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Abstract. In this paper, we propose a redistributed proximal bundle method
for a class of nonconvex nonsmooth optimization problems with inexact infor-

mation, i.e., we consider the problem of computing the approximate critical

points when only the inexact information about the function values and sub-
gradients are available and show that reasonable convergence properties are

obtained. We assume that the errors in the computation of functions and sub-

gradients are only bounded and in principle do not have to vanish within the
limits. For the nonconvex functions, we design the convexification technique,

which ensures that the linearization error of its augmentation function is non-

negative. Meanwhile, for the inexact information, we utilize noise management
strategies and update approximate parameters to reduce the impact of inexact

information. Based on this method, we can obtain the approximate solution.

1. Introduction. We consider the nonsmooth unconstrained optimization prob-
lem

min f(x), x ∈ Rn, (1)

where f(x) is a nonsmooth and nonconvex function.
Proximal bundle methods are currently one of the most effective optimization

methods for unconstrained convex problems with discontinuous first derivatives [26].
The bundle method is based on the subdifferential estimation, which asymptotically
ensures that the first-order optimality conditions are satisfied [3, 24, 25, 33, 34]. Of
these dual methods, little attention is paid to how to model the objective function
using the tangent hyperplane. The original form of the convex bundle methods are
sometimes referred to as the stabilized cutting-plane or proximal bundle method,
were mostly developed in the 1990s. The minimization of nonsmooth convex func-
tions given precise information has been successfully achieved in several ways. The
most popular of these is the level bundle method and the proximal bundle method
[11]. Recently this method is applied to space-decomposition scheme for solving the
eigenvalue problems [18]-[12] and convex problems [30, 31]. In fact, such methods

2020 Mathematics Subject Classification. Primary: 49J52, 90C26; Secondary: 49M37, 90C30.
Key words and phrases. Nonconvex optimization, nonsmooth optimization, inexact informa-

tion, bundle method, lower − C2.
∗Corresponding author: Ming Huang, Jin-Long Yuan.

8691

http://dx.doi.org/10.3934/jimo.2023057
mailto:huangming0224@163.com, huangming0224@dlmu.edu.cn
mailto:NHM0130@163.com
mailto:lsdsl@163.com, linsida@dlmu.edu.cn
mailto:yinziran@dlmu.edu.cn
mailto:yuanjinlong0613@163.com, yuanjinlong@dlmu.edu.cn


8692 M. HUANG, H.-M. NIU, S.-D. LIN, Z.-R. YIN AND J.-L. YUAN

are currently considered to be the most efficient optimization methods for non-
smooth problems; see [27, 29, 43, 42] for more detailed reviews.

The nonsmooth and nonconvex function can be found in many optimization
problems such as large-scale lagrangian or semidefinite relaxations and stochastic
simulations [6, 26, 38, 40, 42]. There are errors in the calculation of the function
and the subgradient, making it impossible to determine the exact values. Particu-
larly, in some circumstances, the function being considered is so complex that it is
challenging to compute or exact information is not accessible, and the problem is
tackled by getting inexact information in order to speed up the computation.
Example 1(The eigenvalue optimization or semidefinite programming) Considering
the maximum eigenvalue function,

f(x) = λmax(A(x)),

where the matrix A : Rn → Sm, m ×m is the space of symmetric matrices. Each
element in A(x) is a smooth function of x.

Obviously, for fixed x ∈ Rn, the maximum eigenvalue function h(C) = λmax(C)
is a positive homogeneous function, where C = A(x). Since the maximum eigenvalue
function is non-smooth, the composite function f(x) is also non-smooth, and it is
also a nonconvex function [2], unless every element of A(x) is a affine function of x.
Example 2(Sum of Euclidean parametrization) Given a series of smooth vector-
valued functions {ϕ1, · · · , ϕI}, where ϕi : RN → Rmi , i = 1, · · · , I, ΣIi=1|ϕi(x)|
is a composite function with m = ΣIi=1mi components, where the inner layer
mapping is

c(x) = (ϕ1, · · · , ϕI).
The outer layer function is

h(C1, · · · , Cm) = ΣIi=1|(C = Σi−1
k=1mk + 1, · · · ,Σik=1mk)|,

where Ci ∈ Rmi . When I = m1 = 1, let ϕ1 = a2x
2 + a1x + a0, a2 6= 0, then the

function h(c(x)) is convex, if and only if a2
1 ≤ 4a0a2. This function is nonconvex

and nonsmooth in other cases.
Example 3 (Minimax optimization problem) The form to the minimization of a
function is

f(x) = max
i∈I

fi(x),

the functions fi(·) that are often smooth but occasionally may be nonconvex. When
the set I is bounded, as it is in [6, 42], it is simple to achieve controllable accuracy
even though it may be impossible to assess f accurately in some situations.
Example 4 When a Monte-Carlo simulation-estimated expected value is used to
represent the objective function [40]. By utilizing the central limit theorem and
running the simulation numerous times, errors can be managed and minimized.
Similar to the stochastic simulation providing the objective function, probability
distribution functions can be used to understand the errors in the function and
subgradient values.

Bundle method can be viewed from a “primitive” perspective as substituting
the actual objective function with a model made by information bundles of data
from previous evaluation points and their corresponding function values f and the
subgradients g. Particularly, the proximal bundle method [11] computes the model
function’s proximal point in order to provide bundle elements and better minimizer
estimations. The goal of this work is to modify one such approach to accommodate
both nonconvex objective functions and inexact information. The direction of this
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work is to adopt this approach to deal with non-convex objective functions and
inexact information. After the first study of bundle methods for convex problems,
the problem of (locally) minimizing non-smooth and non-convex functions using
exact information was considered in [19, 34] and more recently [7, 8, 21, 32]. They
prioritize satisfying first-order optimality requirements by directing some convex
combinations of subgradients in that direction [25, 28, 32]. All of these strategies,
deal with nonconvexity by reducing the so-called linearization errors if they are
negative.

In the convex case, for various algorithms, studies are carried out in [1, 22, 35].
In the nonconvex setting, inexact evaluations of subgradient algorithms have been
researched in [45]. In this paper, only inexact information is available, based on pre-
vious studies on determining the proximal points of nonconvex functions, in order
to develop the proximal bundle method applicable for nonsmooth and nonconvex
functions with inexact information. The problem can only call the inexact oracle.
Given a point xj , we can not obtain exact function values and subgradients, just
some estimates of the function value xj and the subgradient at xj instead. There-
fore, the obtained information is f j ≈ f(xj) and gj ≈ g(xj) ∈ ∂f(xj). Handling
the inexact information is a natural challenge in many modern applications. We
assume that inexact information is provided in such a way that the errors in the
function values and subgradients are bounded by a universal constant. Although
the algorithm and convergence analysis do not require knowledge of these constants,
they do need to be present over the entire compact set of constraints. Unlike past
research on inexact subgradient method, both [35] and [45] allow for nonvanishing
noise. That is to say, the evaluation of subgradients being asymptotically tightened
is required. The inexact estimation of function and subgradient values in the convex
bundle method can be traced back to [20]. However, the noise in [20] disappears
asymptotically. The first work considering nonvanishing perturbations in bundle
methods seems to be [10]; but only function evaluations were required to be exact,
whereas subgradient values could only be approximated. Nonvanishing inexactness
was first introduced in [44] and extensively researched in [23] for both functions and
subgradient values (still in the convex case). A unified theory on convex inexact
bundle methods is elaborated in [37]. In our work, the behavior of the redistributed
proximal bundle method given by exact information [8] for non-convex functions is
considered. To our knowledge, the other work dealing with inexact information in
bundle methods for nonconvex functions is [9, 36]. If the linearization errors are
negative, the approach of [36] uses the “downshift” process to modify them. Our
technique tilts its slopes in addition to downshifting the cutting-planes, and there
are of course additional algorithmic changes. In this study, we apply the redis-
tribued proximal bundle method to solve the nonsmooth and nonconvex problem
with inexact information. Other significant variations from [8] include: we use in-
exact data in our study, only exact data are used in that one, it’s going to be more
complicated to deal with and more difficult to solve.

In this paper, for a class of inexact nonconvex optimization problems, we propose
a redistribued proximal bundle method to solve problem (1). Specifically, we design
“convexifying” techniques for nonconvex functions to ensure that the corresponding
linearization errors are non-negative, and then we employ a redistributed proximal
bundle method to solve. The rest of this article is organized as follows. In Section
2 we review some variational analysis definitions and results required for this work.
Section 2 also includes the main assumption for the functions considered in this
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work, and some basic results arising from the assumptions. In Section 3 we review
how bundle methods work in a convex setting and discuss how requirements change
in a nonconvex setting with inexact information. We provide the details of the
algorithm developed in this paper. Section 4 examines the convergence properties
of the algorithm.

2. Preliminaries. In this section, we review variational analysis concepts and find-
ings that will be relevant to this paper. It is worth noting that we make use of the
limiting subdifferential, denoted by ∂f(x). Specifically, if f has a regular subdiffer-
ential at x̄,

∂̂f(x̄) :=

{
g ∈ Rn : lim

x→x̄
inf
x 6=x̄

f(x)− f(x̄)− 〈g, x− x̄〉
|x− x̄|

≥ 0

}
, (2)

the limiting subdifferential is defined by

∂f(x̄) := lim
x→x̄

sup
f(x)→f(x̄)

∂̂f(x). (3)

We call these elements of subdifferential subgradients, which are usually denoted
by the element g.

In this article, the objective function f(x) is a nonconvex nonsmooth lower −
C2 function. The definition, properties and some assumptions of the lower − C2

function are described below [[41], Definition 1.23, p.20].

(1): A function f is a lower − C2 function on an open set O, if f is finite on
the open set O and for any point x, there exists a threshold r0 such that for
all r ≥ r0, f + r

2 |·|
2

is convex on an open neighborhood O′ of x.
(2): A function f is prox-bounded when there exists R ≥ 0, such that the

function f + R
2 |·|

2
is bounded below and the corresponding threshold is the

smallest rpb ≥ 0, f + R
2 |·|

2
is bounded below for all R ≥ rpb.

Now for problem (1.1), the basic assumptions are given that depend on the given
parameters x0 and M0.

Assumption 2.1. Given x0 and M0, there exists an open bounded sets M0, such
that

L0 :=
{
x ∈ Rn : f(x) ≤ f

(
x0
)

+M0

}
⊂ O.

The following proposition gives an important property about the lower−C2 func-
tion, basically related to the existence of uniform bounds for the various thresholds
involved.

Proposition 2.2. ([41] Prop. 10.54)For a function f satisfying Assumption 2.1,
the following holds:

(1): The level set L0 is nonempty and compact.
(2): The function f is bounded below and prox-bounded with threshold rpb = 0.
(3): There exists ρid > 0 such that, for any ρ ≥ ρid and given any y ∈ L0, the

function f + ρ
2 | · −y|

2 is convex on L0.
(4): The function f is Lipschitz continuous on L0.

Another result of the Assumption 2.1 is that the proximal point mapping pR,
defined as:

pRf(x) := argmin
y

{
f(y) +R

1

2
|x− y|2

}
, (4)
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is single-valued and Lipschitz continuous on L0 [41], provided the prox-parameter
R sufficiently large. By [[41], Thm 2.26] it is clear that, in this case, R sufficiently
large means that R ≥ ρid, where ρid is the value in item (3) in Proposition 2.2.

It is relatively simple to define the concept of inexact information for function
values. Given a point x and a certain amount of error tolerance κ ≥ 0, F ∈ R
approximates the value f(x) within κ, meaning |F − f(x)| ≤ κ. For the subgradient
values, of course, the notion of inexact information allows for more interpretation.
The closed ball in Rn centered at x and radius ρ ≥ 0 is denoted by Bρ(x). We will
consider the following estimates, which make good sense especially in the nonconvex
case. At a point x, an element g ∈ Rn approximates within tolerance θ ≥ 0 some
subgradient of f at point x if g ∈ ∂f(x) +Bθ(0).

The algorithm deals with inexact information. We denote the current iteration
index j with iterate point xj , and the stability center x̂k. We present inexact
function values and subgradients as follows:

f j = f(xj)− κj , where κj is an unknown error,

f̂k = f(x̂k)− κ̂j , where κ̂j is an unknown error,
gj ∈ ∂f(xj) +Bθj (0), where θj is an unknown error.

It should be noted that the sign of errors κj is not specified, the true function
value can be either overestimated or underestimated. The error terms κj and θj

are assumed bounded:∣∣κj∣∣ ≤ κ, 0 ≤ θj ≤ θ, for all j,

their bounds κ, θ are usually unknown.
If the function f is convex and exact in data, the linearization error ekj :

ekj = f
(
x̂k
)
− f

(
xj
)
−
〈
g(xj), x̂k − xj

〉
≥ 0, (5)

where x̂k is a stability center, g(xj) is an exact subgradient of ∂f(xj).
The accumulate linearization for f is:

fLj (x) = f
(
xj
)

+
〈
g(xj), x− xj

〉
. (6)

The classical cutting - plane model for f is:

max
{
fLj (x) : j ∈ Jk = {1, · · · k}

}
= max
j∈Jk

{
f
(
xj
)

+
〈
g(xj), x− xj

〉}
= f

(
x̂k
)

+ max
j∈Jk

{
−ekj +

〈
g(xj), xj − x̂k

〉
} . (7)

We use inexact information in our setting. We also need to take into account
the possible nonconvexity of f(x). In accordance with the redistributed proximal
bundle method of [8], we have the following strategies.

The linearization error of the objective function f(x) is as follows,

ekf,j = f̂k − f j −
〈
gj , x̂k − xj

〉
, (8)

and the argument function is:

ϕk
(
xj
)

= f j +
ηk
2
|xj − x̂k|2. (9)

According to the properties of lower−C2 functions, η is a threshold, when ηk > η,

the argument function is convex. Specifically, ϕk
(
x̂k
)

= f̂k.
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The linearization error of ekϕ,j is expressed as:

ekϕ,j = ϕk
(
x̂k
)
− ϕk

(
xj
)
−
〈
gjϕ, x̂

k − xj
〉

= ekf,j +
ηk
2
|xj − x̂k|2

≥ 0, (10)

there exists gj ∈ ∂f
(
xi
)

+Bθj (0), gjϕ = gj + ηk
(
xj − x̂k

)
∈ ∂ϕk

(
xi
)

+Bθj (0).
A convex piecewise - linear model is:

ϕ̃k(x) = max
j∈Jk

{
ϕk(xj) +

〈
gjϕ, x− xj

〉}
= f̂k + max

j∈Jk

{
−ekϕ,j +

〈
gjϕ, x− x̂k

〉}
. (11)

The new iterative point xk+1 is given by the following QP subproblem,

xk+1 = pµk
ϕ̃k
(
x̂k
)

= argminx

{
ϕ̃k(x) +

µk
2
|x− x̂k|2

}
, (12)

where µk is the pro-parameter. Notice that ηk > η, ϕk is convex, so the quadratic
subproblem is a strongly convex problem. The relationship between the new gen-
erated point and the current stationary center is demonstrated by the next lemma.

Lemma 2.3. ϕ̃k is piecewise-linear, this means that there exists a simplicial mul-

tiplier αkj , αkj ∈ R|J
k|, αkj ≥ 0,

∑|k|
j=1 α

k
j = 1,


ĝk =

∑
j∈Jk

αkj g
j
ϕ =

∑
j∈Jk

αkj
(
gj + ηk

〈
xj − x̂k

〉)
xk+1 = x̂k − 1

µk
ĝk.

.

According to the optimality condition of the above subproblem, the following rela-
tion are drawn,

0 ∈ ϕ̃k
(
x̂k
)

+
µk
2
|xk+1 − x̂k|2, (13)

and αj =
(
α1
j , α

2
j , · · ·αkj

)
is the solution to

min
αk

j∈R|Jk|

1
2 |ĝ

k|2 + µk
∑
j∈Jk

αkj e
k
ϕ,j

s.t. αkj ≥ 0,
∑|k|
j=1 α

k
j = 1.

Proof. The QP subproblem (12) is

min
x∈Rn

ϕ̃k
(
x̂k
)

+
µk
2
|x− x̂k|2.

It is equivalent to the following problem,

min
t,x∈Rn

t+ µk

2 |x− x̂
k|2

s.t. −ekϕ,j +
〈
gjϕ, x− x̂k

〉
≤ t.
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Introducing αj ∈ R|Jk|+ , the corresponding Lagrangian function is:

L(x, t, α) = t+
µk
2
|x− x̂k|2 +

∑
j∈Jk

αj
(
−ekϕ,j +

〈
gjϕ, x− x̂k

〉
− t
)

=
µk
2
|x− x̂k|2 +

∑
j∈Jk

αj
〈
gjϕ, x− x̂k

〉
+

1−
∑
j∈Jk

αj

 t−
∑
j∈Jk

αje
k
ϕ,j .

Because the dual gap is 0, we can get it by solving the original problem or the
dual problem:

min
(x,t)∈Rn×R

max
α∈R|Jk|

L(x, t, α) = max
α∈R|Jk|

min
(x,t)∈Rn×R

L(x, t, α). (14)

Because both the original problem and the dual problem have finite optimal
values, and t ∈ R,

∑
j∈Jk

αkj = 1, then (14) can be transformed into

min
x∈Rn

max
α∈R|Jk|

L(x, α) = max
α∈R|Jk|

min
x∈Rn

L(x, α), (15)

where

L(x, α) = f(x̂k) +
µk
2
|x− x̂k|2 +

∑
j∈Jk

αj
〈
gjϕ, x− x̂k

〉
−
∑
j∈Jk

αje
k
ϕj .

Consider the above dual problem, optimal conditions of the minimization prob-
lem for a fixed α is x(α) = argminxL(x, α), if and only if 0 = ∇xL(x, α), that
is,

0 = µk(x(α)− x̂k) +
∑
j∈Jk

αjg
j
ϕ.

Specifically, when α = αj , x(αj) = xk+1. Next we prove ĝk ∈ ∂ϕ̃k(xk+1),

0 ∈ ∂ϕk
(
xk+1

)
+ µk

(
xk+1 − ẋk

)
= ∂ϕk

(
xk+1

)
−
∑
j∈jk

αjg
j
ϕ

= ∂ϕk
(
xk+1

)
− ĝk.

Multiply each side of the equation by x(α)− x̂k and 1
µk

∑
j∈Jk αjg

j
ϕ,

0 = µk
∥∥x(α)− x̂k

∥∥2
+
∑
j∈Jk

αj
〈
gjϕ, x(α)− xk

〉
=
∑
j∈Jk

αj
〈
gjϕ, x(α)− x̂k

〉
− 1

µk
|
∑
j∈jk

α̇jg
j
ϕ|2.

This means that

µk|x(α)− x̂k|2 =
1

µk
|
∑
j∈Jk

αjg
j
ϕ|2,

and

L(x(α), α) =
1

2µk
|
∑
j∈Jk

αjg
j
ϕ|2 −

∑
j∈Jk

αje
k
ϕ,j .

In summary, αj is the solution of

max
α∈Jk

L(x(α), α) = − min
α∈Jk

{ 1

2µk
|
∑
j∈Jk

αjg
j
ϕ|2 −

∑
j∈Jk

αje
k
ϕ,j}.
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We finish the proof.

In addition, the following relations hold:

ĝk ∈ ∂ϕ̃k
(
xk+1

)
,

ϕk
(
x̂k
)

+ ϕ̃k
(
xk+1

)
= f̂k − ϕk

(
x̂k
)

+ ϕ̃k
(
xk+1

)
= µk|xk+1 − x̂k|2 +

∑
j∈Jk

αkj e
k
ϕ,j .

The following conclusions can be drawn from Lemma 2.3,

dk = xk+1 − x̂k = − 1

µk
ĝk, where ĝk =

∑
j∈Jk

αkj g
j
ϕ. (16)

Once the new iterate is known, we define the aggregation linearization,

ϕ−k(x) = ϕ̃k
(
xk+1

)
+
〈
ĝk, x− xk+1

〉
. (17)

Thus we have,

ϕ−k
(
xk+1

)
= ϕk

(
xk+1

)
, ĝk ∈ ∂ϕ̃k

(
xk+1

)
, and

ĝk = ∇ϕ−k (x) , for all x ∈ Rn. (18)

By the subgradient inequality, we can obtain:

ϕ−k (x) ≤ ϕ̃k (x) , for all x ∈ Rn. (19)

The aggregation errors are defined by

eϕ̃ = ϕ̃k(x̂k)− ϕ̃k(xk+1) +
〈
ĝk, xk+1 − x̂k

〉
= f̂k − ϕ̃k(xk+1) +

〈
ĝk, xk+1 − x̂k

〉
≥ 0. (20)

Using ϕk
(
x̂k
)

= f̂k and the optimal multipliers from (16), this gives the following
alternative aggregate error expressions:

eϕ̃ =
∑
j∈Jk

αkj e
k
ϕ,j . (21)

Similarly, we get the aggregate linearization by (17),

ϕ−k(x) = f̂k +
〈
ĝk, x− x̂k

〉
− eϕ̃.

Any choice for convexification parameter that keeps ekϕ,j in (10) is acceptable.
We employ a redistributed proximal bundle method in our analysis,

ηmink ≥ max

{
max

j∈Jk,xj 6=x̂k

−2ekf,j

|xj − x̂k|2
, 0

}
+ γ, (22)

for the (small) positive parameter γ in the above equation, the term max
j∈Jk,xj6=x̂k

−2ekf,j
|xj−x̂k|2

represents the smallest value of η to suggest that linearization errors of the “locally
convexified” function remain nonnegative for all j ∈ Jk: ekf,j + η

2 |x
j − x̂k|2 ≥ 0.

The nonnegativity of ηmink is obtained by taking the maximum of this term with
0, adding the“safeguarding” small positive parameter makes ηmink strictly greater
than the minimal value.
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3. Algorithm statement. As described in Section 2, previous extensions of the
bundle method to nonconvex settings usually depend on redefining the linearization
error so that it is non-negative. After computing the new iteration, we first check
whether it provides sufficient decrease of the objective function to the previous
stabilization center (both are, of course, inexact values in our setting).

Since xk+1 is the solution to the QP issue in (12), the predicted descent is defined,

δk+1 = f̂k +
ηk
2
|xk+1 − x̂k|2 − ϕ̃k

(
xk+1

)
= µk|xk+1 − x̂k|2 +

∑
j∈Jk

αkj e
k
ϕ,j +

ηk
2
|xk+1 − x̂k|2. (23)

For convenience, we have temporarily removed the iteration index from the no-
tation. To define the QP problem, the current prox-parameter R is divided into
two non-negative terms η and µ. Using η as the convexification parameter and µ as
the model prox-parameter, satisfying R = η + µ,

pRf̂
k = pµϕk

(
x̂k
)
. (24)

Along the iterative process, R, µ and η have to be suitably modified.
So equation (23) can be transformed into

δk+1 =
Rk + µk

2
|xk+1 − x̂k|2 + eϕ̃. (25)

Note that since eϕ̃ ≥ 0 by (20), it follows from (25) that

δk+1 ≥ 0. (26)

Hence,

δk+1 >
µk
2
|xk+1 − x̂k|2 +

ηk
2
|xk+1 − x̂k|2 =

Rk
2
|xk+1 − x̂k|2. (27)

Algorithm 3.1 (Noconvex Nonsmooth Redistributed Proximal Bundle Method
with Inexact Information) Given a procedure that provides an approximation f of
f(x) for each x, and the corresponding approximate subgradient value g.
Step 1 (Input and Initialization) Choose an initial starting point x0 ∈ Rn, τ ∈ [ 1

2 , 1)
and unacceptable increase parameters M0 > 0, and R0 > 0. Select parameter γ > 0
and a stopping tolerance TOLstop ≥ 0, m ∈ (0, 1), and a convexification growth
parameter Γ > 1, place the initial iteration counter k = 0, the bundle index set
J0 = 0, and the first candidate point x0 = x̂0.

Compute the inexact oracle values f̂0 = f0, and the initial prox-center x̂0 = x0,
g0 ∈ ∂f(x0) + Bθ0(0). Setting the starting prox-parameter distribution (µ0, η0) =
(R0, 0).
Step 2 (Model Generation and QP Subproblem) According to (12),

xk+1 = Pµk
ϕ̃k
(
x̂k
)

= argmin
{
ϕ̃k(x̂k) +

µk
2
|x− x̂k|2

}
. (28)

Define the predicted decrease from (25),

δk+1 =
Rk + µk

2
|xk+1 − x̂k|2 + eϕ̃. (29)

Step 3 ( Trial Point Finding and Stopping Test) Given the model ϕ̃k(x) defined
by (11), compute the direction xk+1 − x̂k. Define the associated ĝk by (16), eϕ̃ by
(20), and δk+1 by (23). If δk+1 ≤ TOLstop, stop.
Step 4 (Noise Management) If relation (27) does not hold, set µk+1 = τµk, k =
k + 1, go to Step 1.
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Step 5 (Serious Step Test) Call the inexact oracle to obtain fk+1, and gk+1 ∈
∂f(xk+1) +Bθk+1(0),

fk+1 ≤ f̂k −mδk+1, (30)

and loop to Step 2.

If this condition is hold, declare a serious step, set x̂k+1 = xk+1, f̂k+1 = fk+1.

Otherwise, declare a null step, set k + 1 = k, x̂k+1 = xk, f̂k+1 = f̂k.
Step 6 (Update η){

ηk+1 := ηk if ηmin
k+1 ≤ ηk;

ηk+1 := Γηmin
k+1 and Rk := µk + ηk+1 if ηmin

k+1 > ηk,

where ηmin
k+1 is gived by (22).

Step 7 (Update µ)

If fk+1 > f̂k +M0, then target growth is unacceptable.
Restart algorithm via settings,

η0 := ηk, µ0 := Γµk, R0 := η0 + µ0

x0 := x̂k, k(0) := 0, J0 := {0}.

and loop to Step 2.
Otherwise, in the case of serious steps, increase k by 1 and go to Step 2.

Remark 3.1. Note that the update of elements in the bundle is not explicitly
stated in Algorithm 3.1. The update strategy is different for null and serious steps.
When a serious step occurs, the newly generated point is considered as a new
proximal center and the corresponding linearization error in the bundle is updated.
When there is a null step, the proximal center remains unchanged and only the
newly generated information is added to the bundle to improve the accuracy of the
model. As the iterations proceed, the elements in the bundle may be too large, thus
reducing the efficiency of the algorithm. So, we can adopt the compression strategy.
For the compression strategy, the number of elements in the bundles can be at least
two, the aggregate information and the new generated information. It should be
noted that although the compression strategy does not impair the convergence of
the algorithm, it may affect the effectiveness of the model, if the number of elements
in the bundles is too small.

In order to prove the convergence of the algorithm, we will make the following
assumptions.

Assumption 3.2. The cardinality of the set {j ∈ Jk | αkj > 0} is uniformly
bounded in k.

The above assumption can also be seen in [47]. The reason is that most (if not
all) active set QP solvers choose linearly independent bases. In the expression of
ĝk in (16), this means that the QP solver gives solutions with no more than k + 1
positive simplex multipliers (such a solution always exists by the Carathéodory).
Similar assumptions of QP solvers have been used in different QP-based methods,
especially in the bundling process in [5].

Assumption 3.3. The model convexification parameter sequences {ηk} is bounded.
When the function information is exact, Boundedness of {ηk} for the lower−C2

case has been shown in [8]. However, it is theoretically possible in our setting that
inexactness leads to an unbounded {ηk}, even if the objective function is convex.
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4. Asymptotic analysis. We now analyze the different cases that may occur when
Algorithm 3.1 loops forever. In the convergence analysis of the bundle method, we
usually consider the following two possible cases.

• Either there are an infinite number of serious steps;
• or there are a finite number of serious steps, and then an infinite number of

null steps.

Lemma 4.1. Suppose the above Assumption 3.2 holds.
(i) If eϕ̃ → 0 as k →∞,

∑
j∈Jk αkj

∣∣xj − x̂k∣∣→ 0 as k →∞.

(ii) If, in addition, Assumption 3.3 holds on the subset K ⊂ {1, 2, . . .} and x̂k → x̄,
ĝk → ḡ as K 3 k →∞, then we also have

ḡ ∈ ∂f(x̄) +Bθ(0). (31)

(iii) If, in addition, ĝk → 0 as K 3 k →∞, then x̄ satisfies the following approxi-
mate stationarity condition:

0 ∈ ∂f(x̄) +Bθ(0). (32)

(iv) In addition, for each ε > 0 there exists ρ > 0, such that f(y) ≥ f(x̄) − (θ +
ε)|y − x̄| − 2κ, for all y ∈ Bρ(x̄).

Proof. For the interpretation of the convexification parameters, in (22),

max
j∈Jk,xj 6=x̂k

−2ekf,j

|xj − x̂k|2
,

represents the minimal value of η to imply that for all j ∈ Jk the linearization errors
of the “locally convexified” function remain nonnegative:

ekf,j +
η

2

∣∣xj − x̂k∣∣2 ≥ 0

for all j ∈ Jk. It is then easily seen that, for such ηk and for η and ηk > η + γ, we
have that

ekf,j +
ηk
2

∣∣xj − x̂k∣∣2 ≥ γ

2

∣∣xj − x̂k∣∣2 .
Since αkj and ekf,j + ηk

2

∣∣xj − x̂k∣∣2 are nonnegative, and αkj ≤ 1, if eϕ̃ → 0 then it

follows from (21) that αkj (ekf,j + ηk
2

∣∣xj − x̂k∣∣2)→ 0 for all j ∈ Jk. Hence,

αkj (ekf,j +
ηk
2

∣∣xj − x̂k∣∣2) ≥ (αkj )2(ekf,j +
ηk
2

∣∣xj − x̂k∣∣2) ≥ γ

2
(αkj

∣∣xj − x̂k∣∣)2 → 0.

Thus, αkj
∣∣xj − x̂k∣∣ → 0 for all j ∈ Jk. Hence, by the Assumption 3.3, the sum in

the item (i) is over a finite set of indices and each element in the sum tends to zero,
this demonstrates the claim (i).

For each j, let hj be the orthogonal projection of gj on the convex and closed
set ∂f(xj), it holds that |gj − hj | ≤ θj ≤ θ. By (16), we can get,

ĝk =
∑
j∈Jk

αkj g
j + ηk

∑
j∈Jk

αkj
(
xj − x̂k

)
=
∑
j∈Jk

αkjh
j +

∑
j∈Jk

αkj
(
gj − hj

)
+ ηk

∑
j∈Jk

αkj
(
xj − x̂k

)
. (33)

Let J be the set of all j ∈ Jk such that lim inf αkj > 0. Then item (i) implies

that |xj − x̂k| → 0, thus,

|xj − x̄| ≤ |xj − x̂k|+ |x̂k − x̄| → 0.
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As hj ∈ ∂f(xj) + Bθj (0) and xj → x̄ for j ∈ J , and {αkj } → 0 for j /∈ J , passing
onto a further subsequence in the set K(if necessary), the outer semicontinuity of
the Clarke subdifferential ([41], Thm 6.6) implies that

lim
k→∞

∑
j∈Jk

αkjh
j ∈ ∂f(x̄).

Note that the second term in (33) is clearly in Bθj (0), while the last term tends to
zero by item (i), this shows the assertion (ii).

The term (iii) follows from noting that ĝk → 0 as K 3 k → ∞. Adding the
inclusion and result (ii) gives (32).

We finally prove item (iv). Fix any ε > 0, let ρ > 0 be such that (ii) applies to x̄.
Let y ∈ Bρ(x̄) be arbitrary but fixed. We can consider that Jk is a fixed index set,
let J be the set of j ∈ Jk for which |xj − x̂k| → 0. In particular, it then holds that
xj ∈ Bρ(x̄). By (i), we get that {αkj } → 0 for j /∈ J . Since the objective function f

is a lower − C2 function, given an open set Ω, combining ([4] Thm.2, Cor.3) with
([46], Prop.2.4), the following statements are equivalent.{

∀x̄ ∈ Ω,∀ε > 0,∃ρ > 0 :
∀x ∈ Bρ(x̄) and g ∈ ∂f(x).

}
⇔
{
f(x+ a) ≥ f(x) + 〈g, a〉 − ε|a|
whenever |a| ≤ ρ and x+ a ∈ Bρ(x̄).

}
Using the above information, for j ∈ J , we can obtain that

f(y) ≥ f j +
〈
gj , y − xj

〉
+ κj +

〈
hj − gj , y − xj

〉
− ε

∣∣y − xj∣∣
≥ f j +

〈
gj , y − xj

〉
+ κj −

(
θj + ε

) ∣∣y − xj∣∣ .
According to (8) and the definition of linearization error, we have

f j +
〈
gj ,−xj

〉
= f̂k −

〈
gj , x̂k

〉
− ekf,j .

Therefore, it is obvious that

f(y) ≥ f̂k − ekf,j +
〈
gj , y − x̂k

〉
+ κj −

(
θj + ε

) ∣∣y − xj∣∣ .
Since ηk

2 |x
j − x̂k|2 ≥ 0 and gjϕ = gj + ηk

(
xj − x̂k

)
, we obtain that

f(y) ≥ f
(
x̂k
)
−ekϕ,j+

〈
gjϕ, y − x̂k

〉
−ηk

〈
xj − x̂k, y − x̂k

〉
+κj+κ̂−

(
θj + ε

) ∣∣y − xj∣∣ .
Taking the convex combination in the latter relation using the simplicial multipliers
in (21) and using (16), this gives

f(y)
∑
j∈J

αkj ≥
∑
j∈J

αkj
(
f
(
x̂k
)
− ekϕ,j +

〈
gjϕ, y−x̂k

〉)
−ηk

〈∑
j∈J

αkj
(
xj − x̂k

)
, y − x̂k

〉
+
∑
j∈J

αkj
(
κj + κ̂

)
−
(
θj + ε

)∑
j∈J

αkj
∣∣y − xj∣∣

≥f
(
x̂k
)∑
j∈J

αkj − eϕ̃ +
〈
ĝk, y − x̂k

〉
−
∑
j /∈J

αkj
〈
gjϕ, y − x̂k

〉
− ηk

〈∑
j∈J

αkj
(
xj − x̂k

)
, y − x̂k

〉
− 2κ− (θ + ε)

∑
j∈J

αkj
(∣∣y − x̂k∣∣+

∣∣xj − x̂k∣∣) ,
using item (i) and also that {αkj } → 0 for j /∈ J , we obtain that,

f(y) ≥ f(x̄)− (θ + ε)|y − x̄| − 2κ.
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The proof is done.

4.1. Infinite number of serious steps.

Theorem 4.2. Let the algorithm generate an infinite number of serious steps. Then
δk+1 → 0, as k →∞. In addition, if the Assumption 3.3 hold, we have,

(i) If
∞∑
k=1

1
µk

= +∞, then as k → ∞, we have eϕ̃ → 0. There exist K ⊂ {1, 2, . . .}

and x̄, ḡ such that {x̂k} → x̄, ĝk → ḡ, and ĝk → 0 as K 3 k → ∞. In particular,
if Assumption 3.2 holds, then Lemmas 4.1 holds;
(ii) If lim infk→∞

1
µk

> 0, then these assertions hold for all accumulation points x̄

of the serious step sequence
{
x̂k
}

.

Proof. At each serious step k, the relation (30) holds. We have that

fk+1 ≤ f̂k −mδk+1, (34)

where δk+1 ≥ 0. Therefore, the sequence {f̂k} is nonincreasing. Since the sequence
{x̂k} is bounded, by our assumptions on f and κ̂, the sequence {f(x̂k) + κ̂} is

bounded below, i.e., {f̂k} is bounded below. Since {f̂k} is also nonincreasing, we
conclude that it converges.

Using (4.1), we have that,

0 ≤ m
p∑
k=1

δk+1 ≤
p−1∑
k=1

(
f̂k − f̂k+1

)
, (35)

so that, letting p→∞,

0 ≤ m
∞∑
k=1

δk+1 ≤ f̂1 − lim
k→∞

f̂k. (36)

As a result,

∞∑
k=1

δk+1 =

∞∑
k=1

(
eϕ̃ +

Rk + µk
2

|xk+1 − x̂k|2
)
< +∞. (37)

Hence, δk+1 → 0, as k →∞. Since all the quantities above are nonnegative, it also
holds that

eϕ̃ → 0,
Rk + µk

2
|xk+1 − x̂k|2 → 0, as k →∞. (38)

If
∑∞
k=1

1
µk

= +∞, but for some β > 0 and all k,
∣∣ĝk∣∣ ≥ β, then (37) with the

relation (16) results in a contradiction. The fact shows that no such β exists, by
the relationship between ĝk and xk+1− x̂k in (16), means precisely that there exists
an index set K ⊂ {1, 2 · · · } such that

ĝk → 0, K 3 k →∞. (39)

Passing onto a further subsequence, if necessary, we can assume that {x̂k} → x̄,
and ĝk → ḡ as K 3 k →∞. Item (i) is now proved.

If lim infk→∞
1
µk

> 0, the second relation in (38) readily implied (39) for K ⊂
{1, 2 · · · }. Thus, the same assertions can be seen to hold for all accumulation points
of {x̂k}. This completes the proof.
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In the following, we consider the case where the number of serious step is finite.
That means after a finite number of iterations, the stability center does not change,
i.e., there exists an index k̄ and from then on, the stability center is x̂k = x̂ for all
k > k̄, and only null steps follow. The following formula is referred in the proof
process which are easy to be verified by the corresponding definitions. Specifically,
by (8), we see that,

− ek+1
ϕ,k+1 +

〈
gk+1
ϕ,k+1, x

k+1 − x̂k
〉

(40)

= −ek+1
k+1 − {

µk
2
|xn+1 − x̂k|2}k+1

k+1 +
〈
gk+1 + µk+1

(
xk+1 − x̂k

)
, xk+1 − x̂k

〉
= −

(
f̂k − fk+1 −

〈
gk+1, x̂k − xk+1

〉)
− µk+1

2

∣∣xk+1 − x̂k
∣∣2

+
〈
gk+1, xk+1 − x̂k

〉
+ µk+1

∣∣xk+1 − x̂k
∣∣2

= fk+1 − f̂k +
µk+1

2

∣∣xk+1 − x̂k
∣∣2 .

Hence, whenever xk+1 is declared as a null step, the descent condition (30) does
not hold. Meanwhile, by (40), we have

−ek+1
ϕ,k+1 +

〈
gk+1
ϕ,k+1, x

k+1 − x̂k
〉
≥ −mδk+1. (41)

4.2. Finite serious steps followed by infinitely many null steps.

Theorem 4.3. Let a finite number of serious iterates be followed by infinite null
steps. Let the Assumption 3.3 hold and lim infk→∞

1
µk

> 0. Then {x̂k} → x̂,

δk+1 → 0, eϕ̃ → 0, and there exist K ⊂ {1, 2, . . .} and ḡ such that ĝk → ḡ as
K 3 k → ∞. In particular, the conclusions of Lemma 4.1 hold for x̂ = x̄ if
Assumption 3.2 holds.

Proof. Let k large enough, so that k ≥ k̄ and x̂k = x̂, f̂k = f̂ are fixed.
Define the optimal value of the subproblem (12) by,

Ψk = ϕ̃k(xk+1) +
µk
2
|xk+1 − x̂k|2. (42)

We first show that the sequence {Ψk} is bounded above. Recall that, by (17),

ϕ−k(x̂k) = ϕ̃k
(
xk+1

)
−
〈
ĝk, xk+1 − x̂k

〉
. (43)

We then obtain that

Ψk +
µk
2
|xk+1 − x̂k|2 = ϕ−k(x̂k) +

〈
gk, xk+1 − x̂k

〉
+ µk|xk+1 − x̂k|2

= ϕ−k(x̂k) ≤ ϕ̃k(x̂k) = f̂k,

since Ψk ≤ f̂k, it can be shown that {Ψk} is bounded above.
We next show that {Ψn} is increasing. To that end, we obtain that

Ψk+1 = ϕ̃k+1(xk+2) +
µk+1

2
|xk+2 − x̂k+1|2

≥ ϕ−k(xk+2) +
µk
2
|xk+2 − x̂k|2

= ϕ̃k(xk+1) +
〈
ĝk, xk+2 − xk+1

〉
+
µk
2
|xk+2 − x̂k+1|2

= Ψk − µk
2
|xk+1 − x̂k|2 − µk

〈
dk, dk+1 − dk

〉
+
µk
2
|xk+2 − x̂k+1|2

≥ Ψk +
µk
2
|dk+1 − dk|2,
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where dk is defined in (16).
It converges when the sequence {Ψk} is bounded above and increasing. Conse-

quently, taking also into account that µk ≥ µk̄, it follows that,

|dk+1 − dk| → 0, k →∞. (44)

Next by the definition of δk+1 in (23) and the characterization of eϕ̃ in (20),

f̂ = δk+1 −
ηk
2

∣∣xk+1 − x̂k
∣∣2 + ϕ̃k

(
xk+1

)
≥ δk+1 + ϕ̃k

(
xk+1

)
,

therefore,

δk+1 ≤ f̂k − ϕ̃k
(
xk+1

)
. (45)

According to the model assumptions, written for d = dk+1,

−f̂k+1 + ek+1
ϕ,k+1 −

〈
gk+1
ϕ,k+1, d

k+1
〉
≥ −ϕ̃k+1

(
x̂+ dk+1

)
.

As f̂k+1 = f̂ , adding condition (41) to the inequality above, we obtain that,

mδk+1 +
〈
gk+1
ϕ,k+1, d

k+1 − dk
〉
≥ f̂ − ϕ̃k+1

(
x̂+ dk+1

)
.

Combining this relation with (45) yields,

0 ≤ δk+2 ≤ mδk+1 +
〈
gk+1
ϕ,k+1, d

k+1 − dk
〉
.

Since m ∈ (0, 1), by (44) and {ηk} is bounded,
〈
gk+1
ϕ,k+1, x

k+1 − x̂k
〉
→ 0, as k →∞,

using [[39] Lemma 3], it follows that,

lim
k→∞

δk+1 = 0.

Since δk+1 = Rk+µk

2 |xk+1−xk|2+eϕ̃ and lim infk→∞
1
µk

> 0, we have limk→∞ eϕ̃ = 0

and limk→∞ |ĝk| = 0. Also limk→∞ dk = 0, so that limk→∞ xk = x̂. Passing onto a
subsequence if necessary, we may also conclude that ĝk converges to some ḡ. Finally,
as x̂k = x̄ for all k, we clearly have all of conditions in Lemma 4.1 fulfilled. This
completes the proof.

5. Conclusion. In this paper, we provide an implementable algorithm for solv-
ing nonconvex nonsmooth optimization problems with inexact information. Our
method just requires that the objective function is a lower−C2 function, and only
gets inexact function values and subgradients, this assumption covers a rich family
of interesting problems.

By redefining the linearization error, we can deal with the inexact information.
Based on the convexification techniques, a locally convex model is created by the
construction of the lower−C2 function. Then we can solve the minimization prob-
lem by creating a quadratic subproblem. Finally, we present redistributed proximal
bundle method. Any nonnegative initial values can be used for the convexification
parameter and prox-parameter in the algorithm, and they are changed according to
specific rules while the algorithm is executed. By specifying the inexact information
of the convex function, our approach can be used to solve the convex programming
problem if the convexification parameter equals to zero or any other positive con-
stant.
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tion, Math. Program. Study., 17 (1982), 77-90.
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