

entire model, thus improving the accuracy of tomato leaf disease

identification. Compared with traditional activation functions

introduced in CNN models, the Phish activation function

outperforms most traditional activation functions in terms of

classification; therefore, it is introduced in this study (Naveen,

2022). The Phish activation function consists of the existing

GELU function (Hendrycks and Gimpel, 2016) with the Tanh

function, and is defined as follows:

Phish(x) = xTanh(GELU(x)) (1)

where x denotes the input, and the mathematical operations of

the Tanh and GELU functions are shown in Equations (2) and (3),

respectively.

Tanh(x) =
ex − e−x

e−x + ex
(2)

GELU(x) =
p
2
x 1 + tanh−1

ffiffiffiffi
2
p

r
(x + 0:044715x3)

" # !
(3)
TABLE 2 Architecture of the LightMixer model.

Layer Type Output Shape Parameters

Input Input [3,224,224] 0

Conv2d [32, 3, 75, 75] 30

DCWP Module Conv2d [32, 224, 75, 75] 896

DepthWiseConv [32, 224, 75, 75] 0

Phish [32, 224, 75, 75] 0

Conv2d [32, 224, 74, 74] 200,928

BatchNorm2d [32, 224, 74, 74] 448

LR Module Conv2d [32, 224, 74, 74] 18,368

Phish [32, 224, 74, 74] 0

BatchNorm2d [32, 224, 74, 74] 448

Conv2d [32, 224, 74, 74] 50400

Phish [32, 224, 74, 74] 0

BatchNorm2d [32, 224, 74, 74] 448

Average pool AdaptiveAvgPool2d [32, 224, 1, 1] 0

Flatten Flatten [32, 224] 0

Dropout Dropout [32, 224] 0

Linear Linear [32, 10] 2250
TABLE 1 Details of the dataset.

Category Disease Name Image (Number)

1 Bacterial spot 2127

2 Early blight 1000

3 Healthy 1591

4 Late blight 1909

5 Leaf mold 1000

6 Septoria leaf spot 1771

7 Two-spotted spider mite 1676

8 Target spot 1404

9 Mosaic virus 1000

10 Yellow Leaf Curl Virus 5357
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Therefore, by combining Equations (1), (2), and (3), the

equation for the Phish function can be expressed as:

Phish(x) = x
e
p
2x(1+tanh

−1½
ffiffi
2
p

p
(x+0:044715x3)�) − e−  

p
2x(1+tanh

−1½
ffiffi
2
p

p
(x+0:044715x3

e−  
p
2x(1+tanh

−1 ½
ffiffi
2
p

p
(x+0:044715x3)�) + e

p
2x(1+tanh

−1½
ffiffi
2
p

p
(x+0:044715x3

(4)

where x denotes the input and Phish(x) denotes the nonlinear

output after mathematical operations.
3.4 Depth convolution with phish

Depth-separable convolution reduces the number of parameters

required for convolution computation by splitting the correlation

between the spatial and channel dimensions; it has also been shown

in some studies to improve the efficiency of convolution kernel

parameters. As shown in Figure 2A, the standard convolution of the

k × k kernel increases the number of channels in the feature map.

Depthwise convolution expands the perceptual field of the network

without changing the number of channels and extracts deeper

features of the feature map. The output feature map of the point-

by-point convolution is added point-by-point to the input feature

map to obtain the output feature map. As shown in Figure 2B,
Frontiers in Plant Science 05
depthwise convolution is formed based on depth-separable

convolution, which has a lower number of parameters and lower

cost compared to depth-separable convolution. As shown in

Figure 2, assuming that U and O are the numbers of input and

output channels, respectively, and k2is the size of the convolution

kernel, the number of parameters of depthwise separable

convolution is

k2 � U + U � O , and the number of parameters of depthwise

convolution is

k2 � U . Therefore, the ratio of parameters can be calculated as

follows:

k2 � U + U �O

k2 � U
= 1 +

O

k2
(5)

In this study, the DCWP module was designed with depthwise

convolution as the backbone. To avoid missing feature information

in the feature map compression process, no nonlinear activation

function was used, and the Phish function was used to splice after

the depthwise convolution to make full use of the relevant

information in the feature map to transfer the shallow feature

information to the deep layer. The DCWP module has been

designed to be used as a tool for deeper layers; its structure is

shown in Figure 3.
B

A

FIGURE 2

Depth separable convolution and Depthwise convolution. (A) Depthwise separable convolution; (B) Depthwise convolution.
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3.5 Light residual module

To address the challenge of difficult deployment of CNNmodels

for tomato leaf disease identification in mobile terminals and low-

memory devices, there is an urgent need to design a new network

architecture that guarantees high accuracy in identifying tomato

leaf diseases in complex contexts while further reducing the total

number of parameters and model size. We designed a residual-

based LR module to make the model more lightweight and improve

its deployment capability.

First, a convolutional layer and the Phish activation function

were connected, and a batch normalization layer was added after

the Phish activation function, as the network depth poses a

challenge to the convergence speed of the entire network. Then,

the sequentially connected convolutional layers, Phish activation

function, and batch normalization layer were multiplexed in series

to effectively improve the feature extraction for tomato leaf disease.

Finally, residual connections constructed efficient residual blocks,

which improved the ability of gradient propagation across layers

and could prevent gradients in deep convolutional layers from

vanishing. The structure of the LR module is shown in Figure 4.
Frontiers in Plant Science 06
4 Experimental results and discussion

4.1 Hyperparameters and
experimental equipment

The hyperparameter settings used in the experiments are

presented in Table 3. The programming language used for the

experiments was Python, and PyTorch was used as the deep

learning framework. A detailed configuration of the development

environment is presented in Table 4.

To evaluate the performance of the model, recall, accuracy,

precision and F1-score were selected as the metrics for

comprehensive evaluation. The mathematical expressions for the

evaluation metrics are as follows:
Recall =

TP
TP + FN

(5)

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Precision =
TP

TP + FP
(7)
FIGURE 3

Depth Convolution with Phish Module.
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F1 − score =
2TP

2TP + FP + FN
(8)

where TN is the number of true-negative samples, TP is the

number of true-positive samples, FN is the number of false-negative

samples, and FP is the number of false-positive samples.
4.2 Ablation experiment

Ablation experiments were used to demonstrate the effects of

the DCWP and LR modules, and the results are presented in
Frontiers in Plant Science 07
Table 5. The model identification accuracy without the DCWP

and LR modules was 68.6%. The introduction of the DCWPmodule

increased the accuracy of the model to 79%, and the introduction of

the LR module increased the model accuracy to 97.5%; the model

accuracy and F1-score were also significantly improved. The

recognition accuracy of the proposed model with the DCWP and

LR modules reached 99.3%, which was much higher than the

recognition accuracy of the benchmark model. After both the

DCWP and LR modules was added to the proposed model, the

number of parameters of the model increased to 1.577 M, ensuring

very few required parameters while maintaining the performance of

image feature extraction from images of diseased tomato leaves.
TABLE 3 Hyperparameter configuration of CNN.

Hyperparameter Value

Loss function Cross-entropy

Epochs 70

Learning rate 0.0001

Optimizer Adam
TABLE 4 Software and hardware configuration.

Hardware & Software Device Model

CPU Intel I5-10400H

GPU Nvidia 3060Ti

RAM 16GB

CUDA 11.0

Operating system Windows 10
FIGURE 4

Light Residual Module.
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4.3 Comparison results of the proposed
model with classical CNN models

The proposed LightMixer model was then compared with

other classical CNN models, namely AlexNet (Krizhevsky,

2014), ResNext (Xie et al., 2017), ResNet34 (He et al., 2016),

ResNet50 (He et al., 2016), VGG16 (Simonyan and Zisserman,

2014), and VGG19 (Simonyan and Zisserman, 2014), in a

comparative experiment on the tomato leaf disease dataset.

Table 6 presents the comparative results for the different

models. The proposed LightMixer model achieved 99.3%

accuracy compared with other classical network models, which

exhibited optimal performance. The weighty models of the

suboptimal models are ResNext, ResNet34, and ResNet50. The

accuracy of the ResNext, ResNet34, and ResNet50 models was

stable at 99%. The accuracies of the AlexNet, VGG16, and
Frontiers in Plant Science 08
VGG19 models were 96.2%, 96.6%, and 95.7%, respectively;

they were approximately 3% less accurate and exhibited poorer

performance than the LightMixer model. In addition, the

LightMixer model proposed in this study has the fewest

parameters among the many classical CNN models compared.

The experimental results showed that the proposed LightMixer

model has better performance on the tomato leaf disease dataset

than other classical CNN models.

Figure 5 shows the performances of the LightMixer model

and other classical CNN models during training, including the

accuracy and loss between these models. As shown in Figure 5A,

the accuracy of the LightMixer model was higher than that of the

other models at the initial stage. In addition, the LightMixer

model was the first to transition to the smoothing curve and

achieved 99% accuracy after the curve is smoothed. In addition

to accuracy, the LightMixer model demonstrated strong
TABLE 5 Results of the ablation experiment.

DCWP module LR module Accuracy Precision F1-score Param (M)

– – 0.686 0.698 0.609 0.013

√ – 0.790 0.793 0.753 0.780

– √ 0.975 0.971 0.970 0.831

√ √ 0.993 0.988 0.987 1.577
"√ " indicates that there is this module (column name) in this column. For example, the "√" in the second and fourth rows of the "DCWP module" column represents the presence of a DCWP
module. The "-" indicates the absence of the module (column name) in this column. For example, the "-" in the first and third rows of the "DCWP module" column represents the absence of a
DCWP module.
TABLE 6 Comparison of the classical CNN models with the proposed LightMixer model.

Model Accuracy Precision Recall F1-score Param (M) FLOPs(G)

ResNet34 0.992 0.984 0.986 0.985 21.8 3.7

ResNet50 0.993 0.989 0.987 0.988 25.6 4.1

VGG16 0.966 0.958 0.958 0.958 138.4 15.5

VGG19 0.957 0.953 0.948 0.950 143.7 19.6

AlexNet 0.962 0.934 0.940 0.936 61.1 0.7

ResNeXt 0.994 0.989 0.987 0.988 25.0 4.3

Proposed LightMixer model 0.993 0.986 0.983 0.984 1.5 2.2
fr
BA

FIGURE 5

Training curves of the classical CNN models and the proposed LightMixer model. (A) Accuracy; (B) loss.
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convergence and generalization during the training process. As

shown in Figure 5B, the loss curve of the LightMixer model was

the first to transition to a smoothed curve and then remained

stable. However, this was not the case for most other models,

especially the AlexNet model. These comparisons demonstrate

the superiority of the LightMixer model.

To observe the performance of different models in

identifying different classes of tomato leaf diseases, a confusion

matrix was used to visualize the classification results on the test

set. Figure 6 shows the confusion matrix of the LightMixer

model with other classical CNN models. The vertical axis

represents the True Label, and the horizontal axis represents

the Predicted Label. The values on the diagonal line represent the

ratio of the number of correctly predicted disease samples for

that class to the total number of samples for that class of images,

and the values on the non-diagonal line represent the fraction of

incorrect predictions. The values on the diagonal of the

confusion matrix in Figure 6 Figure 5G are all very high, with

more than half of the tomato leaf disease classes identified with

an accuracy of 99% or higher. The LightMixer model was more

than 95% accurate for the other disease categories. The

confusion matrices for the ResNext and ResNet50 models were

similar. However, the VGG19 model was the least effective in

classifying all types of tomato leaf diseases, especially in

identifying early blight, with an accuracy of only 77%. The
Frontiers in Plant Science 09
experimental results showed that the LightMixer model can

efficiently and accurately classify various types of tomato

leaf diseases.
4.4 Comparison of the proposed model
with the classical lightweight CNN model

Table 7 shows the identification results of the proposed model

compared with those of the classical lightweight CNN model for the

tomato leaf disease validation set. LightMixer demonstrated greater

accuracy than the compared lightweight CNNs, including

DenseNet121 (Huang et al., 2017), EfficientNet (Tan and Le, 2019),

MobileNetV2 (Sandler et al., 2018), MobileNetV3 (Howard et al.,

2019), ShuffleNetV2 (Ma et al., 2018), SqueezeNet (Iandola et al., 2016)

and MNASNet (Tan et al., 2019)Although the Dense-Net121 and

LightMixer models have similar accuracies, the LightMixer model

requires approximately six times fewer parameters than the Dense-

Net121 model. In addition, the proposed LightMixer model has only

1.5M parameters, which is several to ten times less than the parameters

of other lightweight models such as MobileNet V1, V2, and V3.

Although the number of parameters of the SqueezeNet model was

similar to that of the LightMixer model, the LightMixer model was

more accurate. These experimental results demonstrate the advanced

performance of the LightMixer model as a lightweight model, which is
B C

D E F

G

A

FIGURE 6

Confusion matrix between the classical CNN models and the proposed LightMixer model. (A) ALexNet; (B) ResNext; (C) ResNet34; (D) ResNet50;
(E) VGG16; (F) VGG19; (G) LightMixer.
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more suitable for lightweight execution of tomato leaf disease

identification tasks.

Figure 7 shows the training curves of the LightMixer model

compared with those of other classical lightweight CNN models.

Compared with other classical lightweight convolutional

networks, the LightMixer model exhibits excellent learning

ability during training. As shown in Figure 7A, the LightMixer

model is one of the first models to transition to a smooth curve.

In addition, it has the best accuracy and loss, as well as the least

curve fluctuation among the different lightweight CNNs.

Figure 7B shows the loss curves of different lightweight

convolutional networks.

Figure 8 Figure 8 shows the confusion matrix of several lightweight

CNNs on the test dataset. For the test set of tomato leaf diseases, the

MNASNet model showed the worst classification results, where the

accuracy of mosaic virus recognition was only 86%. In addition, the

SqueezeNet model, which has a similar number of parameters to the

LightMixer model, did not show an advantage in terms of classification

effectiveness. The SqueezeNet model showed uneven classification

accuracy for various types of tomato leaf diseases, with the lowest

recognition accuracy of 93% for early blight, whereas the LightMixer

model was 95% accurate for this type of disease. These experimental

results demonstrate that the LightMixer model maintains its

classification advantage for different types of tomato leaf diseases

compared with other lightweight models.
Frontiers in Plant Science 10
5 Conclusions

The identification and classification of various tomato leaf

diseases by CNN models are highly accurate; however,

mainstream CNN models require higher computational and

storage costs. In this study, an extremely lightweight CNN

model called LightMixer is proposed for the automatic

identification of tomato leaf diseases. In the proposed model,

LR residual blocks are introduced as one of the main core units

for building the backbone network. The architecture of LR

residual blocks is designed to achieve better performance while

requiring less computation and storage costs. The proposed

LightMixer model also has a DCWP module that enhances the

feature extraction capability of the network, highlights the

nonlinear representation of the model, and compresses the

parametric number of the model to enhance its classification

capability. The combination of the LR residual block and DCWP

module facilitates the ability of the model to utilize the feature

map to better capture the disease features and help optimize the

performance of the model. Experimental results demonstrate

that the proposed model has 99.3% recognition accuracy in

diagnosing tomato leaf diseases and has only 1.5 M

parameters, which is better than other tested classical models.

In the next step, the deployment of the proposed model in

mobile or embedded device environments will be our main
BA

FIGURE 7

Training curves of the classical lightweight CNN models and the proposed LightMixer model. (A) Accuracy; (B) loss.
TABLE 7 Comparison of the classical lightweight CNN models with the proposed LightMixer model.

Model Accuracy Precision Recall F1-score Param (M)

DenseNet121 0.993 0.989 0.987 0.988 8

EfficientNet 0.985 0.985 0.982 0.983 7.8

MobileNetV2 0.970 0.963 0.965 0.964 3.5

MobileNetV3 0.985 0.984 0.983 0.984 2.5

ShuffleNetV2 0.988 0.986 0.983 0.985 2.3

SqueezeNet 0.980 0.977 0.975 0.976 1.2

MNASNet 0.959 0.947 0.945 0.945 2.2

Proposed LightMixer model 0.993 0.986 0.983 0.984 1.5
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goal to help farmers accurately identify and detect tomato leaf

diseases. Further exploration of the generalizability of the

proposed model to detect and identify a variety of other plant

diseases will be part of our future plans.
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SUPPLEMENTARY FIGURE 1

Samples of tomato diseased leaves. (A) Bacterial spot; (B) Early blight; (C)
Healthy; (D) Late blight; (E) Leaf mold; (F) Septoria leaf spot; (G) Two-spotted
spider mite; (H) Target spot; (I) Mosaic virus; (J) Yellow Leaf Curl Virus.

SUPPLEMENTARY FIGURE 2

The result after data enhancement. (A) Original image; (B) Random Image
Crop; (C) horizontal random flip; (D) vertical random flip; (E) random rotation.
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FIGURE 8

Confusion matrix between the classical lightweight CNN models and the proposed LightMixer model. (A) DenseNet121;(B) EfficientNet;
(C) MobileNetV2;(D) MobileNetV3;(E) ShuffleNetV2;(F) SqueezeNet;(G) MNASNet; (H) LightMixer.
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