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Abstract

This paper studies a revised winner determination problem with disruptions for a fourth party logistics

(4PL) provider. Integrating a hybrid disruption mitigation strategy that includes fortification, reservation

and outside options into combinatorial reverse auctions, a new two-stage stochastic winner determination

model is constructed. Developing a scenario reduction approach to obtain representative scenarios for

the deterministic equivalent reformulation, we use the CPLEX solver for solution method. Numerical

experiments illustrate the effectiveness and applicability of the proposed model and method. Comparison

analysis indicates that our strategy is dominant, and thus could be a useful tool for the 4PL provider to

handle disruptions.
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combinatorial reverse auction

1. Introduction1

With the development of information technology and the global economy, many manufacturing firms2

have witnessed changes from being “insourcing” to being “outsourcing” in their logistics activities in3

recent years. This is because outsourcing logistics-related activities to other third party logistics (3PL)4

providers, enterprises can obtain advantages, such as only focusing on the core business, reducing oper-5

ating costs, improving productivity and efficiency, and gaining access to unavailable resources (Tao et6

al., 2017). As reported by a leading supply chain knowledge market and research firm (Armstrong &7

Associates), the global 3PL revenue expanded to $802.2 billion in 20161. Yet, with the growing expansion8

of the logistics market and the increasingly complex supply network, the requirement of customers may9

sometimes go beyond a single 3PL’s capability that lacks integration of technology, transportation services10

and warehousing resources (Christopher, 2011). In such situations, there is a need for an organization11

to strategically combine focal 3PLs with technology companies, experienced consulting firms and other12

resource providers to run comprehensive logistics services across the entire supply chain; referred to as13

a fourth party logistics (4PL) provider. A 4PL is defined as an integrator that assembles the resources,14

capability, and technology of its own organization and other organizations to design, build, and run com-15

prehensive supply chain solutions (Huang et al., 2013). For example, the Adage Logistics Company2, a16

Chinese logistics enterprise, has positioned itself as a 4PL that provides integrated logistics services for17

manufacturers, retailers, and distributors by managing 3PLs and other resources. In practice, adopting18

1http://www.3plogistics.com/3pl-market-info-resources/3pl-market-information/global-3pl-market-size-estimates/
2http://www.adagelogistics.com
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the 4PL model can increase the supply chain efficiency, reduce logistics costs and lower carbon emissions19

for enterprises (Tao et al., 2017).20

Due to the advantage of cost minimization and service performance improvement (Caplice & Sheffi,21

2003; Holland & O’Sullivan, 2005; Sheffi, 2004), the combinatorial reverse auction (CRA) could be a useful22

tool adopted by the 4PL for transportation service procurement (TSP) from 3PLs under the context of23

Internet commerce. In such an auction, a 4PL acting as an auctioneer would solicit bids from a group of24

3PLs, and then sources transportation services from the winning 3PLs by solving a corresponding winner25

determination problem (WDP). Specifically, the 4PL first releases a request for proposal (RFP) for a26

logistics network of lanes. Each bidder, i.e. every 3PL, then submits multiple bids. To guarantee that a27

3PL could get a particular set of lanes with cost minimization, the bidding language utilized by 3PLs is28

assumed to have an XOR structure, that is, each 3PL that is allowed to submit a number of packages for29

lanes can win at most one package (Sandholm, 2002; Xu et al., 2015, 2017). After receiving all the bids30

from 3PLs, the 4PL solves the WDP so as to determine that the winning bids satisfy the clients’ demand.31

It is worth noting that although XOR language is more expressive, it also requires each bidder to submit32

more packages (Scheffel et al., 2012).33

To provide high quality of comprehensive supply chain solutions, a paramount concern of 4PL man-34

agers is sourcing transportation services from 3PLs that may involve disruptions, which are caused by35

natural disasters (floods, hurricanes, earthquakes, bad weather, ect.), intentional interdictions (terrorist36

attacks, labour strikes, ect.) or unintentional events (equipment breakdowns, industrial accidents, crew37

absence, ect.) (Choi et al., 2016; Huang et al., 2015; Snyder et al., 2016). There are several reasons why38

4PL managers are becoming increasingly preoccupied with disruptions. First, these disruptions could39

cause not only serious operational consequences (loss of market shares, delivery delays, higher transporta-40

tion costs, ect.), but also extended negative financial effects (abnormal stock returns, long recovering time,41

equity risk, ect.) (Peng et al., 2011; Mohammadi et al., 2016). For example, the Tōhoku earthquake and42

the following tsunami in Japan halted production in a broad range of the country’s industries in 2011, be-43

cause of plant damage, transportation blockage or power outages (Ang et al., 2017). Second, the logistics44

systems constructed under the assumption that 3PLs are immune to disruptions might be severely ruined45

if disruption occurs without countermeasures, which would have adverse impact on customer satisfaction,46

operation efficiency and revenue performance (Chung et al., 2015; Qin et al., 2013). Third, the prevalence47

of modern concepts such as outsourcing, lean manufacturing, quick response, and postponement would48

further result in the network capacity of 3PLs being more vulnerable to disruptions, because of reduced49

buffers that a 3PL could fall back on in the event of disruptions (Snyder et al., 2016). In this paper, we50

mainly focus on the accidental disruptions caused by unintentional events.51

Noting that even minor disruptions can have significant impact on logistics systems (Cheng et al.,52

2018), various tools could be adopted for managing disruption risks. First, the redundancy or flexibility53

strategy enables the 4PL to redesign an entirely existing logistics network, allowing the 4PL to avoid54

or rectify weaknesses that may potentially cause disruptions (Klibi et al., 2010). However, changing55

3PLs or reconfiguring the network could be costly, and thus may not be always reasonable. Second, the56

fortification strategy indicates investing in focal 3PLs to reduce the odds of a disruption, and thus can57

efficiently improve the reliability of logistics network. For example, strengthening a subset of the railway58
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components could increase the functionality of the Chinese railway system in the presence of possible59

disasters (Yan et al., 2017). It is worth noting that this strategy is utilized in advance of a disruption,60

and thereby would incur a fortification cost regardless of whether a disruption occurs. Third, the outside61

option strategy implies that, in the face of a disruption, the 4PL can scramble to develop an alternate62

option by using other 3PLs not included in CRA. For example, when the surge demand on Single’s Day63

threatened to delay the delivery of goods, Cainiao Logistics, founded by the Alibaba Group, could work64

together with China Railway High-speed (CRH) Express to create an alternate option3. Fourth, the non-65

performance penalty strategy levies penalty fees on a 3PL in the event that the 3PL fails to deliver on its66

promises. Yet, this strategy may severely cause customer dissatisfaction and bad reputation. Since the67

reservation strategy could improve the efficiency of logistics systems in logistics industry (Bai et al., 2017),68

in this paper, we assume that the 4PL would adopt a hybrid mitigation strategy which is a combination69

of fortification, reservation (expanding capacity for fortified 3PLs) and outside option strategies to handle70

disruptions.71

This paper models a novel combinatorial WDP for TSP of the 4PL facing capacity constrained 3PLs72

with disruptions under limited protection investment budget. We aim to investigate how CRA can be73

integrated with disruption mitigation strategies to reach an optimal procurement strategy for the 4PL.74

Our purpose is to select focal 3PLs with possible capacity disruptions through CRA from the 4PL’s point75

of view so as to satisfy clients’ transportation demands in a logistics network. To minimize the total76

cost of the 4PL, the disruption mitigation strategy should be carefully constructed by making a trade-77

off between reasonable allocation of limited protection investment, reservation capacity in fortified 3PLs78

and the utilization of outside options. A two-stage stochastic mixed-integer winner determination model79

(TSMWDM), integrating a hybrid disruption mitigation strategy, is established. In the first stage, the80

4PL minimizes the fortification cost and expected cost of stage 2 to determine the packages to be fortified.81

In the second stage, the 4PL minimizes the total cost of each scenario, including the procurement cost,82

holding cost of reservation capacity, fixed transaction cost of relationship management, and the outside83

option cost for failing to satisfy the requirements of clients via CRA, to determine the winning 3PLs.84

Our work contributes to the reverse auction and logistics literature by integrating a hybrid disruption85

mitigation strategy with CRA to propose an optimal procurement strategy for the 4PL. To solve the86

deterministic equivalent reformulation of TSMWDM, a scenario-reduction-based approach is developed87

for solution method. Relaxing the original problem to utilize the CPLEX solver or developing an efficient88

dual decomposition and Lagrangian relaxation approach, we could obtain a lower bound of TSMWDM to89

evaluate the performance of the scenario reduction approach. Numerical results illustrate the effectiveness90

and applicability of the proposed model and method. We find that the hybrid disruption mitigation91

strategy is the best choice for the 4PL by comparing it with other known strategies, and would have a92

more significant influence on the cost minimization as the probability of disruption becomes higher. We93

also develop two separate extensions of TSMWDM to consider the settings of partially disrupted packages94

and no execution risk, and evaluate the expected cost of TSP for the 4PL under each extended model. We95

believe that our work could benefit the realization of a cost-effective logistics system under disruptions.96

3http://www.chinadaily.com.cn/business/2016-11/12/content 27356494.htm
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The rest of this paper is organized as follows. In Section 2, the related literature is briefly reviewed97

for this study. In Section 3, we mainly focus on the formulation of TSMWDM and the corresponding98

extensions. Section 4 introduces the scenario reduction approach to obtain representative scenarios for99

solution method. Section 5 is the evaluation of the method and the effect of critical parameters on the100

hybrid disruption mitigation strategy. We conclude this paper with some future extensions in Section 6.101

2. Literature Review102

In this paper, we study a combinatorial WDP under disruptions associated with potential 3PLs. The103

literature related to our work comes from two separate streams, that is, WDP and disruption mitigation104

strategies.105

2.1. Winner determination106

Due to the potential saving of approximately 3% to 15% of the procurement cost, using CRA for TSP107

has become a new trend (Hu et al., 2016; Zhang et al., 2014). Roughly, the investigation of CRA for TSP108

can be split into two streams. The first stream of the literature addressed the optimal bidding strategy109

from the bidders’ point of view (Basu et al., 2015; Chang, 2009; Kuyzu et al., 2015; Lee et al., 2007; Song110

& Regan, 2005; Triki et al., 2014). These studies formulate bid generation and evaluation models to help111

bidders determine a set of valuable lanes to bid for by maximizing the revenue with optimization algorithms112

in CRA. For example, Chang (2009) developed a bidding advisor to help truckload determination of113

desirable bid packages using a column generation approach. Triki et al. (2014) considered a stochastic114

bid generation problem and developed a probabilistic optimization model to maximize the carrier’s profit115

using two heuristic procedures. The second stream of the literature investigated WDP (Ma et al., 2010;116

Mansouri & Hassini, 2015; Remli & Rekik, 2012, 2013; Qian et al., 2017; Zhang et al., 2014, 2015). These117

studies attempted to allocate optimally the bundles of goods to bidders by maximizing the auctioneer’s118

revenue. Noting that the WDP in its basic form is equivalent to the weighted set packing, which is119

an NP-complete combinatorial optimization problem (Rothkopf et al., 1998), this paper emphasizes the120

WDP model and the corresponding method.121

A variety of WDP models have been developed for TSP to increase procurement efficiency, showing122

the growing interest and importance of CRA. Most of the models developed so far focused on deterministic123

WDP. For example, Caplice & Sheffi (2003) initially examined mathematical models for assigning lanes124

to specific carriers (winner determination) with or without package bids, and discussed the extension125

by including business side constraints. Sandholm et al. (2005) studied a general WDP to provide a126

sophisticated optimal search algorithm that comprises decomposition techniques, upper and lower bounds,127

heuristics and a host of structural observations. To solve large-scale WDP, a number of optimization128

algorithms were developed in the subsequent works, such as branch and cut (Escudero et al., 2009),129

memetic (Boughaci et al., 2009), weighted maximum clique heuristic (Wu & Hao, 2015), Lagrangian130

relaxation (Mansouri & Hassini, 2015), ant colony algorithm (Qian et al., 2017) and so on. Investigating131

more complex WDPs that integrate multi-attributes (Bichler & Kalagnanam, 2005; Buer & Kopfer, 2014;132

Huang et al., 2016) or behavior (Ray et al., 2011; Qian et al., 2018a,b, 2019) has become popular in the133

use of CRA for TSP in real-life applications.134
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One important factor not involved in the abovementioned research is uncertainty, which might have135

dire consequences and compromise the efficiency of a solution (Remli & Rekik, 2013). In practice, shippers’136

demands and carriers’ capacities could be uncertain due to natural and man-made incidents as mentioned137

in Section 1. The development of WDP models under uncertainty is very recent field of research. Most138

of the WDP models developed so far have mainly focused on stochastic shipment volume to reduce the139

impact of uncertainties. To better formulate the problem, a two-stage stochastic winner determination140

framework was introduced, in which the first-stage decision is made before the realization of the uncertain141

demand, and the second-stage decision would be made to improve the utility once the value of uncertain142

parameters is observed. Following the framework, assuming that the realization of the random volume143

of shipments on each lane is at three levels, Ma et al. (2010) constructed a mathematical model with144

comprehensive business side constraints and showed the advantage of the proposed model by comparing145

it with a deterministic one. Similarly, Zhang et al. (2014) assumed that the uncertain demand followed a146

known distribution and developed a Monte Carlo approximation approach for solving the corresponding147

WDP. To reduce the impact of worst-case losses under shipment volume uncertainty, a two-stage robust148

winner determination model was also investigated (Remli & Rekik, 2013; Zhang et al., 2015).149

To the best of our knowledge, most models available today investigate the winner determination prob-150

lem under the scenario of shipment volume uncertainty. On a different line, our study arises from the151

real operational problems faced by a 4PL provider who needs to select 3PLs with possible accidental152

disruptions for satisfying clients’ demands by solving the WDP. Compared with the existing studies, the153

novel stochastic WDP with a hybrid disruption mitigation strategy investigated in this paper is more154

comprehensive, and not only ensures the effectiveness of the hybrid mitigation strategy to satisfy clients’155

demand in the face of a disruption, but also determines other 3PLs not included in the auction after know-156

ing the survived packages in a cost-optimal way. Indeed, our problem can be formulated as a risk-neutral157

expected-cost model in the two-stage stochastic winner determination framework. More specifically, the158

first-stage decision determines the fortified packages of 3PLs, and the second-stage determines the winning159

3PLs, the reservation capacity of fortified packages, and the utilization of outside options once the values160

of disruption parameters are observed.161

2.2. Disruption mitigation strategies162

Due to the globalization of business operations, logistics systems are increasingly vulnerable to many163

sources of disruptions caused by natural disasters, accidental events or intentional attacks (Choi et al.,164

2016). Noting that the disruptions could have a dramatic impact on the logistics system, a number of165

studies underline the importance of developing disruption mitigation strategies to increase the reliability166

of the logistics system in a cost-effective way (Fattahi et al., 2017; Snediker et al., 2008; Torabi et al.,167

2015). Roughly, the research area of logistics disruption management can be divided into two separate168

streams. The first one concerned the development of reactive policies to hedge against negative impacts of169

different disruptions. This stream generally constructed disruption recovery models to adjust the structure170

of logistics networks, and was focused by many researchers (Li et al., 2015; Paul et al., 2017; Sawik, 2019;171

Unnikrishnan & Figliozzi, 2011). An recent review of the literature on this stream can be found in Ivanov172

et al. (2017). The second one focused on the development of proactive policies to protect against future173
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disruptions. This stream generally formulated protection models to improve the reliability of logistics174

systems. Our paper would pay an emphasis on pertinent protection strategies which could be integrated175

with WDP models to minimize the disruption effects.176

The development of redundancy policies for the logistics system is a topic that has received much177

attention recently. Most of the literature focused on building up flexibility to protect against disruptions178

and added redundancy to create an intrinsically reliable network through additional links connecting179

supply and demand. For example, aiming to design a robust supply chain network in the presence of180

random facility disruptions, Lim et al. (2010) developed a Lagrangian relaxation-based solution method181

for solving the corresponding mixed integer programming model. Similarly, Shen et al. (2011) constructed182

a two-stage stochastic programming model for the reliable facility location problem and developed several183

heuristics that can produce near-optimal solutions to solve the problem. Adding three redundancy policies,184

Kamalahmadi & Parast (2017) proposed a two-stage mixed integer programming model to mitigate the185

negative impacts of environmental disruptions on the supply chain network. In the subsequent works,186

variations on the basic formulation were investigated, such as forward-reverse logistics network (Hatefi &187

Jolai, 2014), uncertain corrected disruptions (Lu et al., 2015), health service network (Zarrinpoor et al.,188

2018), capacitated logistics network (Shishebori et al., 2017), proactive supply chain network (Ivanov et189

al., 2016), and so on. A recent review of the literature on this research area was given by Snyder et al.190

(2016).191

Another class of literature focused on the fortification strategy to mitigate disruptions. When a192

logistics network is under the threat of disruption, it is crucial to fortify the most important facilities.193

The initial work to model the fortification decision was by Church & Scaparra (2007). It constructed194

an integer-linear programming model to optimally assign the fortification resources to the most critical195

facilities by minimizing the maximum possible damages. After that, various extensions of the basic196

models were studied, such as the shortest-path networks (Cappanera et al., 2011), capacitated supply197

chain network (Azad et al., 2013), hierarchical facility location (Aliakbarian et al., 2015), and hub-and-198

spoke networks (Ramamoorthy et al., 2018). The above fortification models developed could be classed199

as multi-level defender-attacks models in which the impact of worst-case losses was reduced as disruption200

occurs. In addition, other strategies could be utilized to hedge against the disruption risks. For example,201

strategically-reserved emergency capacity might be a straightforward way to add redundancy to protect202

against disruption (Bai et al., 2017; Ni et al., 2018). When a firm is subject to disruptions, it can also resort203

to its outside partners to improve the reliability (Ma et al., 2010). Most recently, adopting a combination204

of the aforementioned strategies to protect against disruption has become increasingly popular. For205

example, Qin et al. (2013) developed a combination of fortification and reservation strategies for the206

existing logistics system under accidental disruptions. However, these strategies were purely discussed207

in the formulation of the logistics and supply chain network, and cannot offer decision support for TSP208

using reverse auctions with disruptions in terms of 3PLs.209

To address the gap in the literature, our study focuses on a hybrid mitigation strategy that provides210

a comprehensive measure including the fortification, reservation, and outside option schemes to reduce211

the impact of disruptions for 4PL under a novel two-stage stochastic winner determination framework.212

This paper serves to help the 4PL make better decisions of selecting 3PLs with disruptions to fulfill the213
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demands of clients via CRAs by providing a mathematical model that integrates the hybrid mitigation214

strategy into the winner determination process and using the proposed model to generate insights for the215

4PL to better manage 3PLs in the presence of disruptions. The contribution of this paper is therefore216

to demonstrate how the hybrid mitigation strategy can be integrated with CRAs to obtain an optimal217

procurement strategy for the 4PL when facing 3PLs with disruptions. The analysis verified by numerical218

experiments shows that the hybrid mitigation strategy is dominant over others and could be a useful tool219

for the 4PL to deal with disruptions in the use of CRAs for TSP.220

3. Problem description, notations and modelling221

To lower the cost and improve the efficiency of transportation service procurement (TSP) for clients,222

a combinatorial reverse auction (CRA) is frequently adopted by a 4PL (auctioneer) to solicit bids from a223

group of 3PLs (bidders). This paper studies a winner determination problem (WDP) of CRA from the224

4PL’s point of view. Most of existing WDP is carefully modeled as a deterministic mixed-integer program225

assuming fixed capabilities of 3PLs at the auction phase. However, in practice, accidental disruptions226

caused by unintentional events, such as vehicle breakdowns, driver discontinuities and accidental fires,227

can lead to capacity disruptions of 3PLs after the auction, which would have substantial impact on the228

previous decision of 4PL. Obviously, a deterministic winner determination model with an estimate of 3PL229

disruptions may not provide adaptive solutions to achieve procurement efficiency for the 4PL. Hence, the230

main focus of this paper is to investigate how risk mitigation strategies can be integrated with the WDP231

decisions of the existing logistics system to minimize the total cost of protection, reservation, outside232

option and expected procurement for the 4PL simultaneously. In the following discussion, we would first233

investigate the scenario in which the transportation capacity of a package for the 3PL could be totally234

disrupted, and defer the research problem in which the capacity of a package for the 3PL could be partially235

disrupted as an extension.236

Let I be the set of lanes that the 4PL would serve. Each lane i ∈ I has a specific demand di. Let237

J denote the set of 3PLs. Each 3PL j ∈ J submits XOR bids Kj that each bidder although can submit238

any number of indivisible packages will win at most one package. The maximum capacity and bid price239

for each unit submitted by 3PL j ∈ J on lane i ∈ I for package k ∈ Kj is denoted by USijk and bijk,240

respectively. A 3PL cannot be assigned more demand than its current capacity. The set of disruption241

scenarios denoted by S is finite. If package k ∈ Kj of 3PL j ∈ J is hit by a disruption scenario w ∈ S,242

then the package is completely unavailable throughout the recovery time. For convenience, we assume243

that the disruption scenarios are independent under the setting of capacity disruption (Qin et al., 2013).244

In other words, we consider that the disruption hits the package of each 3PL’s capacity independently,245

which could generally happen in practical applications. For example, each package is associated with a set246

of vehicles that would serve the same lanes in that package at the same time. If a disruption occurs, the247

set of vehicles might be totally destroyed or have a breakdown such that they cannot serve the lanes any248

more. Other accidental events, such as traffic accidents and fires, may also cause independent disruptions249

across potential 3PLs (Lam & Su, 2015).250

LetD denote the total number of situations that would induce possible disruptions, and s = (s1, . . . , sD)
T

251

denote the probability vector of situations that would induce possible disruptions, where sd is a possible252

7



disruption induced by the d-th situation. Given LD denoting the set of probably disrupted packages, not-253

ing that each package in LD only have two states, i.e., disruption or non-disruption, we have |S| = 2|LD|.254

For example, given LD = {1, 2}, we have S = {(0, 0), (0, 1), (1, 0), (1, 1)}, where the element (1, 0) means255

package 1 is disrupted and package 2 is normal. With a slight abuse of notations, let r̂k denote the256

disruption probability of the k-th package which belongs to the set LD, k ∈ LD. Given skd being the257

disruption probability induced by the d-th situation for the k-th package, k ∈ LD, d = 1, . . . , D, following258

the literature (Snyder & Daskin, 2007), we have r̂k = 1 −
∏D

d=1(1 − skd), where the value of skd could be259

estimated by historical data or the forecast of experts. In this case, the probability of the disruption sce-260

nario w could be denoted by rw =
∏

k∈LDs
r̂k

∏
k∈{LD\LDs}

(1− r̂k), where LDs denotes the set of disrupted261

packages under scenario w. The parameter qjkw is introduced to indicate whether the package k of 3PL262

j is hit in scenario w. If the package k of 3PL j is disrupted, then qjkw equals to 1 and otherwise 0.263

Since 3PLs are vulnerable to capacity disruptions, to improve the service level, 4PL has to take264

protective measures to prevent these disruptions for focal 3PLs. Noting that redesigning the capacity265

of the 3PL would be prohibitively costly, we propose to apply the hybrid mitigation strategy including266

protection, reservation and outside option measures to deal with the disruption risks in advance. To be267

specific, the 4PL would provide a maximum investment Cmax in fortifying key packages of 3PLs. The268

protection cost of fortifying 3PL j ∈ J in terms of package k ∈ Kj denoted by cjk would depend on269

the capacity of 3PL j and the size of package k. Following the literature (Qin et al., 2013), we assume270

that the fortified packages could maintain the normal capacity of 3PLs even though disruption hits them.271

In addition, for the fortified package, the reservation capacity could be pre-positioned to counteract the272

adverse impact of disruptions. For example, the 4PL could invest in the backup capacity of 3PLs and273

reserve the capacity to hedge against disruptions. The unit holding cost of the reservation capacity and the274

maximum extended capacity of 3PL j for package k on lane i are denoted by hijk and LSijk, respectively.275

Without loss of generality, we assume that the extended capacity of the fortified package k for 3PL j on276

lane i is no more than the original maximum capacity USijk, and the unit holding cost hijk is higher than277

the bid price so as to reduce the total reservation capacity as much as possible. Note that if the volume278

of shipments is assigned to a winner, then a fixed transaction cost for relationship management of 3PL279

j on package k denoted by vjk occurs. If the assigned volume does not meet the specified requirement280

of clients after disruptions, a costly outside option denoted by ei would be adopted by the 4PL to fulfill281

the unsatisfied demand. To maintain the appropriate size of the 3PLs, the 4PL would like to have no282

more than or no less than a certain number of winning 3PLs, which could be denoted by Nmax and Nmin,283

respectively. Based on these conditions, the 4PL can determine which packages of 3PLs should be fortified284

so as to counteract the adverse effect of disruptions, where would reservation capacity be pro-positioned,285

and what kind of outside option could be adopted if the winning 3PLs cannot fulfill the realized demand286

after disruptions.287

The notations of the model are introduced below:288
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Parameters

I set of lanes

J set of 3PLs

Kj set of packages submitted by 3PL j

S set of possible disruptions scenarios

di demand of shipment volume on lane i

Cmax maximum budget of protection investment

Nmin minimum number of winning 3PLs of CRA specified by 4PL

Nmax maximum number of winning 3PLs of CRA specified by 4PL, Nmax ≥ Nmin

LSijk maximum extended shipment volume on lane i in package k that can be shipped by 3PL j

if its package k is fortified

USijk maximum shipment volume on lane i in package k that can be shipped by 3PL j

if he wins package k, USijk ≥ LSijk

ei outside option cost for shipping 1 unit of freight on lane i by other 3PLs

who are not invited to CRA

bijk bid price of shipping 1 unit of demand on lane i quoted by 3PL j on package k

cjk protection cost of 3PL j on package k

hijk unit cost of reservation shipment volume pre-positioned on lane i by 3PL j on package k

qjkw 0-1 indicated parameter, qjkw = 1 indicates that 3PL j is hit on package k in scenario w

rw probability of a disruption scenario, w ∈ S

vjk fixed transaction cost between the 4PL and 3PL j on package k

Decision variables

xjk 1 if 3PL j’s package k is fortified and 0 otherwise

zijk shipment volume reserves on lane i if 3PL j’s package k is fortified

yijkw shipment volume assigned to 3PL j on lane i in package k under scenario w

pjk 1 if 3PL j wins the package k and 0 otherwise

φiw shipment volume on lane i under scenario w that is assigned to other 3PLs

who are not invited to participate in CRA

The WDP integrating disruption mitigation strategies can be formulated in a two-stage stochastic289

mixed-integer programming model as shown below.290
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min
∑
j∈J

∑
k∈Kj

cjkxjk + E[f(x,w)] (1)

s.t.∑
j∈J

∑
k∈Kj

cjkxjk ≤ Cmax (2)

xjk ∈ {0, 1}, j ∈ J, k ∈ Kj (3)

where f(x,w) =
∑
i∈I

∑
j∈J

∑
k∈Kj

(bijkyijkw + hijkzijk + vjkpjk) + eiφiw

 (4)

s.t.∑
j∈J

∑
k∈Kj

yijkw + φiw = di, i ∈ I, w ∈ S (5)

qjkwxjkUSijk + (1− qjkw)USijk ≥ yijkw − zijk, i ∈ I, j ∈ J, k ∈ Kj , w ∈ S (6)

xjkLSijk ≥ zijk, i ∈ I, j ∈ J, k ∈ Kj (7)

Mpjk ≥ yijkw, i ∈ I, j ∈ J, k ∈ Kj , w ∈ S (8)∑
k∈Kj

pjk ≤ 1, j ∈ J (9)

∑
j∈J

∑
k∈Kj

pjk ≤ Nmax (10)

∑
j∈J

∑
k∈Kj

pjk ≥ Nmin (11)

pjk ∈ {0, 1}, j ∈ J, k ∈ Kj (12)

yijkw, zijk, φiw ≥ 0, i ∈ I, j ∈ J, k ∈ Kj , w ∈ S (13)

In the following discussion, we refer to the above formulation as a two-stage stochastic mixed-integer291

winner determination model (TSMWDM). Eq. (1) is the objective function of the first-stage problem292

that minimizes the fortification cost of packages for 3PLs and the expected cost of stage 2. Eq. (2)293

guarantees that the fortification investment cannot exceed the maximum budget. Eq. (3) is a constraint294

that indicates the integrality requirement of the fortification variables. Eq. (4) is the objective function295

of the second-stage problem that minimizes the total cost of the 4PL under each scenario. Specifically,296

the total cost includes the procurement cost, holding cost of reservation capacity, fixed transaction cost297

of relationship management, and outside option cost for failing to satisfy the requirements by 3PLs via298

the auction. Eq. (5) requires that the shipping demand on each lane is satisfied either by the winning299

3PLs in the auction or the outside 3PLs who are not invited to the auction but are still able to provide300

transportation services. Eq. (6) ensures that the shipment volume assigned to each 3PL is not more301

than the maximum capacity depending on whether the package is fortified or not interdicted. Eq. (7)302

requires that the reservation capacity of the fortified package for each 3PL on the corresponding lane can303

be extended up to the maximum value LSijk. Eq. (8) ensures that the package of a 3PL would be selected304

if the assigned shipment volume is greater than zero. Note that M is a sufficiently large number. In this305

model, the smallest value for M could be computed by maxi∈I, j∈J, k∈Kj
{USijk}. Eq. (9) represents the306
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XOR bidding language that at most one package of each 3PL could be selected. Eqs. (10) and (11) ensure307

that the number of 3PLs simply has to be between a certain pre-specified interval. Eqs. (12) and (13)308

are integrality constraints and nonnegativity constraints of decision variables, respectively.309

Obviously, the deterministic equivalent reformulation of TSMWDM is a mixed-integer program. Since310

the decision variables and constraints of the research problem would tremendously increase as the set of311

scenarios S becomes large, the corresponding model becomes too complicated to be solved by commercial312

solvers like CPLEX solver directly. In the next section, an effective scenario reduction approach is313

developed for solution method.314

3.1. Extensions315

In this subsection, we would give two extended models by relaxing some assumptions made in316

TSMWDM. The first subsubsection presents an extension that allows the partially disrupted package317

instead of the totally disrupted one. In this case, given the capacity associated with some lane in a318

package being hit by a disruption, the 3PL can still provide transportation services for other lanes in319

that package. In addition, the 4PL would fortify the transportation capacity associated with lanes that320

might be disrupted instead of fortifying the probably disrupted packages, and the fortified capacity of321

lanes could still have a chance to be destroyed under disruptions. The second extension in the second322

subsubsection assumes that the 4PL faces 3PLs with a risk of miss/no execution of contracts. In this323

case, since the fortification strategy cannot function any more, following the literature (Gong et al., 2018;324

Kutanoglu & Lohiya, 2008), we would integrate the penalty policy and the outside options with the CRA325

to propose an optimal procurement strategy for the 4PL.326

3.1.1. Partially disrupted packages327

In this subsubsection, for practical applications, we discuss a variation of our basic models to consider328

the case of partially disrupted packages, that is, the capacity associated with lanes in a package might329

be disrupted. If a disruption w ∈ S hits the capacity of lane i ∈ I for 3PL j ∈ J , then the capacity330

of lane i is completely unavailable for 3PL j in any package k ∈ Kj throughout the recovery time, but331

the capacity of any other lane î ∈ I\{i} can still function normally for î ̸= i in the package. Since the332

capacity of lanes might be vulnerable to disruptions, to ensure the service level, the 4PL could provide a333

maximum investment Cmax in fortifying the capacity of key lanes for 3PLs to prevent these disruptions.334

Without loss of generality, we assume that the capacity of fortified lanes could function normally with a335

probability. Let θ ∈ Θ denote the state that the fortified capacity of lanes could survive or be destroyed336

under a disruption, where Θ = {1, 2}. Obviously, the state can be characterized by a discrete random337

variable that follows a Bernoulli distribution. We assume that the random variable takes the value µ1 = 1338

with probability ρ1 and the value µ2 = 0 with probability ρ2 such that ρ1 + ρ2 = 1. In the meanwhile,339

the fortified capacity of lanes would have a chance of µθ to be reserved for the purpose of counteracting340

the adverse impact of possible disruptions, θ ∈ Θ. More details about the fortification and reservation341

strategies applied to the capacity of lanes of logistics systems can be found in Yan et al. (2017) and Bai342

et al. (2017).343

With a slight abuse of notation, given rij denoting the disruption probability of the capacity associated344

with lane i ∈ I for 3PL j, the probability of a scenario w can be rewritten as rw =
∏

ij∈Ds
rij

∏
ij∈{D\Ds}(1−345
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rij ), where Ds is the set of probably disrupted capacity of lanes associated with potential 3PLs. Other346

notations follow similarly as our basic model. The winner determination problem integrated with capac-347

ity disruption of lanes for the logistics system can be constructed as a two-stage stochastic mixed-integer348

programming model as shown below.349

min
∑
i∈I

∑
j∈J

cijxij + E[f(x,w)] (14)

s.t.∑
i∈I

∑
j∈J

cijxij ≤ Cmax (15)

xij ∈ {0, 1}, i ∈ I, j ∈ J (16)

where f(x,w) =
∑
θ∈Θ

ρθ

∑
i∈I

∑
j∈J

∑
k∈Kj

(bijkyijkwθ + hijkzijk + vjkpjk) + eiφiwθ

 (17)

s.t.∑
j∈J

∑
k∈Kj

yijkwθ + φiwθ = di, i ∈ I, w ∈ S, θ ∈ Θ (18)

qijkwxijµθ(USijk + zijk) + (1− qijkw)USijk ≥ yijkw, i ∈ I, j ∈ J, k ∈ Kj , w ∈ S, θ ∈ Θ

(19)

xijLSijk ≥ zijk, i ∈ I, j ∈ J, k ∈ Kj (20)

Mpjk ≥ yijkwθ, i ∈ I, j ∈ J, k ∈ Kj , w ∈ S, θ ∈ Θ (21)∑
k∈Kj

pjk ≤ 1, j ∈ J (22)

∑
j∈J

∑
k∈Kj

pjk ≤ Nmax (23)

∑
j∈J

∑
k∈Kj

pjk ≥ Nmin (24)

pjk ∈ {0, 1}, j ∈ J, k ∈ Kj (25)

yijkwθ, zijk, φiwθ ≥ 0, i ∈ I, j ∈ J, k ∈ Kj , w ∈ S, θ ∈ Θ (26)

Obviously, the model characterized by Eqs. (14)-(26) has the same structure and similar interpretations350

as that of Eqs. (1)-(13). In stage 1, the fortification cost of probably disrupted capacity of lanes and the351

excepted cost of stage 2 would be minimized. In stage 2, we minimize the total expected cost associated352

with the situation whether the fortified capacity of lanes would be available or not under each scenario.353

Similarly, the total expected cost includes the procurement cost, holding cost of reservation capacity, fixed354

transaction cost of relationship management, and outside option cost for failing to satisfy the requirements355

by 3PLs via the auction.356

3.1.2. No execution risk of 3PLs357

In practical applications, it is important for the 4PL to manage 3PLs for fulfilling clients’ demands358

to achieve customer satisfaction under disruptions. If clients are not served, then the no execution risk359

occurs, and the failure to accomplish the clients’ demand would impose consequences on the 4PL, such360
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as loss of money and bad reputations (Kozhan & Tham, 2012). To avoid potential losses, a penalty cost361

ĥjk is charged to each no execution 3PL, and unsatisfied demand would be fulfilled by using the outside362

options, j ∈ J, k ∈ Kj . The winner determination problem associated with the no execution risk of363

potential 3PLs could be formulated as a two-stage stochastic mixed-integer programming model, where364

the winning 3PLs would be determined in stage 1, and the allocation of the shipment volume would be365

determined in stage 2. The details of the model are given below.366

min
∑
j∈J

∑
k∈Kj

vjkpjk + E[f(p, w)] (27)

s.t.∑
k∈Kj

pjk ≤ 1, j ∈ J (28)

∑
j∈J

∑
k∈Kj

pjk ≤ Nmax (29)

∑
j∈J

∑
k∈Kj

pjk ≥ Nmin (30)

pjk ∈ {0, 1}, j ∈ J, k ∈ Kj (31)

where f(p, w) =
∑
i∈I

∑
j∈J

∑
k∈Kj

bijkyijkw + eiφiw

−
∑
j∈J

∑
k∈Kj

qjkwpjkĥjk (32)

s.t.∑
j∈J

∑
k∈Kj

yijkw + φiw = di, i ∈ I, w ∈ S (33)

pjk(1− qjkw)USijk ≥ yijkw, i ∈ I, j ∈ J, k ∈ Kj , w ∈ S (34)

yijkw, φiw ≥ 0, i ∈ I, j ∈ J, k ∈ Kj , w ∈ S (35)

Obviously, we see that the structure of the winner determination model associated with the no execution367

risk is similar to our basic model. Eq. (27) is the objective function of the first-stage problem that368

minimizes the transaction cost and the expected cost of stage 2 simultaneously. Eq. (32) is the objective369

function of the second-stage problem that minimizes the total cost of the 4PL under each scenario,370

including the procurement cost, outside option cost for failing to satisfy the requirements by 3PLs via371

the auction and the penalty cost derived from 3PLs of no execution behavior. Eq. (34) ensures that the372

maximum capacity of each 3PL can not be exceeded. The interpretation of other equations are the same373

to our basic model.374

4. Solution methodology375

Noting that solving the winner determination problem with disruptions expressed by TSMWDM is376

difficult, since a huge number of variables and constraints would be involved as the number of scenarios377

increases, the scenario reduction approach is developed for a solution method. The main idea of the378

scenario reduction approach is to decrease the difference between the optimal objective value of the original379

problem with full scenarios and the optimal objective value of the reduced problem by selecting a subset380

from the original set of scenarios. In this case, the large set of full scenarios can be well approximated by381
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a small set of reduced scenarios that could yield a good solution close to the optimal one of the original382

problem (Karuppiah et al., 2010).383

Given L = |LD| denoting the number of probably disrupted packages and γ = {γk}k=1,...,L being the384

vector of uncertain parameters associated with the case whether package k is disrupted or not, k ∈ LD,385

each γk could be assumed to take on a finite set of values given by {γlkk }lk=1,2. Noting that 0 and 1 could386

be used to indicate whether package k is immune to a disruption or not, that is γlkk ∈ {0, 1} for k ∈ LD387

and lk = 1, 2, we see that the probability associated with the uncertain parameter γk taking on γlkk is rlkk .388

Correspondingly, the probability associated with a scenario w in the original set of scenarios is given by389

rl1,l2,...,lL =
∏L

k=1 r
lk
k . Hence, the relaxation formulation to determine the minimum number of scenarios390

is introduced below (Karuppiah et al., 2010; Sadghiani et al., 2015).391

min f =

2∑
l1=1

2∑
l2=1

· · ·
2∑

lL=1

[(1− rl11 r
l2
2 · · · rlLL ) · r̂l1,l2,...,lL ] (36)

s.t.
2∑

l2=1

2∑
l3=1

· · ·
2∑

lL=1

r̂l1,l2,...,lL = rl11 , l1 = 1, 2 (37)

2∑
l1=1

2∑
l3=1

· · ·
2∑

lL=1

r̂l1,l2,...,lL = rl22 , l2 = 1, 2 (38)

...
2∑

l1=1

2∑
l2=1

· · ·
2∑

lL−1=1

r̂l1,l2,...,lL = rlLL , lL = 1, 2 (39)

2∑
l1=1

2∑
l2=1

· · ·
2∑

lL=1

r̂l1,l2,...,lL = 1 (40)

0 ≤ r̂l1,l2,...,lL ≤ 1, ∀l1, l2, . . . , lL (41)

where r̂l1,l2,...,lL denotes the new probability assigned to a scenario. Using the CPLEX solver, we can392

find the most effective scenarios for TSMWDM. After that, the deterministic equivalent reformulation of393

TSMWDM expressed below can be solved by the CPLEX solver.394

min
∑
j∈J

∑
k∈Kj

cjkxjk +
∑
w∈S

rw ·

∑
i∈I

∑
j∈J

∑
k∈Kj

(bijkyijkw + hijkzijk + vjkpjk) + eiφiw

 (42)

s.t. constraints (2) ∼ (3), (5) ∼ (13)

To show the effectiveness of the scenario reduction approach, we give the theoretical error estimates395

by comparing it with other methods (i.e., using the full scenario approach to derive the optimal solution,396

relaxing the original problem to obtain a lower bound or adopting an efficient dual decomposition and397

Lagrangian relaxation approach to derive a lower bound) as shown below.398

Let (xT ,pT , zT )T and f(x,p, z) denote the optimal solution and the corresponding optimal objective399

function value derived from the scenario reduction approach, respectively. Obviously, (xT ,pT , zT )T is a400

feasible solution of TSMWDM. Hence f(x,p, z) provides an upper bound of TSMWDM. Let f∗(x∗,p∗, z∗)401
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denote the optimal objective function value of TSMWDM. The error of the optimal solution associated402

with the research problem under reduced scenarios denoted by ϵ could be calculated by ϵ = f(x,p, z) −403

f∗(x∗,p∗, z∗), where f∗(x∗,p∗, z∗) can be computed by the summation of the weighted optimal values of404

solving each scenario separately or approximated by taking a subset of scenarios with larger probabilities405

(Karuppiah et al., 2010). In this case, ϵ could be used to evaluate the effectiveness of the scenario reduction406

approach for the purpose of theoretical analysis or practical applications.407

In general, when the number of disruption scenarios is sufficiently large, it could be impossible to408

obtain f∗(x∗,p∗, z∗) by using the CPLEX solver directly. In this case, evaluating the performance of the409

scenario reduction approach becomes extremely difficult, since the error ϵ cannot be derived. Next, we410

would provide two methods to derive the lower bound of TSMWDM, since the gap between the upper411

bound and lower bound could be adopted to evaluate the performance of the scenario reduction approach412

(Meng et al., 2012, 2015).413

Relaxing Eq. (6) by setting qjkw = 0, we have a simple version of TSMWDM denoted by (SP) in414

which the transportation capacity of each 3PL would never be disrupted under diverse scenarios, that is,415

(SP) min
∑
j∈J

∑
k∈Kj

cjkxjk +
∑
w∈S

rw ·

∑
i∈I

∑
j∈J

∑
k∈Kj

(bijkyijkw + hijkzijk + vjkpjk) + eiφiw


s.t. constraints (2) ∼ (3), (5), (7) ∼ (13)

USijk ≥ yijkw − zijk, i ∈ I, j ∈ J, k ∈ Kj , w ∈ S (43)

Solving (SP), we derive the following proposition.416

Proposition 1. Given (x̂T , p̂T , ẑT )T and f̂(x̂, p̂, ẑ) denoting the optimal solution and the corresponding417

optimal objective function value of (SP), f̂(x̂, p̂, ẑ) produces a lower bound of TSMWDM.418

Proof. Noting that (SP) is indeed a certain problem irrelevant with the disruption scenarios, the optimal419

solution of TSMWDM is always a feasible solution of (SP). Hence, we have f∗(x∗,p∗, z∗) ≥ f̂(x̂, p̂, ẑ).420

Solving (SP) to derive (x̂T , p̂T , ẑT )T by using the CPLEX solver directly, we could derive a lower bound421

of TSMWDM, i.e., f̂(x̂, p̂, ẑ).422

Calculating ϵ̂ = f(x,p, z) − f̂(x̂, p̂, ẑ), we could evaluate the performance of the scenario reduction423

approach. If ϵ̂ does not provide a good estimation, then we could develop another approach to find the424

lower bound of TSMWDM as presented below.425

Noting that TSMWDM is computationally intractable for sufficiently large number of disruption sce-426

narios, an efficient dual decomposition and Lagrangian relaxation approach proposed by CarøE & Schultz427

(1999) is employed to find a lower bound for TSMWDM. Since the deterministic formula of TSMWDM428

can be divided into |S| subproblems matching |S| disruptions, the decision variables (xT ,pT , zT )T shall429

be rewritten |S| times to ensure the equivalence of the decision variables across all the subproblems.430
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Correspondingly, we have the following decomposition formula of TSMWDM denoted by (DP).431

(DP) min
∑
w∈S

rw ·

∑
j∈J

∑
k∈Kj

cjkxjkw +
∑
i∈I

∑
j∈J

∑
k∈Kj

(bijkyijkw + hijkzijkw + vjkpjkw) + eiφiw

(44)
s.t. constraints (2) ∼ (3), (5) ∼ (13)

(xT
w,p

T
w, z

T
w)

T = (xT
w+1,p

T
w+1, z

T
w+1)

T , w = 1, 2, · · · , |S| − 1 (45)

(xT
|S|,p

T
|S|, z

T
|S|)

T = (xT
1 ,p

T
1 , z

T
1 )

T (46)

Given |X|, |P |, |Z| denoting the number of elements in matrix x, p, z, respectively, using the matrix432

notation, Eqs. (45) and (46) can be reformulated as
∑

w∈S Hw(x
T
w,p

T
w, z

T
w)

T = 0, where Hw is a matrix433

with |S| × (|X|+ |P |+ |Z|) rows and |X|+ |P |+ |Z| columns, w ∈ S. In specific, H1 = (−I, I,0, · · · ,0)T ,434

H2 = (0,−I, I, · · · ,0)T , · · · , H|S|−1 = (0,0, · · · ,−I, I)T and H|S| = (I,0, · · · ,0,−I)T , where I and 0 are435

identity and zero matrices with (|X| + |P | + |Z|)2 elements, respectively. Given λ denoting a vector of436

Lagrangian multiplier with |S| × (|X|+ |P |+ |Z|) elements, the Lagrangian relaxation problem of (DP)437

denoted by (LR) is438

LR(λ) = min
∑
w∈S

rw ·

∑
j∈J

∑
k∈Kj

cjkxjkw +
∑
i∈I

∑
j∈J

∑
k∈Kj

(bijkyijkw + hijkzijkw + vjkpjkw) + eiφiw


+ λT

∑
w∈S

Hw(x
T
w,p

T
w, z

T
w)

T (47)

s.t. constraints (2) ∼ (3), (5) ∼ (13)

Since (LR) is separable in terms of each scenario w ∈ S, the subproblem of (LR) that is associated439

with scenario w denoted by (SLR) is expressed below.440

LRw(λ) = min rw ·

∑
j∈J

∑
k∈Kj

cjkxjkw +
∑
i∈I

∑
j∈J

∑
k∈Kj

(bijkyijkw + hijkzijkw + vjkpjkw) + eiφiw


+ λTHw(x

T
w,p

T
w, z

T
w)

T (48)

s.t. constraints (2) ∼ (3), (5) ∼ (13)

It is worth noting that (SLR) is a small-scale integer linear programming model which can be solved441

by the CPLEX solver directly. Then, we can derive another lower bound of TSMWDM by solving the442

associate Lagrangian dual problem denoted by (LD) as follows.443

LD(λ) = max
λ

LR(λ) (49)

Since (LD) is a concave maximum problem with a non-differentiable objective function, it can be444

solved by the subgradient method. Let
∑

w∈S Hw((x
∗
w)

T , (p∗
w)

T , (z∗w)
T )T denote a subgradient of (LD),445

where ((x∗
w)

T , (p∗
w)

T , (z∗w)
T )T is a vector that denotes the optimal solution of the w-th subproblem of446

(LD). The details of the subgradient method for deriving a lower bound of TSMWDM are given below.447

Step 1: Set k = 1, and choose an initial vector of Lagrangian multiplier denoted by λ1. Following the448

literature (Shore, 1985), a step-size, αk = 1
k , k = 1, 2, . . ., is adopted to ensure the global convergence449

of the approach, where k denotes the number of iterations.450
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Step 2: Solving (SLR) under λk for each w to derive the optimal solution ((xk∗
w )T , (pk∗

w )T , (zk∗w )T )T , we451

can calculate the subgradient βk =
∑

w∈S Hw((x
k∗
w )T , (pk∗

w )T , (zk∗w )T )T and the objective function452

value LR(λk), respectively.453

Step 3: Update the vector of Lagrangian multiplier using the subgradient information below.454

λk+1 = λk + αkβk (50)

Step 4: The algorithm stops if the following criterion is reached.455 ∣∣∣∣LR(λk+1)− LR(λk)

LR(λk)

∣∣∣∣ ≤ ε (51)

where ε is a given tolerance. Otherwise, set k = k + 1 and go to Step 2.456

Obviously, relaxing Eqs. (45)-(46) and then using the dual decomposition and Lagrangian relaxation457

approach could also provide a lower bound for practical applications with a large number of 3PLs, lanes458

and possible disruptions, since the computing time might be reduced significantly.459

To find robust solutions, a general scenario-based robust model shall be constructed under the robust460

optimization framework which includes two types of robustness, that is solution robustness and model461

robustness being used to ensure the optimality and feasibility of the solution in all scenarios, respectively.462

With a slight abuse of notations, let ψ = E[g(x,p, z,y,w)] =
∑

w∈S rwψw, where g(x,p, z,y,w) is the463

overall cost function of scenario w, ψ and ψw are the average cost values of all scenarios and the cost464

value of scenario w. The details of the model is given below (Mirzapour Al-E-Hashem et al., 2011).465

min
∑
w∈S

rw[ϖ1ψw +ϖ1λ(ψw + 2θw −
∑
w∈S

rwψw) +ϖ2φw] (52)

s.t. ψw −
∑
w∈S

rwψw + θw ≥ 0, ∀w ∈ S (53)

Byw + φw = d, ∀w ∈ S (54)

θw ≥ 0, ∀w ∈ S (55)

φw ≥ 0, ∀w ∈ S (56)

(x,p, z,y) ∈ Γ, ∀w ∈ S (57)

where λ denotes the weight devoted to the solution variance, ϖ1 and ϖ2 denote the weights of the solution466

robustness and the method robustness, respectively, and Γ is a feasible domain obtained by solving Eqs.467

(2)-(3) and (6)-(13). More details of Eqs. (52)-(57) can be referred to Mulvey et al. (1995) and Pan &468

Nagi (2010).469

5. Numerical experiments470

To illustrate the performance of the proposed model and method, numerical experiments are con-471

ducted. Specifically, Section 5.1 presents the randomly generated instances for each problem tested. In472

Section 5.2, we show the effectiveness of the scenario reduction method by comparing it with the full473
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scenario method. In Section 5.3, the fortification strategy is analyzed. Section 5.4 presents the numerical474

results of the extended models to show the robustness of the method. All the tests are solved using475

CPLEX 12.6.1 with a laptop of Intel(R) Core(TM) i5-3360M 2.80GHz CPU processor using 8 GB of476

RAM. In the numerical experiments, the algorithm stops either when the CPLEX solver displays “’N/A’477

due to the out of memory condition or when the running time reaches 3 hours.478

5.1. Problem instance generation479

For small scale problems4, we assume that the 4PL serves 5 lanes and 10 3PLs who are willing to480

submit bids with 2 packages. The demand of each lane is 500, and the maximum fortification budget is481

10000. The requirements of the minimum and maximum number of winning 3PLs are assumed to be 0 and482

10, respectively. The bid price of each 3PL for each package on each lane follows a uniform distribution on483

the support [50, 100]. The fortification cost of each 3PL for each package follows a uniform distribution484

on the support [1000, 2000]. The fixed transaction cost of relationship management of each 3PL follows485

a uniform distribution on the support [2000, 3000]. The maximum shipment volume of each 3PL for each486

package on each lane follows a uniform distribution on the support [50, 100]. If the package of the 3PL487

is fortified, then the maximum extended shipment volume of each 3PL for each package on each lane is488

assumed to follow a uniform distribution on the support [10, 20]. The unit holding cost of the reservation489

shipment volume of each 3PL for each package on each lane follows a uniform distribution [100, 150].490

The bidding packages of 3PLs are presented as [no. of 3PL, {package 1}, {package 2}], that is, [1, {1},491

{1, 2}], [2, {2}, {2, 3}], [3, {3}, {3, 4}], [4, {4}, {4, 5}], [5, {5}, {1, 5}], [6, {1, 3}, {1, 2}], [7, {2, 3}, {2,492

5}], [8, {3, 4}, {3, 5}], [9, {5}, {1}], [10, {2}, {4}]. The disrupted packages are assumed to be varied and493

can be described as [number of possible disrupted packages, {(no. of 3PL, no. of package)}, disruption494

probability vector], i.e., [5, {(4, 2), (5, 2), (7, 2), (8, 2), (9, 1)}, (0.7, 0.9, 0.6, 0.4, 0.5)T ], [8, {(1, 2), (2,495

2), (3, 2), (4, 2), (5, 2), (7, 2), (8, 2), (9, 1)}, (0.8, 0.7, 0.5, 0.85, 0.6, 0.7, 0.5, 0.6)T ], [10, {(1, 2), (2, 2),496

(3, 2), (4, 2), (5, 2), (6, 2), (7, 2), (8, 2), (9, 1), (10, 2)}, (0.8, 0.7, 0.5, 0.85, 0.6, 0.7, 0.9, 0.6, 0.4, 0.5)T ],497

[12, {(1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2), (7, 2), (8, 2), (9, 1), (9, 2), (10, 1), (10, 2)}, (0.8, 0.7, 0.5,498

0.85, 0.6, 0.7, 0.9, 0.6, 0.4, 0.5, 0.9, 0.7)T ], [15, {(1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 1), (6, 2), (7, 1),499

(7, 2), (8, 1), (8, 2), (9, 1), (9, 2), (10, 1), (10, 2)}, (0.8, 0.7, 0.5, 0.85, 0.6, 0.7, 0.9, 0.6, 0.4, 0.5, 0.9, 0.7,500

0.6, 0.85, 0.5)T ].501

Given 5 possible disruptions of the small scale problems, using Eqs. (36)-(41), the full scenarios can502

be reduced as shown in Fig. 1. The first green line on the left-hand side represents that no package is503

disrupted, and the last green line on the right-hand side is the scenario in which all packages would be504

disrupted.505

From Fig. 1, we see that 32 scenarios are reduced to 4 scenarios, which shows the effectiveness of506

the scenario reduction method. For other dimension of possible disruptions, the details of the reduced507

scenarios are shown in Table A.10.508

4The data of large scale problems are presented in Appendix B
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Figure 1: Comparison of full scenarios and reduced scenarios for 5 possible disrupted packages

5.2. Comparison analysis509

Let “FS” denote the full scenario approach in which all scenarios would be investigated to derive the510

optimal solution for TSMWDM, and “RS” denote the reduced scenario approach in which the represen-511

tative scenarios derived from Eqs. (36)-(41) are used to obtain the optimal solution for TSMWDM in this512

subsection. Given a set of possible disruptions as {5, 8, 10, 12, 15}, the results of the full and reduced513

scenarios for small and large scale problems are shown in Table 1.514

Table 1: Comparison of full and reduced scenarios for different possible disruptions

Problem Methodology
Possible Number of Total Outside Selected Number of Time

disruptions scenarios cost option packages fortifications (s)

Small

FS

5 32 234517.15 135540 9 2 7

8 256 236687.43 156890 8 3 10

10 1024 238508.21 167760 7 4 15

12 4096 239707.54 171000 7 4 40

15 32768 239846.27 167760 7 5 290

RS

5 4 234517.15 135540 9 2 5

8 5 236687.43 156890 8 3 4.7

10 5 238508.21 167760 7 4 4.5

12 7 239707.54 171000 7 4 4.8

15 9 239846.27 167760 7 5 5.4

Large

FS

5 32 796659.91 139570 30 1 12

8 256 798410.39 139570 30 2 49

10 1024 799997.54 139570 30 3 200

12 4096 803654.44 139570 30 5 537

15 32768 N/A N/A N/A N/A N/A

RS

5 4 796659.91 139570 30 1 6.9

8 5 798410.39 139570 30 2 7.3

10 5 799997.54 139570 30 3 8.7

12 7 803654.44 139570 30 5 10

15 9 807904.56 178660 29 5 8.18

From Table 1, we see that the scenarios can be reduced substantially under RS by comparison with515

FS, and the numerical results show that there is no gap between FS and RS, that is, the total cost, the516

outside option cost, the winning packages and the fortified packages are the same for both approaches. We517

also see that when the dimension of the possible disruptions is 15, adopting FS cannot obtain the optimal518

solution in an effective time. Yet, RS could give a best solution very quickly, that is, the computing time519

of RS can be reduced tremendously, especially for large scale problems. Intuitively, when the dimension520

of possible disruptions increases, the 4PL would cost more to conduct the procurement and disruption521

mitigation activities, so the number of fortified packages and the outside option cost are likely to increase.522

Yet, to minimize the total cost, the 4PL has to make a trade-off between the protection cost and the523
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outside option cost. Obviously, the 4PL would have a higher chance to adopt the fortification strategy524

or the outside option depending on whether the unit outside option cost is relatively high or low. Hence,525

when the number of fortified packages increases as the dimension of disruption increases, the outside526

option cost might decrease.527

Given the case of 10 possible disrupted packages and a fixed set of the unit outside option costs528

e ∈ {100, 125, 150, 200, 300, 500, 1000}, the comparison of full and reduced scenarios for small and large529

scale problems is shown in Table 2.530

Table 2: Comparison of full and reduced scenarios as outside option cost varies under 10 possible disruptions

Problem Methodology
Unit outside Total Outside Selected Number of Time

option cost cost option packages fortifications (s)

Small

FS

100 238508 167760 7 4 15

125 271589 146500 10 6 13

150 300889 175810 10 6 11

200 358656 225130 10 6 12

300 458804 295100 10 7 12

500 654303 486430 10 7 12

1000 1140735 972870 10 7 12

RS

100 238508 167760 7 4 4

125 271589 146500 10 6 4

150 300889 175810 10 6 4

200 358656 225130 10 6 4

300 458804 295100 10 7 4

500 654303 486430 10 7 4

1000 1140735 972870 10 7 4

Large

FS

100 799997.54 139570 30 3 200

125 822367.63 66802 35 5 336

150 831804.6 46534 36 6 474

200 840845 27023 36 5 390

300 848928 22890 38 5 485

500 862479 32516 38 6 420

1000 892934 59587 37 6 422

RS

100 799997.54 139570 30 3 8

125 822367.63 66802 35 5 8

150 831804.6 46534 36 6 8

200 840845 27023 36 5 8

300 848928 22890 38 5 12

500 862479 32516 38 6 13

1000 892934 59587 37 6 15

From Table 2, we also see that the computing time is less under RS than under FS, especially for531

large scale problems. As the unit cost of the outside option increases, the 4PL would spend more to serve532

clients. Intuitively, the outside option strategy would have a lower chance to be utilized if the unit outside533

option cost becomes higher. Yet, since the 4PL has to make a trade-off between the fortification cost and534

the outside option cost, the outside option cost might increase as the unit outside option cost increases.535

To further verify the performance of the scenario reduction approach, we use the Combinatorial536

Auction Test Suite (CATS)5 to generate more realistic instances including 40 lanes and 80 3PLs with 5537

packages for each bidder to show the effectiveness of RS. Given d = 2000, cmax = 15000 and the possible538

disrupted packages as [5, {(63, 4), (58, 3), (38, 1), (80, 4), (79, 5)}, (0.7, 0.9, 0.6, 0.4, 0.5)T ], [10, {(26,539

1), (33, 1), (38, 1), (66, 2), (69, 2), (58, 3), (20, 4), (51, 4), (63, 4), (70, 4)}, (0.8, 0.7, 0.5, 0.85, 0.6, 0.7,540

0.9, 0.6, 0.4, 0.5)T ], and [15, {(26, 1), (33, 1), (38, 1), (66, 2), (69, 2), (58, 3), (20, 4), (51, 4), (63, 4),541

(70, 4), (70, 5), (71, 1), (72, 1), (73, 1), (74, 1)}, (0.8, 0.7, 0.5, 0.85, 0.6, 0.7, 0.9, 0.6, 0.4, 0.5, 0.9, 0.7,542

0.6, 0.85, 0.5)T ], the results are shown below. In Table 3, PD denotes possible disruptions, UC denotes543

5https://www.cs.ubc.ca/∼kevinlb/CATS/CATS-readme.html
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the unit outside option cost, TC denotes total cost, OC denotes the outside option cost, SP denotes544

the number of selected packages, NF denotes the number of fortified packages, UB denotes the upper545

bound derived based on scenario reduction approach, Gap denotes the gap between UB and the optimal546

solution obtained by the full scenario method, LBP denotes the lower bound derived by relaxing the547

original problem, i.e., setting qjkw = 0 for all w ∈ S, ULGP denotes the gap between UB and LBP, LBM548

denotes the lower bound derived by using the dual decomposition and Lagrangian relaxation approach as549

mentioned in Section 4, and ULGM denotes the gap between UB and LBM.550

Table 3: Comparison of full and reduced scenarios as outside option cost varies for the case of 80 3PLs and 40 lanes

PD UC
Full scenarios (FS) Reduced scenarios (RS) Performance

TC OC SP NF Time (S) TC OC SP NF Time (S) UB Gap (%) LBP ULGP (%) LBM ULGM (%)

5

100 5920487 5005400 65 1 3546 5920537 4961700 66 1 181 5920537 0.001 5915861 0.079 5919073 0.025

125 6760748 2332500 80 4 324 6761072 2327700 80 4 24 6761072 0.005 6749259 0.175 6757325 0.055

150 6986410 365490 80 4 2258 6896164 384940 80 4 62 6986164 -0.004 6974920 0.161 6982635 0.051

200 6999556 0 80 4 3696 6999556 0 80 4 89 6999556 0 6988066 0.164 6995931 0.052

300 6999556 0 80 4 3696 6999556 0 80 4 88 6999556 0 6988066 0.164 6995933 0.052

500 6999556 0 80 4 3696 6999556 0 80 4 88 6999556 0 6988066 0.164 6995931 0.052

1000 6999556 0 80 4 3696 6999556 0 80 4 89 6999556 0 6988066 0.164 6995931 0.052

10

100 N/A N/A N/A N/A N/A 5924857 4983600 66 2 110 5924857 N/A 5915861 0.152 5920976 0.066

125 N/A N/A N/A N/A N/A 6770708 2426000 80 4 34 6770708 N/A 6749259 0.317 6763540 0.106

150 N/A N/A N/A N/A N/A 7002004 333010 80 5 125 7002004 N/A 6974920 0.387 6990783 0.160

200 N/A N/A N/A N/A N/A 7014800 0 80 5 318 7014800 N/A 6988066 0.381 7003706 0.158

300 N/A N/A N/A N/A N/A 7014800 0 80 5 343 7014800 N/A 6988066 0.381 7003703 0.158

500 N/A N/A N/A N/A N/A 7014800 0 80 5 359 7014800 N/A 6988066 0.381 7003705 0.158

1000 N/A N/A N/A N/A N/A 7014800 0 80 5 370 7014800 N/A 6988066 0.381 7003705 0.158

15

100 N/A N/A N/A N/A N/A 5930325 4975200 66 4 205 5930325 N/A 5915861 0.244 5924577 0.097

125 N/A N/A N/A N/A N/A 6780030 2492000 80 5 60 6780030 N/A 6749259 0.454 6767284 0.188

150 N/A N/A N/A N/A N/A 7013815 294190 80 5 164 7013815 N/A 6974920 0.555 6996085 0.253

200 N/A N/A N/A N/A N/A 7025939 0 80 5 568 7025939 N/A 6988066 0.539 7008798 0.244

300 N/A N/A N/A N/A N/A 7025939 0 80 5 558 7025939 N/A 6988066 0.539 7008796 0.244

500 N/A N/A N/A N/A N/A 7025939 0 80 5 565 7025939 N/A 6988066 0.539 7008796 0.244

1000 N/A N/A N/A N/A N/A 7025939 0 80 5 572 7025939 N/A 6988066 0.539 7008796 0.244

From Table 3, we see that for the case of 5 possible disruptions, when the unit outside option cost is551

low, RS might be slightly worse than FS in terms of the solution quality, but the gap is always very small.552

When there are 10 or 15 possible disruptions, since the gaps between the upper bound and two different553

lower bounds (i.e., LBP and LBM) are also small, we see that RS can provide a good approximation554

very quickly, whereas FS cannot give an effective solution in more than 90 hours. It is worth noting555

that for all the tested problems generated in Section 5, no gap exists between FS and RS if the lower556

bound is not mentioned. Hence, we may conclude that the scenario reduction approach performs better557

than the full scenario method. Although the quality of LBM is better than that of LBP, the computing558

time of the former is much longer, and thereby it would be better to obtain a lower bound by relaxing559

the original problem first than by using the dual decomposition and Lagrangian relaxation approach. In560

summary, the scenario reduction approach is effective and applicable for the 4PL to manage the total561

cost of protection, reservation, outside option and expected procurement simultaneously. Also, the results562

confirm that TSMWDM could be a useful tool for the 4PL to purchase transportation services from 3PLs563

and identify the best possible protection strategies simultaneously.564

5.3. Mitigation strategy analysis565

Recall that the hybrid strategies including outside option, fortification, and reservation measures566

denoted by “OFRS” are investigated simultaneously to mitigate the disruptions, and the results are shown567

in Table 2. Next, we assume that the 4PL would only adopt the outside option strategy denoted by “OS”,568
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or adopt the outside option and fortification strategies denoted by “OFS” to show the effectiveness of569

OFRS. Indeed, we could derive OS by letting xjk = 0 and OFS by letting zijk = 0, ∀ i ∈ I, j ∈ J, k ∈570

Kj . Given the case of 10 possible disrupted packages and a fixed set of the unit outside option cost571

e ∈ {100, 125, 150, 200, 300, 500, 1000}, the results are shown in Table 4.572

Table 4: Comparison of different mitigation strategies for the large scale problem under 10 possible disruptions
OS OFS

Unit outside Total Outside Selected Total Outside Selected Number of

option cost cost option packages cost option packages fortification

100 816618 187590 30 799997.54 139570 30 3

125 854766 142980 33 822367.63 66802 35 5

150 881717 159540 34 831804 46543 36 6

200 934644 194920 35 841355 32390 36 5

300 1026547 274270 38 853714 36768 38 5

500 1209391 457110 38 878227 61280 38 5

1000 1664440 908780 37 937446 117120 37 5

From Table 4, we see that as the unit outside option cost increases, the 4PL’s total cost increases573

for OS and OFS, which follows the same pattern as OFRS as shown in Table 2. Intuitively, the number574

of winning packages is higher under OS than that under OFS. Yet, to reduce the transaction cost of575

relationship management associated with the winning 3PLs, the 4PL would prefer to select 3PLs with576

larger capacity, and thereby the number of winning packages under OS could be less than those under577

OFS (see the fourth and seventh columns in Table 4). Similarly, since the disrupted package might be578

fortified to expand its capacity, the number of fortified packages would generally be less under OFRS579

than under OFS for fixed demand. Yet, given the relatively high outside option cost, to minimize the580

total cost by reducing the outside option cost and expanding the capacity of 3PLs with a low bid price,581

the 4PL may want to fortify more packages under OFRS than under OFS, especially when the demand582

is relatively high (see the last column in Table 4 and the seventh column in Table 2).583

Also, we see that the total cost under OS is higher than that under OFS (see the second and fifth584

columns in Table 4), which means that the 4PL would cost more money if the outside option strategy is585

simply adopted. In the meanwhile, we find that the total cost under OFS could be higher than that under586

OFRS, especially for the case of high unit outside option cost, which means that OFRS is the best option587

for the 4PL to mitigate disruptions. The analysis shows that our proposed model, i.e., TSMWDM, can be588

used to identify core sets of packages to be fortified, determine suitable extended capacity pre-positioned589

in fortified packages, and choose appropriate outside options simultaneously to mitigate the disruptions590

while conducting the TSP activity. Obviously, there is an optimal trade-off point across the mitigation591

strategies of the outside option, fortification and reversion. The results also confirm that the proposed592

model and hybrid mitigation strategy are significant to achieve the goal of cost minimization for the TSP593

of 4PLs via CRA.594

Given a set of demand d ∈ {300, 500}, disruption probabilities p ∈ {0, 0.1, 0.3, 1}, and the unit outside595

option cost e ∈ {100, 125, 150, 200, 300, 500, 1000}, the results are shown in Table 5. When d ∈ {100, 700},596

the results are shown in Table A.11.597

From Tables 5 and A.11, we see that as the disruption probability increases, the package would have598

a higher chance to be fortified. Intuitively, when the disruption probability is low, the packages would599

generally not be fortified, especially for the setting of low demand and low unit outside option cost (see600
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Table 5: Results of large scale problems as disruption probability varies under 10 possible disruptions

d
Disruption Unit outside Total Outside Selected Number of

probability option cost cost option packages fortifications

300

0

100 449327 28590 23 0

125 451883 4116 25 0

150 452567 3849.6 25 0

200 452567 3849.6 25 0

300 452567 3849.6 25 0

500 453297 0 25 0

1000 453297 0 25 0

0.1

100 452627 35092 23 0

125 456513 8412 25 1

150 457574 5782 25 2

200 458888 165 25 3

300 458903 0 25 2

500 458903 0 25 2

1000 458903 0 25 2

0.3

100 455004 32209 23 3

125 457843 4116 25 4

150 458527 3849 25 4

200 458903 0 25 2

300 458903 0 25 2

500 458903 0 25 2

1000 458903 0 25 2

1

100 455287 28590 23 4

125 457843 4116 25 4

150 458527 3849 25 4

200 458903 0 25 2

300 458903 0 25 2

500 458903 0 25 2

1000 458903 0 25 2

500

0

100 794117 121220 31 0

125 813890 66177 35 0

150 823272 46543 36 0

200 833504 32390 36 0

300 845499 26183 38 2

500 858708 29794 38 5

1000 888502 59587 38 5

0.1

100 798322 130610 31 1

125 820732 71710 35 3

150 831220 53183 36 3

200 840790 30739 36 4

300 848928 22890 38 5

500 862479 32516 38 6

1000 892934 59587 37 6

0.3

100 799997 139570 30 3

125 822367 66802 35 5

150 831804 46543 36 6

200 840845 27023 36 5

300 848928 22890 38 5

500 862479 32516 38 6

1000 892934 59587 37 6

1

100 799997 139570 30 3

125 822367 66802 35 5

150 831804 46543 36 6

200 840845 27023 36 5

300 848928 22890 38 5

500 862479 32516 38 6

1000 892934 59587 37 6

p ∈ {0, 0.1} and d ∈ {100, 300}). Yet, to satisfy the high demand of clients, the package with a low bid601

price might be fortified to expand its capacity for reservation, especially when the unit outside option602

cost becomes high (see p = 0 and d ∈ {500, 700}). Since the 4PL has to pay for utilizing the mitigation603

strategy, when the disruption probability increases, more packages would be fortified and pre-positioned,604

and the outside option would have a larger probability to be adopted if the unit outside option cost is low.605

However, when the unit outside option cost is high, the fortification strategy becomes more important606

than the outside option strategy, and thereby the outside option strategy would have a smaller probability607

to be adopted. This analysis indicates that if the probability of disruption is observed to be higher, then608
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the hybrid mitigation strategy becomes more important for cost minimization, which further shows the609

effectiveness of the proposed strategy.610

Given a set of demand d = {100, 300, 500, 700} and a fixed number of 3PLs Nmin ∈ {0, 5, 20, 35},611

Nmax ∈ {5, 20, 35, 40}, the results are shown in Table 6.

Table 6: Results of large scale problems as demand and N varies under 10 possible disruptions

d Nmin Nmax
Total Outside Selected Number of

cost option packages fortifications

100

0

5 169648 80000 5 0

20 152721 0 12 1

35 152721 0 12 1

40 152721 0 12 1

5

20 152721 0 12 1

35 152721 0 12 1

40 152721 0 12 1

20
35 165614 0 20 1

40 165614 0 20 1

35 40 198153 0 35 1

300

0

5 538996 377810 5 0

20 456235 51509 20 2

35 455287 28590 23 4

40 455287 28590 23 4

5

20 456235 51509 20 2

35 455287 28590 23 4

40 455287 28590 23 4

20
35 455287 28590 23 4

40 455287 28590 23 4

35 40 474925 3580.8 35 4

500

0

5 936644.8 749140 5 0

20 819405.94 257870 20 3

35 799997.54 139570 30 3

40 799997.54 139570 30 3

5

20 819405.94 257870 20 3

35 799997.54 139570 30 3

40 799997.54 139570 30 3

20
35 799997.54 139570 30 3

40 799997.54 139570 30 3

35 40 805808.17 97602 35 5

700

0

5 1336644 1149160 5 0

20 1209370 578840 20 3

35 1172946 346160 33 4

40 1172946 346160 33 4

5

20 1209370 578840 20 3

35 1172946 346160 33 4

40 1172946 346160 33 4

20
35 1172946 346160 33 4

40 1172946 346160 33 4

35 40 1173902 315470 35 5

612

From Table 6, we see that for a given fixed Nmin and Nmax, the number of fortified packages is more613

likely to increase as the demand increases. Intuitively, given the number of minimum available 3PLs being614

0, when the number of maximum available 3PLs increases, the undisturbed packages could have a higher615

chance to be selected and the number of fortified packages is likely to be reduced. Yet, if the capacity of616

the undisturbed packages is insufficient, fortifying the disrupted packages could benefit the buyer. Also,617

we find that on the one hand, when the demand is higher than the total capacity of the maximum available618

3PLs, the outside option would be adopted to satisfy the demand, and the 4PL generally pays more (see619

the first row of Table 6 for d = 100). On the other hand, when the number of minimum available 3PLs620

is high, 3PLs with a high bid price would be involved and the 4PL has to spend more (see the last three621

rows of Table 6 for d = 100). This analysis implies that appropriately setting the numbers of maximum622

and minimum available 3PLs is important for the 4PL to reduce the total cost.623

Given a set of demand d = {300, 500}, the protection investment budget Cmax ∈ {2000, 5000, 10000, 15000},624
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and the unit outside option cost e ∈ {100, 125, 150, 200, 300, 500, 1000}, the results are shown in Table 7.625

When d = 700, the results are shown in Table A.12.626

Table 7: Results of large scale problems as demand and Cmax vary under 10 possible disruptions

d Cmax
Unit outside Total Outside Selected Number of

option cost cost option packages fortifications

300

2000

100 460476 59867 21 1

125 466796 21932 25 1

150 471182 26319 25 1

200 476338 15267 26 1

300 483971 22900 26 1

500 497855 31948 26 1

1000 529803 63895 26 1

5000

100 455297.75 29415 22 3

125 458059.9 5147.1 24 3

150 458821.65 3849.6 25 2

200 458903 0 25 2

300 458903 0 25 2

500 458903 0 25 2

1000 458903 0 25 2

10000

100 455287 28590 23 4

125 457843.01 4116 25 4

150 458527 3849.6 25 4

200 458903.4 0 25 2

300 458903.4 0 25 2

500 458903.4 0 25 2

1000 458903.4 0 25 2

15000

100 455287 28590 23 4

125 457843.01 4116 25 4

150 458527 3849.6 25 4

200 458903.4 0 25 2

300 458903.4 0 25 2

500 458903.4 0 25 2

1000 458903.4 0 25 2

500

2000

100 808945.23 164630 30 1

125 841352 114270 33 1

150 862561 125100 34 1

200 901721 139320 35 1

300 966764 192230 38 1

500 1094921 320390 38 1

1000 1413252 635340 37 1

5000

100 799997.54 139570 30 3

125 826311.32 101540 33 3

150 840225 70740 35 3

200 861270 67655 36 3

300 889668 83837 38 3

500 944548 136770 38 3

1000 1079255 268090 37 3

10000

100 799997.54 139570 30 3

125 822367.63 66802 35 5

150 831804.6 46534 36 6

200 840845 27023 36 5

300 848928 22890 38 5

500 862479 32516 38 6

1000 892934 59587 37 6

15000

100 799997.54 139570 30 3

125 822367.63 66802 35 5

150 831804 46534 36 6

200 840845 27023 36 5

300 848928 22890 38 5

500 861892 29794 38 7

1000 891686 59587 38 7

From Tables 7 and A.12, we see that if the fortification budget is sufficient, then the outside option627

strategy would become less important for dealing with disruptions than the fortification strategy, especially628

when the unit outside option cost is high. In this case, the fortification strategy can not only be adopted629

to mitigate disruptions, but also can be utilized to expand the capacity of the packages. Hence, the 4PL630

would spend less in serving clients, especially when the demand is high. If the fortification budget is631

insufficient, then the outside option strategy becomes more important, especially when the unit outside632
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option cost is low. In this case, the 4PL is more likely to resort to the outside option for mitigating633

disruptions, and thereby the total cost of 4PLs might increase. This analysis indicates that an adequate634

fortification budget could benefit the 4PL.635

5.4. Numerical experiments of extended models636

Applying the scenario reduction approach to solve the extended models, we would verify the robustness637

of the method as shown below.638

5.4.1. Partially disrupted packages639

Other data being the same as our basic model of the small scale problem, given d = 300, the probably640

disrupted capacity of lanes described as [number of possible disrupted lanes in terms of capacity, {(no.641

of 3PL, no. of lane)}, disruption probability vector] are assumed to be [5, {(1, 2), (2, 3), (3, 4), (4, 5),642

(7, 5)}, (0.7, 0.9, 0.6, 0.4, 0.5)T ]. Given FD denoting the probability that the fortified lanes in terms of643

capacity might be disrupted, SL denoting the number of selected lanes and FL denoting the number of644

fortified lanes associated with capacity, the results of the extended model are shown below.645

Table 8: Comparison of full and reduced scenarios as outside option cost varies for capacity disruption of lanes

FD UC
Full scenarios (FS) Reduced scenarios (RS) Performance

TC OC SL FL Time (S) TC OC SL FL Time (S) UB Gap (%)

0.1

100 143029.7 59093 9 1 9.7 142909.8 58643 9 1 4.38 143029.7 0

125 154613.8 42912 10 3 9.88 154573.8 51529 10 2 4.72 154806.2 0.1244

150 162511.1 46748 10 4 9.27 162511.1 46748 10 4 4.43 162511.1 0

200 175742.4 50285 10 5 9.43 175742.4 50285 10 5 4.41 175742.4 0

300 197531.2 58936 10 5 9.35 197531.2 58936 10 5 4.48 197531.2 0

500 230932.4 82649 10 7 10.15 230932.4 82649 10 7 4.3 230932.4 0

1000 313581.7 165300 10 7 9.98 313581.7 165300 10 7 4.43 313581.7 0

0.2

100 143253.2 59626 9 1 9.11 143133.2 59177 9 1 4.33 143253.2 0

125 155326.7 48481 10 2 9.14 155209.9 52717 10 2 4.29 155442.0 0.0742

150 163933.1 49286 10 4 10.34 163933.1 49286 10 4 4.39 163933.1 0

200 178413.5 56145 10 5 10.22 178413.5 56145 10 5 4.41 178413.5 0

300 203550.9 70419 10 5 10.38 203550.9 70419 10 5 4.35 203550.9 0

500 243061.6 96701 10 7 10.9 243061.6 96701 10 7 4.43 243061.6 0

1000 339762.8 193400 10 7 10.22 339762.8 193400 10 7 4.38 339762.8 0

From Table 8, we see that the gap between RS and FS is very small, and hence RS still works for646

the problem of capacity disruption associated with lanes in a package. It is worth noting that we also647

conduct the numerical experiments for d = 500, and there is no gap under the same structure of Table 8.648

The result verifies the effectiveness and applicability of the scenario reduction approach and the proposed649

framework for the two-stage stochastic winner determination problem under disruptions.650

5.4.2. No execution risk of 3PLs651

Using the data of our basic model for the small scale problem with 5 possible disruptions, given PC652

denoting the penalty cost, the numerical results are shown below.653

From Table 9, we see that the gap between RS and FS is zero, and hence RS still works for the problem654

with no execution risk. The result verifies the effectiveness and applicability of the scenario reduction655

approach.656
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Table 9: Comparison of full and reduced scenarios as outside option cost varies with no execution risk

di UC
Full scenarios (FS) Reduced scenarios (RS) Performance

TC OC PC SP Time (S) TC OC PC SP Time (S) UB Gap (%)

300

100 126810.6 66766 24878 10 4.1 126809.8 66754 24878 10 4.1 126810.6 0

125 142124.1 65275 16896 10 4.02 142069.8 65130 16896 10 3.87 142124.1 0

150 154094.8 54780 9743.1 10 4.46 154094.8 54780 9743.1 10 4.17 154094.8 0

200 171406.4 65557 5543 10 5.38 171406.4 65557 5543 10 4.39 171406.4 0

300 204184.9 98335 5543 10 4.97 204184.9 98335 5543 10 4.33 204184.9 0

500 267668.4 155330 0 10 5.01 267668.4 155330 0 10 4.06 267668.4 0

1000 422994.4 310650 0 10 4.97 422994.4 310650 0 10 4.32 422994.4 0

500

100 226809.7 166750 24878 10 4.56 226809.7 166750 24878 10 4.22 226809.7 0

125 266886.7 189700 16896 10 4.6 266886.7 189700 16896 10 4.48 266886.7 0

150 303284.6 198280 9743.1 10 4.57 303284.6 198280 9743.1 10 4.36 303284.6 0

200 368430.2 256890 5543 10 4.43 368430.2 256890 5543 10 4.16 368430.2 0

300 496876.6 385340 5543 10 5.01 496876.6 385340 5543 10 4.35 496876.6 0

500 751695.87 633670 0 10 4.56 751695.87 633670 0 10 4.33 751695.87 0

1000 1385361.4 1267300 0 10 4.38 1385361.4 1267300 0 10 4.26 1385361.4 0

6. Conclusions657

Since the reverse auction can reduce the procurement and transaction cost of buyers, it has been658

increasingly utilized for practical applications. This paper considers the combinatorial reverse auction659

activity in which a 4PL acting as an auctioneer solicits bids from a group of 3PLs for transportation660

service procurement. Without loss of generality, we assume that 3PLs submit XOR bids, that is, each661

3PL submits a bid that involves multiple packages, but can win at most one package. Noting that662

in practice, some packages could be disrupted due to accidental risks such as equipment breakdowns,663

power outage, supplier discontinuities and industrial incidents, we particularly investigate a novel winner664

determination problem involving disruptions associated with 3PLs. We demonstrate how fortification,665

reservation and outside option strategies can be integrated with combinatorial reverse auctions to obtain666

an optimal procurement strategy for the 4PL.667

Considering a limited protection investment budget, we propose a two-stage stochastic mixed-integer668

winner determination model to solve the problem from the 4PL’s point of view. In the first-stage, the669

4PL minimizes the sum of the fortification cost of the 3PLs’ packages and the expected cost related to670

different disruption scenarios. In the second stage, the 4PL tries to select the winning 3PLs to fulfill the671

demand of clients under each disruption scenario by minimizing the total cost of procurement, holding672

reservation capacity, transaction for relationship management associated with winning 3PLs, and outside673

option of utilizing 3PLs not included in the auction simultaneously. Since the deterministic equivalent674

reformulation of the proposed model would involve a large number of variables and constraints under675

huge disruption scenarios, it cannot be solved directly. Hence, a scenario reduction approach is applied676

to obtain representative scenarios, and then the deterministic equivalent reformulation can be solved by677

CPLEX solver directly. Relaxing the original problem or adopting an efficient dual decomposition and678

Lagrangian relaxation approach, a lower bound could be obtained for evaluation of the scenario reduction679

approach.680

Numerical experiments show that combining the hybrid mitigation strategy with combinatorial reverse681

auctions, the 4PL not only can assign the demand to the winning 3PLs, but also can identify core sets of682

packages to be fortified, determine pre-positioned capacity of fortified packages, and choose suitable out-683

side options. By conducting comparison analysis, we find that the scenario reduction approach provides a684

good approximation for TSMWDM using the full scenario approach, which indicates the effectiveness and685
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applicability of the method. Sensitivity analysis indicates that the hybrid mitigation strategy including686

fortification, reservation and outside option performs better than the other strategies, and thereby could687

be a useful tool for the 4PL to mitigate disruptions. Also, we find that the 4PL could benefit from688

appropriate numbers of maximum and minimum available 3PLs and an adequate protection investment689

budget. We also develop two extensions to consider the settings of partially disrupted packages and no690

execution risk, and verify the effectiveness and applicability of the cost reduction approach under each691

extended model.692

Several related issues are interesting for future investigation. First, the demand of clients is assumed693

to be fixed in this paper. In relaxing this assumption to allow stochastic demand, solving the problem694

becomes more difficult. Yet, if the 4PL can have an estimate of the demand, then our analysis provides a695

suitable approximation. Second, this study assumes that both the 4PL and 3PLs are perfectly rational. In696

practical applications, when facing uncertainties, decision makers may involve bounded rationality such as697

loss aversion, fairness concerns and anticipated regret. Although constructing a new mathematical model698

is necessary, we may conjecture that the proposed hybrid mitigation strategy and the scenario reduction699

approach can be still worked.700
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Table A.10: Details of reduced scenarios for small scale problems

Problem
Possible

Reduced scenarios Probability
disruptions

Small

5

(4, 2), (5, 2), (7, 2), (9, 1) 0.5

(5, 2), (8, 2) 0.3

(4, 2), (5, 2), (8, 2) 0.1

(4, 2), (7, 2) 0.1

8

(1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (7, 2), (9, 1) 0.45

(1, 2), (4, 2), (8, 2) 0.3

(2, 2), (5, 2), (7, 2), (8, 2), (9, 1) 0.15

(2, 2), (4, 2), (7, 2) 0.05

(1, 2), (2, 2), (3, 2), (4, 2), (7, 2), (8, 2) 0.05

10

(1, 2), (2, 2), (4, 2), (5, 2), (6, 2), (7, 2), (8, 2), (10, 2) 0.5

(2, 2), (3, 2), (4, 2), (6, 2), (7, 2), (9, 1) 0.2

(1, 2), (3, 2), (4, 2), (7, 2), (9, 1) 0.15

(1, 2), (3, 2), (5, 2), (8, 2) 0.1

(1, 2), (3, 2), (7, 2), (9, 1) 0.05

12

(1, 2), (2, 2), (4, 2), (5, 2), (6, 2), (7, 2), (8, 2), (9, 2), (10, 1), (10, 2) 0.35

(1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2), (7, 2), (8, 2), (10, 1), (10, 2) 0.25

(1, 2), (2, 2), (3, 2), (4, 2), (6, 2), (7, 2), (9, 1), (9, 2), (10, 1), (10, 2) 0.1

(3, 2), (9, 1) 0.1

(1, 2), (4, 2), (7, 2), (9, 1), (10, 1) 0.1

(4, 2), (7, 2), (9, 1), (9, 2), (10, 1) 0.05

(3, 2), (7, 2), (9, 1), (10, 1) 0.05

15

(1, 2), (2, 2), (4, 2), (5, 2), (6, 1), (6, 2), (7, 1), (8, 2), (9, 1), (9, 2), (10, 1) 0.3375

(1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 1), (6, 2), (7, 1), (8, 1), (8, 2), (9, 1), (9, 2), (10, 1), (10, 2) 0.2625

(1, 2), (2, 2), (3, 2), (4, 2), (6, 1), (6, 2), (7, 2), (8, 2), (9, 1), (10, 1) 0.1

(1, 2), (4, 2), (6, 2), (7, 2), (8, 1), (8, 2), (10, 1), (10, 2) 0.1

(7, 2), (8, 1), (10, 2) 0.0625

(3, 2), (6, 2), (7, 2), (8, 1), (8, 2), (10, 2) 0.05

(3, 2), (7, 2) 0.0375

(3, 2), (4, 2), (6, 2), (7, 2), (8, 2), (10, 1), (10, 2) 0.025

(3, 2), (4, 2), (6, 2), (7, 2), (8, 1), (8, 2), (10, 1) 0.025

Large

5

(7, 2), (17, 1), (18, 1), (40, 1) 0.5

(17, 1), (32, 2) 0.3

(7, 2), (17, 1), (32, 2) 0.1

(7, 2), (18, 1) 0.1

8

(7, 2), (8, 1), (8, 2), (16, 1), (17, 1), (18, 1), (40, 1) 0.45

(7, 2), (16, 1), (32, 2) 0.3

(8, 1), (17, 1), (18, 1), (32, 2), (40, 1) 0.15

(8, 1), (16, 1), (18, 1) 0.05

(7, 2), (8, 1), (8, 2), (16, 1), (18, 1), (32, 2) 0.05

10

(7, 2), (8, 1), (16, 1), (16, 2), (17, 1), (18, 1), (32, 1), (40, 1) 0.5

(8, 1), (8, 2), (16, 1), (17, 1), (18, 1), (32, 2) 0.2

(7, 2), (8, 2), (16, 1), (18, 1), (32, 2) 0.15

(7, 2), (8, 2), (16, 2), (32, 1) 0.1

(7, 2), (8, 2), (18, 1), (32, 2) 0.05

12

(7, 2), (8, 1), (16, 1), (16, 2), (17, 1), (18, 1), (32, 1), (39, 2), (40, 1), (40, 2) 0.35

(7, 2), (8, 1), (8, 2), (16, 1), (16, 2), (17, 1), (18, 1), (32, 1), (40, 1), (40, 2) 0.25

(7, 2), (8, 1), (8, 2), (16, 1), (17, 1), (18, 1), (32, 2), (39, 2), (40, 1), (40, 2) 0.1

(8, 2), (32, 2) 0.1

(7, 2), (16, 1), (18, 1), (32, 2), (40, 1) 0.1

(16, 1), (18, 1), (32, 2), (39, 2), (40, 1) 0.05

(8, 2), (18, 1), (32, 2), (40, 1) 0.05

15

(1, 2), (2, 2), (7, 2), (8, 1), (8, 2), (16, 1), (16, 2), (32, 1), (32, 2), (39, 2), (40, 1) 0.3375

(1, 2), (2, 2), (2, 3), (7, 2), (8, 1), (8, 2), (16, 1), (16, 2), (18, 1), (32, 1), (32, 2), (39, 2), (40, 1), (40, 2) 0.2625

(1, 2), (2, 2), (2, 3), (7, 2), (8, 2), (16, 1), (17, 1), (32, 1), (32, 2), (40, 1) 0.1

(1, 2), (7, 2), (16, 1), (17, 1), (18, 1), (32, 1), (40, 1), (40, 2) 0.1

(17, 1), (18, 1), (40, 2) 0.0625

(2, 3), (16, 1), (17, 1), (18, 1), (32, 1), (40, 2) 0.05

(2, 3), (17, 1) 0.0375

(2, 3), (7, 2), (16, 1), (17, 1), (32, 1), (40, 1), (40, 2) 0.025

(2, 3), (7, 2), (16, 1), (17, 1), (18, 1), (32, 1), (40, 1) 0.025

Appendix B. Data of large scale problems900

For large scale problems, 20 lanes and 40 3PLs with at most 5 packages are considered. The bidding901

packages of 3PLs are [1, {2, 3}, {1, 11, 12}, {1, 15, 16}, {1, 17}, {1, 19}], [2, {1, 2}, {1, 2, 11, 12}, {2,902

3, 15, 16}, {4, 5}, {16, 17, 18}], [3, {2, 3}, {4, 5, 6}, {19, 20}, {1, 19, 20}, {3, 17, 18}], [4, {5, 6}, {4, 5,903

6}, {5, 6, 15}, {11, 12, 15}, {16, 17, 18}], [5, {3, 4, 5}, {2, 3, 11}, {4, 5, 6}, {11, 15, 16}, {18, 19, 20}],904
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Table A.11: Results of large scale problems as disruption probability varies under 10 possible disruptions

d
Disruption Unit outside Total Outside Selected Number of

probability option cost cost option packages fortifications

100

0

100 149807 0 12 0

125 149807 0 12 0

150 149807 0 12 0

200 149807 0 12 0

300 149807 0 12 0

500 149807 0 12 0

1000 149807 0 12 0

0.1

100 151855 2000 12 0

125 152355 2500 12 0

150 152721 0 12 1

200 152721 0 12 1

300 152721 0 12 1

500 152721 0 12 1

1000 152721 0 12 1

0.3

100 152721 0 12 1

125 152721 0 12 1

150 152721 0 12 1

200 152721 0 12 1

300 152721 0 12 1

500 152721 0 12 1

1000 152721 0 12 1

1

100 152721 0 12 1

125 152721 0 12 1

150 152721 0 12 1

200 152721 0 12 1

300 152721 0 12 1

500 152721 0 12 1

1000 152721 0 12 1

700

0

100 1166563 323710 34 0

125 1230739 272630 39 0

150 1284034 294920 39 0

200 1376956 370920 40 0

300 1549615 494950 40 7

500 1870949 800020 40 7

1000 2666003 1573200 40 7

0.1

100 1170880 334770 34 1

125 1237129 278230 39 3

150 1290988 294920 39 5

200 1383119 357130 40 5

300 1550265 494060 40 7

500 1870949 800020 40 7

1000 2669770 1597600 40 7

0.3

100 1172946 346160 33 4

125 1237693 272630 39 5

150 1290988 294920 39 5

200 1383119 357130 40 5

300 1550265 494060 40 7

500 1870949 800020 40 7

1000 2669770 1597600 40 7

1

100 1172946 346160 33 4

125 1237693 272630 39 5

150 1290988 294920 39 5

200 1383119 357130 40 5

300 1550265 494060 40 7

500 1870949 800020 40 7

1000 2669770 1597600 40 7

[6, {11}, {17}, {20}, {5, 6}, {3, 4}], [7, {11, 12}, {13, 14}, {7, 13}, {19}, {20}], [8, {7}, {8}, {11}, {16},905

{19}], [9, {5, 6}, {3}, {4}, {15, 16}, {1, 3}], [10, {11, 12}, {15, 16}, {17, 18, 19}, {19}, {20}], [11, {16},906

{17}, {18}, {2, 15}, {1, 16}], [12, {3, 4, 5}, {15, 16, 17}, {11, 12, 15}, {17, 18, 19}, {2, 4, 5}], [13, {15},907

{11}, {12}, {12, 15}, {17}], [14, {3}, {4}], [15, {16}, {17}], [16, {9, 10}, {7, 8}], [17, {13, 14}], [18, {7,908

9}], [19, {17}, {18}], [20, {5}, {6}], [21, {2, 3}, {3}], [22, {16, 17}], [23, {18, 19}], [24, {20}], [25, {19}],909

[26, {11}], [27, {12}], [28, {1, 4}, {5, 6}], [29, {13}, {14}], [30, {16, 17, 18}], [31, {18, 19}], [32, {7, 8},910

{9}], [33, {1, 2}, {1, 16}, {1, 17}], [34, {2, 3}, {2, 16}], [35, {5, 8}], [36, {17, 18}, {19}], [37, {5, 6}, {11,911

12, 15}], [38, {17}, {10}], [39, {15, 19}, {9, 10, 13, 14}], [40, {10}, {9, 13, 14}].912
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Table A.12: Results of large scale problems as Cmax and e vary under 10 possible disruptions

d Cmax
Unit outside Total Outside Selected Number of

option cost cost option packages fortifications

700

2000

100 1184026.6 399250 32 1

125 1264837.24 354190 38 1

150 1334958 394170 38 1

200 1461094 498550 39 1

300 1708342 741090 40 1

500 2192207 1206500 40 1

1000 3398743 2413100 40 1

5000

100 1174215 368480 32 3

125 1248751 311670 38 3

150 1309997 332910 39 3

200 1415479 411860 40 3

300 1618794 608400 40 3

500 2014201 985390 40 3

1000 2999590 1970800 40 3

10000

100 1172946 346160 33 4

125 1237693 272630 39 5

150 1290988 294920 39 5

200 1383119 357130 40 5

300 1550265 494060 40 7

500 1870949 800020 40 7

1000 2669770 1597600 40 7

15000

100 1172946 346160 33 4

125 1237693 272630 39 5

150 1290988 294920 39 5

200 1383119 357130 40 5

300 1546834 462830 40 10

500 1855307 771090 40 10

1000 2621431 1511800 40 10

The disrupted packages are assumed to be [5, {(7, 2), (17, 1), (18, 1), (32, 2), (40, 1)}, (0.7, 0.9, 0.6,913

0.4, 0.5)T ], [8, {(7, 2), (8, 1), (8, 2), (16, 1), (17, 1), (18, 1), (32, 2), (40, 1)}, (0.8, 0.7, 0.5, 0.85, 0.6, 0.7,914

0.5, 0.6)T ], [10, {(7, 2), (8, 1), (8, 2), (16, 1), (16, 2), (17, 1), (18, 1), (32, 1), (32, 2), (40, 1)}, (0.8, 0.7,915

0.5, 0.85, 0.6, 0.7, 0.9, 0.6, 0.4, 0.5)T ], [12, {(7, 2), (8, 1), (8, 2), (16, 1), (16, 2), (17, 1), (18, 1), (32, 1),916

(32, 2), (39, 2), (40, 1), (40, 2)}, (0.8, 0.7, 0.5, 0.85, 0.6, 0.7, 0.9, 0.6, 0.4, 0.5, 0.9, 0.7)T ], [15, {(1, 2), (2,917

2), (2, 3), (7, 2), (8, 1), (8, 2), (16, 1), (16, 2), (17, 1), (18, 1), (32, 1), (32, 2), (39, 2), (40, 1), (40, 2)},918

(0.8, 0.7, 0.5, 0.85, 0.6, 0.7, 0.9, 0.6, 0.4, 0.5, 0.9, 0.7, 0.6, 0.85, 0.5)T ]. The number of winning 3PLs lies919

in [0, 40]. The protection cost of each 3PL for each package follows a uniform distribution on the support920

[1000, 4000]. The fixed transaction cost of relationship management cost of each 3PL follows a uniform921

distribution on the support [2000, 5000]. Other parameters are the same as the small scale problems.922

35




