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ABSTRACT 

This paper proposes a theoretical model for characterizing manufacturing error induced spatial 

parasitic motions (MESPM) of compliant mechanisms, and investigates the inherent statistic features 

of MESPM using Monte Carlo simulation. It also applies and extends a novel finite beam based 

matrix modeling method to theoretically derive the elastic deformation behavior of an imperfect 

flexural linkage (IFL), which is a basic element of a wide spectrum of compliant mechanisms. A case 

study of a well-known double parallelogram compliant mechanism (DPCM) is also conducted, and 
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the practical parasitic motions of a prototype DPCM are characterized by laser interferometer based 

measurements. 

ABBREVIATIONS 

MESPM: manufacturing error induced spatial parasitic motions 

CM:  compliant mechanisms 

DPCM: double parallelogram compliant mechanism 

AFM: atomic force microscope 

DOF: degree-of-freedom 

RCFH: right circular flexure hinge 

WEDM: wire electric discharge machining 

IFL:  imperfect flexural linkage 

FBMM: finite beam based matrix modeling 

FEA:  finite element analysis 

PMU: parasitic motion uncertainty 

SPMU: sensitivity of the PMU 

LSFH: leaf-spring flexure hinge 

CTM: compliance transformation matrix 

NOMENCLATURES 

o-xyz: global coordinate system of the perfect linkage 

o
L
-x

L
y

L
z

L
: global coordinate system of the IFL 

k k k ko x y z    : local coordinate system of the k-th pieced beam element 

oi=(xi,yi), i=1,2,3,4: center coordinate of the i-th circle 

minx  and 
maxx : position boundary of the IFL along the x-axis 
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δxi, i=1,2,3,4: position deviation of the i-th circle center along the x-axis 

R: nominal radius of the circle 

δRi, i=1,2,3,4: radius deviation of the i-th circle 

αU and αL: inclination angles of the upper and lower curve of the linkage  

N: the number of pieced beam elements 

wk, k=1,2,…N: width of the k-th beam element 

L and l: length of the IFL and beam element 

b: thickness of the IFL 

k


C : compliance matrix of the k-th beam element 

( )

,x x

k

MC : torsion compliance of the k-th beam element 

IFL
C : compliance matrix of the IFL 

DPCM
C : compliance matrix of the DPCM  

E: modulus of elasticity 

G: modulus of rigidity 

μ: Poisson ratio 

αs: shear coefficient 

zk, k=1,2,…N: thickness-to-width ratio of the k-th beam element 

Tk, k=1,2,…N: CTM of the k-th beam element 

L

iT , i=1,2,3,4: CTM of the i-th IFL 

Rk, k=1,2,…N: rotation matrix of the k-th beam element 

rk, k=1,2,…N: position vector of the k-th beam element 

Sk() , k=1,2,…N: skew-symmetric operator for the k-th beam element 

i , i=1,2,3,4: rotation angle of the i-th IFL 
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u: motion vector of the DPCM 

Fext: actuation force on the DPCM 

 : sensitivity of SPMU along the working direction 

 : practical parasitic motion along the z-axis 

 : practical working motion 

k
δ
 and k

θ
: proportionality coefficients of the translation and pitch errors 

L1 and L2: distances from output to the pitch axis and interferometer 

 

1. INTRODUCTION 

Compliant mechanisms (CM), serving as the basic precision elements, have been 

widely employed in micro-/nanomachining, micro-/nanomanipulating, micro-

/nanopositioning for surface measurements, and nano-indentation and nano-scratch for 

material tests [1-4]. In these scenarios, spatial positioning with nano-metric accuracy is 

crucial to obtain reliable results. For instance, in the atomic force microscope (AFM), the 

cross-talk between each moving axis of the stage for nano-positioning of samples will 

cause strong image artifacts [3, 5]. In the nano-indentation, the slight tilt error of the 

indentation axis will lead to a relatively large deviation of the estimated hardness and 

modulus [6, 7], and the parasitic motion induced lateral forces and deflections will also 

significantly affect the testing results, especially for high bandwidth tests [8, 9]. Also, for 

CM with displacement amplification, local parasitic motions will be amplified along the 

chain, further deteriorating the system’s working performance [10, 11]. 

In view of mechanical structure of CM, the inherent parasitic motions are mainly 

derived from the structure design (intrinsic) [12-14] and the manufacturing error induced 

structure distortions (extrinsic) [15-17]. Generally, the intrinsic parasitic motion can be 
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diminished by adopting proper structure configuration and elaborated calibrations [13, 

18]. On the other hand, significant extrinsic parasitic motion can be induced by 

manufacturing errors even in very stiff systems [19]. For instance, a theoretical coupling 

motion of 0.03% could be as much as 1.5% for a practical system attributing to inevitable 

manufacturing errors [2]. However, it is very difficult for CM with less than six degree-

of-freedoms (6-DOF) to compensate for these inevitable spatial parasitic motions caused 

by manufacturing errors [20]. To diminish the extrinsic parasitic motion, an efficient 

solution is to select robust parameters for CM during the design process, making it 

insensitive to manufacturing errors [21, 22]. This process will be highly dependent on the 

understanding of the relationship between manufacturing tolerance and parasitic motion 

of CM with any given structure parameters. Motivated by this, Patil et al. investigated 

manufacturing error induced spatial parasitic motions (MESPM) of a one DOF 

translation stage based on the screw theory [22]. Ryu and Gweon studied MESPM of a 

typical compound linear spring by analyzing compliance variations of the common right 

circular flexure hinge (RCFH) [23]. In the analysis, dominant features of the RCFH were 

treated as perfect, and the corresponding structure distortion effect was described by 

adopting another equivalent RCFH with only position, orientation and parameter 

deviations. However, the treatment was over simplified and the effect of linkage 

distortion on the parasitic motion was ignored. Following the identified manufacturing 

error sources, Hwang et al. employed the Taguchi design of experiments to get a robust 

design of a XYθ stage with complex configuration based on finite element analysis (FEA) 

[11]. It required repetitive FEA simulations to get the final result and provided an unclear 

relationship between the parasitic motion and structure parameters. Huh et al. 
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investigated MESPM of a XY stage from the statistical point of view, the MESPM were 

also estimated by means of FEA [24]. Attention was focused on the length variations of 

the connecting leaf springs induced by assembly errors. Similarly, this kind of structural 

deviation of a compliant constant-force slider crank mechanism has been analytically 

investigated [25]. However, the FEA based evaluations are often computationally heavy, 

and the analyses in the two aforementioned studies are also over simplified and far from 

generalizable. 

Practically, the manufacturing error would induce strongly distorted structure 

shapes, which are far from the regular profiles of the existing flexure hinges as reported. 

Accordingly, the elastic deformation behavior of the resulting distorted hinges can no 

longer be finely described by the compliance matrix of the perfect hinges. Besides, it will 

be more meaningful to describe the parasitic motions in a statistical manner due to the 

intrinsic uncertainties of manufacturing processes. Motivated by this, a more universal 

and comprehensive method is proposed in this paper to characterize MESPM. Taking the 

popular double parallelogram compliant mechanism (DPCM) for instance, MESPM in 

the complete spatial directions are comprehensively investigated. This research provides 

guidance for precision engineers and researchers to: (i) analytically characterize spatial 

parasitic motions of imperfect CM induced by manufacturing errors; (ii) comprehensively 

understand the dependence of parasitic motion features on structure parameters and 

manufacturing uncertainties; and (iii) select robust structure parameters and proper 

manufacturing tolerances to minimize potential parasitic motions. 

 

2. MODELING OF THE IMPERFECT FLEXURAL LINKAGE 
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A typical flexural linkage involving two RCFHs and a linkage beam, which is a 

basic element of a wide spectrum of commonly used compliant mechanisms, is illustrated 

in Fig. 1 [1-3]: o-xy is the global coordinate system of the linkage, and oi=(xi,yi) denotes 

the center of the i-th circle in the coordinate. Although various sorts of flexure hinges 

have been introduced and studied over the last two decades, the most popular RCFH is 

adopted here as a case study. The proposed method is suitable for all types of flexure 

hinges. 

o x

y

R
t

L

d

1

2
3

4
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:  (- , )
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
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 

  

RCFH

 
Fig. 1 Schematic of a typical flexural linkage 

 

2.1 Geometry characterization of the imperfect linkage 

Wire electric discharge machining (WEDM) with multiple steps is a very popular 

method for fabricating CM [1-3, 23]. However, due to the inconsistency in each step and 

the moving errors of the WEDM machines, structural errors in CM are inevitable. Herein, 

the main sources of errors are identified as: a) positioning error of WEDM; b) 

straightness error of the motions of WEDM; and c) perpendicularity error between the 

wire and the surface in clamping. To model the resulting geometry of the linkage, the 

following assumptions are adopted:  
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a) The fluctuation of the feeding motion of the wire in WEDM only induces 

compliance variations of the linkage. Instead, the linear error of the feeding 

contributes more to the parasitic motion of the mechanism. Thus, the wire is 

assumed to feed straightly and the relative fluctuation is ignored to simplify the 

modeling. 

b) Positioning error of the wire in the WEDM changes the shape of the notch, 

probably resulting in non-circular or even irregular profiles. The resulting varied 

compliance can be equivalently obtained by adopting circular profiles of the notch 

with varied radius [11, 23]. Thus, the distortion of the semi-circles will be 

approximately treated as semi-circles with equivalent radius in modeling. 

c) Perpendicularity error results in the “Parallelism Error” and strongly induce out-

of-plane parasitic errors [16, 23]. To simplify the modeling process, the cross 

sections is approximately treated as rectangles with equivalent rotations as adopted 

in Refs. [17] and [23]. 

To describe the geometry of the imperfect flexural linkage (IFL), the perfect 

linkage is employed as the basis. The radii of the four circles of the IFL are described by 

the nominal radius R with each deviation δRi. Position deviations of the centers of the 

four semi-circles along the x-direction are characterized by 4 independent values δxi. 

Straightness error induced inclination of the linkage beam is characterized by αU and αL 

with respect to the lower and the upper curves of the IFL, respectively. Deviations of the 

centers of the four circles along the y-direction are jointly determined by the inclined 

lines and the x positions of the centers. The perpendicularity error caused skew effect of 
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the IFL is ignored when modeling the IFL, while it is equivalently modeled when 

forming a compliant mechanism. This is detailed in the next section. 

The lower or the upper curve of the linkage can be regarded as a combination of 

three segmented geometric features, namely a tilt line and two circles, with different 

radiuses connected by the line. Thus, two piece-wise functions are adopted here to 

respectively describe the upper and lower curves: 

   

 

   

22 1 2
1 1 1 u 1 1 1 1

U U 1 2 1 2
u 2 2 1 1

22 1 2
2 2 2 u 2 2 2 2

tan , ,
2

: = tan , ,  
2 2

tan , ,
2

x x
R x x y x x x R x R

y y x x
S y x x x R x R

x x
R x x y x x x R x R







  
              

 
   

         
 

  
               

 

        (1) 

   

 

   

22 3 4
3 3 3 L 3 3 3 3

L L 3 4 3 4
L 4 4 3 3

22 3 4
4 4 4 L 4 4 4 4

tan , ,
2

: tan , ,  
2 2

tan , ,
2

x x
R x x y x x x R x R

y y x x
S y x x x R x R

x x
R x x y x x x R x R







  
             

 
   

          
 

  
              

 

           (2) 

where Δxi=xi+δxi andΔRi=R+δRi, denoting the real x-coordinates of the centers 

and the equivalent radiuses of the semi-circles. To make the structure physically 

meaningful, the following constraints for the parameters should be satisfied: 

   

   

1 1 1 U 2 2 2 U

3 3 3 L 4 4 4 L

0

+ cos + cos

+ cos + cos

iR R

x x R R x x R R

x x R R x x R R



     

     

 


    


    

                               (3) 

From the shadow part as shown in Fig. 2, this part of the IFL features much larger 

cross sections connecting with the base. It serves rather the base than the flexure hinge 

and has little contribution to elastic deformations of the IFL. With this concern, the 

boundary constraints of the IFL can be accordingly determined by: 
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 min max

2 2 4 4 1 1 3 3

,

      = max( , ),min( , )

x x x

x R x R x R x R



         

                               (4) 

xL yL

zL

oL

The 

base

The base

 

Fig. 2 Structure characteristic of the IFL 

2.2 Complete compliance modeling of the IFL 

Based on the established models shown in Eq. 1 and Eq. 2, the shapes of the 

perfect and the imperfect linkages are illustrated in Fig. 3. As the figure shows, the 

manufacturing error induced structure distortion can be obviously observed, and it can no 

longer be treated as any existing flexure hinge. Generally, it is potential for the Euler–

Bernoulli beam theory based calculus methods, which are popular for obtaining the 

complete compliance of flexure hinges with various shapes, to obtain the compliance of 

the IFL [26-28]. However, these methods are not efficient due to the fact that each term 

of the complete compliance matrix needs to be separately executed by laborious integral 

operations over the entire flexure length in the modeling. In this paper, a novel finite 

beam based matrix modeling (FBMM) method which was proposed for typical flexure 

hinges [29, 30] is adopted and extended to numerically obtain the elastic deformation 

behavior of the IFLs with any complicated shape. The FBMM requires no prior-

knowledge of beam theory or even of calculus, thereby greatly extending the potential 

applications of the proposed analysis method [29]. 
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Fig. 3 Schematic of the linkages derived from the mathematical model 

In the FBMM process, the IFL is treated as a whole flexural beam and divided 

into N equal pieces with rectangular cross-sections. Each pieced beam element is 

operated as a conventional leaf-spring flexure hinge (LSFH) [29]. As shown in Fig. 2, o
L
-

x
L
y

L
 denotes the global coordinate of the IFL, and k k ko x y    denotes the local coordinate 

of the k-th pieced beam element. The position of the k-th beam element in the global 

coordinate can be expressed by: 

L U

( , )
2

k k
k k

y y
o x  

                                                               (5) 

where L

ky  and U

ky  will be derived from Eqns. (1) and (2) based on the kx . 

Besides, the equivalent dominant parameters, namely the width wk, and the length 

l, of the k-th piece beam can be determined by: 

L U

max min

k k kw y y

x x
l

N

  

 




                                                                (6) 

where N is the number of pieced beam elements. 

As discussed above, the pieced beam element is the basic element that can be 

described by the well-established compliance matrix for LSFHs in terms of small 



Journal of Mechanisms and Robotics 

12 

JMR-15-1065    To 

deformations. To enhance the modeling accuracy, a modified version for the compliance 

matrix of the k-th beam element considering the shearing and torsion behavior is derived 

by [22]: 

3 2

s

3 3

3 2

s

3 3

( )

,

2

3 3

2

3 3

0 0 0 0 0

4 6
0 0 0 0

4 6
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6 12
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6 12
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x x

k

k k k

k k kk

k

M
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k k

l

Ebw

ll l
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Eb w Gbw Eb w

C

l l

Eb w Eb w

l l

Ebw Ebw









 
 
 
 

 
 
 

  
  
 
 
 

 
 
 
 
  

C                          (7) 

where E and G are the modulus of elasticity and the modulus of rigidity, 

respectively, b denotes the thickness of the linkage, and αs is the shear coefficient of the 

material. With μ being the Poisson ratio, the shear coefficient αs introduced by Cowper 

for LSFH is employed [31]: 

12 11

10(1 )
s










                                                                       (8) 

With the description of torsion behavior of the beam element, most of the existing 

models mainly depend on the relative magnitude of the cross-section thickness and width, 

which may be position-varying for variable cross-section hinges (e.g. the RCFH, and the 

tapered beam) [32, 33]. To accurately describe the torsion for the IFL, a newly developed 

torsion compliance, which is thickness-to-width ratio independent, is employed with the 

definition of the ratio zk=b/wk [32]: 

2
( )

, 3 3 2

2.609 17 1 1

2 1.17 2.191 1.17x x

k k k
M

k k k k

z zl
C

G w b w b z z


   
  

  
                                   (9) 
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Overall, with the assumption that the effects of stress distributions on elastic 

deformations of flexure hinges can be ignored, the IFL will be regarded as series 

connections of all the beam elements. Based on the matrix based modeling principle, the 

compliance of the IFL in the global coordinate can be expressed by [34]: 

IFL T

1

N

k k k

k





C T C T                                                                (10) 

where Tk denotes the compliance transformation matrix (CTM), taking on the 

following form [2, 33-35]: 

k k k k

k

k

 
 
 

R S (r )R
T =

O R
                                                            (11) 

where Rk is the rotation matrix of the local coordinate oi-xiyizi with respect to the 

global coordinate, here, the rotation matrix equals to I. rk is the position vector of the 

point oi expressed in the global coordinate. Sk(rk) represents the skew-symmetric operator 

for the vector rk=[xk,yk,zk] with the notation: 

L U

min

L U

min

0 0
2

0 0 ( )

0
2

k k

k

k k

y y

x kl

y y
x kl
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 
 

   
 


  
  

S                                               (12) 

2.3 Finite element validation of the FBMM 

To investigate the efficiency and accuracy of the developed model for 

characterizing the elastic deformation behavior of the IFL, the commercial FEA software 

ANSYS is adopted for the estimation of the ‘real’ compliance terms. The material of the 

IFL in FEA calculation is spring steel 65Mn, the material properties and basic structure 

parameters of which are given in Table 1. Totally two cases are investigated to 

demonstrate the effectiveness of the FBMM, and the structural deviations caused by 
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manufacturing errors are presented in Table 2. Both the FEA and the analytical results are 

given in Table 3. Taking the FEA results as the benchmark, the relative errors of the 

FBMM results for the three cases are almost all within 10%, except for the term z
z F / , 

demonstrating the reliability of the FBMM method for further analysis of the distorted 

CM. The relative large errors of the mentioned term may be caused by the constrained 

warping and the residual stresses effects [36, 37]. It is suggested that further refinements 

of the beam theory should be conducted to correct these errors [37]. 

 

Table 1. Basic parameters of the IFL 
E / GPa μ R / mm t / mm L / mm b / mm N 

2.00 0.3 2.5 0.4 2.5 10 1000 

 

Table 2. Deviations of the parameters (/ mm) 
 δR1 δR2 δR3 δR4 δx1 δx2 δx3 δx4 δb αU αL 

C1 0.2 0.1 -0.15 0.08 -0.12 0.1 0.2 -0.1 0.8 2° 0.4° 

C2 -0.1 0.15 0.08 -0.12 0.2 -0.15 0.1 -0.2 -0.5 -1° 0.8° 

 

Table 3. FEA and FBMM results (In SI units) 
 

x
x F /  y

y F /  
z

y M /  z z
M /  z y

F /  

C1 

FEA 4.82×10-9 5.84×10-6 6.08×10-4 7.20×10-2 5.99×10-4 

FBMM 4.71×10-9 5.47×10-6 5.67×10-4 6.71×10-2 5.67×10-4 

Error 2.28% 6.33% 6.74% 6.81% 5.34% 

C2 

FEA 4.62×10-9 1.74×10-6 2.15×10-4 4.25×10-2 2.21×10-4 

FBMM 4.56×10-9 1.72×10-6 2.17×10-4 4.28×10-2 2.17×10-4 

Error 1.30% 1.15% 0.93% 0.71% 1.81% 

  
y

z M /  
x

z M /  z
x M /  z

z F /   

C1 

FEA 2.73×10-6 4.16×10-6 6.69×10-6 4.60×10-8  

FBMM 2.87×10-6 4.30×10-6 6.19×10-6 3.86×10-8  

Error 5.12% 3.36% 7.47% 16.08%  

C2 

FEA 3.51×10-6 2.43×10-7 3.85×10-7 4.49×10-8  

FBMM 3.20×10-6 2.58×10-7 3.72×10-7 4.00×10-8  

Error 8.80% 6.17% 3.37% 10.91%  
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3. CHARACTERISTICS OF MESPM OF A NANO-POSITIONING 

STAGE 

A typical DPCM consisting of four flexural linkages is illustrated in Fig. 4. It has 

been widely implemented in micro-/nano technologies for motion guidance of the 

actuators [1-3]. Thus, it is adopted herein as a case study to characterize the features of 

MESPM. 

 
Fig. 4 A typical DPCM 

 

3.1 Modeling the imperfect DPCM 

The DPCM with manufacturing error induced structure distortions can be 

regarded as a holder supported by four parallel IFLs. Thus, following the well-known 

matrix based compliance modeling method [12, 34], the compliance at the point o in the 

global coordinate can be determined by: 

 
1

4 1
T

DPCM L IFL L

1

i i i

i






       
C T C T                                                      (13) 

where L

iT  denotes the CTM from the local coordinate of the i-th IFL to the global 

coordinate o-xyz, which takes the same definition of that in Eq. 11. 
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As discussed in section 2.1, the perpendicularity error induced skew effects are 

herein treated as the rotations of the IFL around the x-axis with equivalent rotation angles 

i  in term of the i-th IFL. Thus, the rotation matrix of the i-th IFL is determined by 

cos 0 sin

( ) 0 1 0

sin 0 cos

i i

i i

i i

 



 

 
 
 
  

R                                                        (14) 

Following the Hook’s law, motions of the distorted DPCM can be expressed by: 

DPCM

extFu C                                                                    (15) 

Where u denotes the motion vector, and Fext denotes the external actuation forces. 

3.2 Monte Carlo simulation 

Since there are totally around 50 variables of the structure parameters and the 

compliances are of high nonlinearity with respect to these variables, it is hard to adopt the 

conventional analysis method to characterize the inherent features of MESPM. Thus, the 

Monte Carlo simulation is carried out to comprehensively investigate the MEPMs from 

the statistical point of view. To construct the simulation, we assume that (i) since the 

mechanism is monolithic and fabricated by one WEDM machine, the manufacturing 

deviations are treated in the same level; (ii) the parameter deviations are of Gaussian 

distributions with zero means [17, 24], and (iii) the parameter deviations are mutually 

independent [17, 24]. 
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Fig. 5 Variations of the std of deformations in the y-axis direction 

 

A precision machining process is assumed to have been used to obtain the 

mechanism, the variances of δRi, δxi and δb are set as 25 μm, and the variances of αU, αL 

and φi are set as 0.2
o
. The simulations are conducted with 100N actuation forces along 

the working direction, namely the y-axis. To get a reliable number of simulation trials, a 

set of simulations with different number of trials are conducted, resulting in the standard 

deviations (Std) of the deformation along the working direction with respect to the 

number of trials shown in Fig. 5. As illustrated in Fig. 5, when the number of trials 

reaches 2500, the Std of the corresponding deformation almost converges to a stable level. 

Thus, the number of the trials is chosen as 3000 in the following analyses. The first four 

moments of the obtained results, namely, the mean value, the standard deviation, the 

skewness, and the kurtosis, are utilized to characterize the statistics of the elastic 

deformation behavior of the imperfect DPCM. The Std denotes the parasitic motion 

uncertainty (PMU) in the direction, while the skewness and the kurtosis are the measure 

of the asymmetry and the peakedness of the probability distribution of the parasitic 

motions, respectively. 

Generally, parasitic errors are deviations from working motions. Features of 

parasitic motions are definitely linked with the desired ones. To fairly compare the 
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dependences of parasitic motions on structure parameters and manufacturing 

uncertainties, the sensitivity of spatial parasitic motion uncertainty (SPMU) is defined by: 

std( )
= i

y

p

p
                                                                      (15) 

where std(pi) denotes Std of the deflections in the i-th direction when the 

mechanism is driven by a 100N force in the y-axis direction, suggesting uncertainty of 

the corresponding parasitic motion. yp  denotes the mean value of the working deflection 

in the y-axis direction. 

3.3 Results and discussion 

3.3.1 Effects of structure parameters 

There are four fundamental parameters governing the working behavior of the 

DPCM, namely R, t, b and L. It is crucial to derive a guidance law for choosing these 

parameters and accordingly achieving the robust design of the mechanism. Thus, the 

sensitivities of the parasitic motions to the four parameters are investigated based on the 

designed Monte Carlo simulations. In each simulation, the evaluated parameter will vary 

within a specified range, while the other three parameters will be set as the constants 

shown in Table 1 in section 2.3. The obtained PMUs and the SPMUs are illustrated in Fig. 

6 below. 
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(a) Motions in the x-axis direction 
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(b) Motions in the y-axis direction 
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(c) Motions in the z-axis direction 
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(d) Rotations around the x-axis 
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(e) Rotations around the y-axis 
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(f) Rotations around the z-axis 

Fig. 6 Characteristics of spatial parasitic motions, where the lines with circle marks and rectangle 

marks correspond to the PMU and the SPMU, respectively 

 

The results in Fig 6 show that the PMU in the y-axis direction may range from 

several hundred nanometers to several micrometers. It is about an order larger than the 

PMUs in both the x-axis and the z-axis directions. The three rotational PMUs remain in 

the same level, which may range within several dozens of micro-radians. Generally, it is 

in the rotation resolution level of typical rotational mechanisms. Although the values of 

the rotational PMUs are small, the derived Abbe errors cannot be ignored when 

considering the rotational length induced amplification effects. Considering the 

requirements and the working conditions of this sort of mechanism, the PMUs are 

relatively large and may significantly deteriorate working performances of the 

constructed mechatronic systems. 

Furthermore, the PMUs in all the six directions will exponentially increase with 

the increase of the radius of the RCFH (R), while an approximately linear increase will 

occur with the increase of the parameter L. In contrast, with the increases of the 

parameters t and d, nearly exponential decreases of the PMUs can be observed. On the 

other hand, the mean vales of the parasitic motions are approximately zero except the 

motions in the y-axis direction. The skewness and the kurtosis obtained in each 
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simulation are around zero and present no dependency on the four structure parameters. It 

suggests that the parasitic motions well obey the Gaussian distribution law. 

In view of the SPMUs of the translation motions, the SPMU in the y-axis 

direction caused by the structure distortions is more significant (~5%), which is about an 

order larger than that in both the x-axis and the z-axis directions (~0.4%). The SPMU in 

the y-direction will exponentially decrease with the increase of the parameter t, while 

there appears to be no obvious dependency on the parameters R, L and d. The slight 

fluctuations of the sensitivities are caused by the statistic essence of the simulation 

processes. Similarly, the SPMU in the x-axis direction will exponentially decrease with 

the increase of the parameters R and L, while it shows no dependency on the variations of 

the parameters t and d. In addition, the SPMU in the z-axis direction has no relationships 

with the parameters R and L. It will gradually decrease with the increase of t, while 

increase with the decrease of d. 

As for the rotational SPMUs, the SPMUs around the y-axis possess the lowest 

sensitivities to the variations of the structure parameters, and they will slightly decrease 

with the increases of the four parameters R, t, L and d. The SPMU around the x-axis will 

linearly decrease with the increase of the parameter t, while it will slightly increase with 

the increase of the parameter d. As for the SPMU around the z-axis, it will exponentially 

decrease with the increase of R and L, while showing no dependence on parameters t and 

d. 

3.3.2 Effects of manufacturing uncertainty 

Generally, there are two sets of manufacturing uncertainties, one set is described 

by the position uncertainties (δRi, δxi and δb), and the other set is described by angle 
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uncertainties (αU, αL, and i ). To reveal the dependences of the PMUs on the 

manufacturing uncertainties, the Monte Carlo simulations are also conducted here with 

respect to different manufacturing uncertainties. When investigating the position 

uncertainties, the angles uncertainties are set the same as the ones in the last section, 

resulting in the relationships shown in Fig. 7. Since the translational SPMUs in the z 

direction and the rotational SPMUs around the x-axis and the y-axis remain unchanged, 

only the three other terms are presented. Similarly, when investigating the angle 

uncertainties, the position uncertainties are set the same as the ones in the last section. 

The results are illustrated in Fig. 8. 

Figures 7 and 8 show that the SPMUs linearly increase with the increase of 

manufacturing uncertainties. As shown in Fig. 8, the SPMU in the y-axis direction 

possesses no dependency on the variations of the angle uncertainties. Besides, a range of 

0.3
o
 angle uncertainty will cause 0.2% and 0.5% SPMUs in the x-axis and the z-axis 

directions, respectively. It suggests that the PMU in the z-axis direction is more sensitive 

to the angle uncertainties than that in the x-axis direction. Similarly, the SPMUs around 

the y-axis and the z-axis are approximately of the same level with respect to angle 

uncertainties, while they are much lower than that around the x-axis.  

The results demonstrate a simple relationship between the SPMUs and 

manufacturing uncertainties. The positioning errors of the WEDM tool will only induce 

planar parasitic motions, while the straightness errors of the WEDM tool and the vertical 

errors in the clamping will contribute to the SPMUs in all directions except the 

translation in the y-axis direction. To achieve a more reliable working performance with 

low cost, the manufacturing tolerance should be kept relatively small. 
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Fig. 7 SPMUs in terms of position uncertainties 

 
Fig. 8 SPMUs in terms of angle uncertainties 

 

4. EXPERIMENTAL TESTS OF A TYPICAL DPCM 

The authors of this paper previously designed a DPCM for micro-/nano 

machining with RCFHs in Ref. [38]. The parasitic motions of the mechanism in the x-

axis and the z-axis directions are measured in this paper. To avoid introducing the profile 

of the reference surface into the measurement, the Renishaw X-80L laser interferometer 

is adopted for characterization, rather than laser or capacity based displacement 

measurement methods. A capacity transducer (Micro-sense II 5300) is employed for 

obtaining the output displacements of the mechanism in the working direction (y-axis). 

The photography of experiment setup is shown in Fig. 9. Note that two sets of Renishaw 

mirrors are used for measuring the parasitic motions in the two directions but only one set 

is illustrated in Fig. 9 to avoid repetition. During the measurement, the environment 
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compensation module Renishaw XC80 is adopted to compensate for the temperature, the 

air pressure and the humidity variations. To reduce external disturbances, the mechanism 

is installed on a vibration-isolated air-bearing platform Newport RS4000 with a RMS 

noise less than 5nm. 

Parasitic motions in the x-axis and the z-axis directions are illustrated in Figs. 10(a) 

and 10(b) respectively. The measured parasitic motion in the x-axis direction is mainly 

caused by the corresponding translation errors and the yaw error. As shown in Fig. 9a, 

within a moving range of 116μm, the resulted parasitic motion in the x-axis direction is 

about 1.5 μm, showing a good linearity with respect to the working motion in the y 

direction. From the fitting results shown in Fig. 10(a), the moving error is about 14.7 nm 

per micrometer. The straightness error of the DPCM is extremely large when compared 

with some popular lubricated guides used in precision fields. 

As for the parasitic motion in the z-axis direction shown in Fig. 10(b), an 

approximately quadratic relationship between the parasitic motion and the working 

motion is observed. The maximum deviation is about 3.12 μm whereas the motion in the 

working direction is about 86 μm. The measured parasitic motion in the z-axis direction 

is mainly caused by the translation in the z-axis direction and the pitch error. Since the 

measured result is the motion of the linear interferometer (part 2 in Fig. 9), the position 

variation along the z-axis can be determined by: 

1 2sin( ) cos( )L k L k k                                     (16) 

where k
δ
 and k

θ 
denote the proportionality coefficients of the translation errors and 

pitch errors with respect to the working motion  , L1 and L2 are the distances from the 

output end to the pitch axis and the interferometer, respectively. 
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From the relationship expressed in Eq. 16, it can be seen that the result obtained 

in Fig. 10(b) is essentially a harmonic curve, and details of the parasitic motion are 

determined by the parameters shown in Eq. 16. However, it is hard to identify the pitch 

angle error, the translation error and the center of the pitch motion. Thus, only the hybrid 

parasitic motion is presented here to characterize MESPM in the z-axis direction.  

 

Fig. 9 Experimental setup for measuring parasitic motions (1. Capacitive displacement sensor; 

2. Linear interferometer; 3. Reflector; 4. The DPCM; 5. Piezoelectric actuator) 

 

  
Fig. 10 Parasitic motions of the mechanism in (a) the x-axis direction and (b) the z-axis 

direction 
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Manufacturing error induced spatial parasitic motions (MESPM) of compliant 

mechanisms are comprehensively discussed from a statistical point of view. The 

complete compliance matrix of an imperfect flexural linkage (IFL), which is a basic 

element of a wide spectrum of compliant mechanisms, is theoretically derived. Based on 

the established elastic deformation model of the IFL, a case study of a well-known 

double parallelogram compliant mechanism with manufacturing errors is conducted. The 

main conclusions of this paper can be summarized as follows. 

(a) Geometric features of the IFL with structural distortion are analytically 

characterized, and the elastic deformation behavior is accordingly modeled by applying 

the novel finite beam based matrix modeling (FBMM) method. Good agreements 

between the analytical and the finite element analysis (FEA) results clearly demonstrate 

the effectiveness of the FBMM method for describing the IFL. 

(b) The Monte Carlo simulation is conducted to investigate the statistical behavior 

of MESPM. The spatial parasitic motions nearly follow perfect Gaussian distributions 

with respect to the Gaussian distributions of the manufacturing uncertainties. The 

sensitivity of the parasitic motion uncertainty is defined, and the dependence of the 

sensitivity to structure parameters and manufacturing uncertainties is discussed. 

Following the proposed analysis method, the structure parameters and the manufacturing 

tolerances can be optimally determined for a specified compliant mechanism.  

(c) The parasitic motions of a typical DPCM in the x-axis and z-axis directions are 

experimentally characterized by the laser interferometer based measurement. The 

obtained parasitic motion in the x-axis direction is about 14.7 nm per micrometer, 

showing a linear relationship with the working motion. Also, an essential harmonic 
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relationship between the parasitic motion in the z-axis direction and the working motion 

is obtained, and the obtained maximum deviation is about 3.12μm with respect to a 

working stroke of 120μm. 

 

ACKNOWLEDGMENT 

The work described in this paper was supported by the Research Committee of 

The Hong Kong Polytechnic University (RTJZ) and the National Science Foundation of 

China (51275434, 51175221).  

 

REFERENCES 

 

[1] Tian, Y., Shirinzadeh, B., and Zhang, D., 2009, "A Flexure-Based Mechanism and 

Control Methodology for Ultra-Precision Turning Operation," Precision Engineering, 

33(2), pp. 160-166. DOI: 10.1016/j.precisioneng.2008.05.001 

 

[2] Li, Y., and Xu, Q., 2009, "Design and Analysis of a Totally Decoupled Flexure-Based 

XY Parallel Micromanipulator," Robotics, IEEE Transactions on, 25(3), pp. 645-657. 

DOI: 10.1109/TRO.2009.2014130 

 

[3] Yong, Y., Moheimani, S., Kenton, B. J., and Leang, K., 2012, "Invited Review 

Article: High-Speed Flexure-Guided Nanopositioning: Mechanical Design and Control 

Issues," Review of Scientific Instruments, 83(12), pp. 121101. DOI: 10.1063/1.4765048 

 

[4] Huang, H., Zhao, H., Mi, J., Yang, J., Wan, S., Yang, Z., Yan, J., Ma, Z., and Geng, 

C., 2011, "Experimental Research on a Modular Miniaturization Nanoindentation 

Device," Review of Scientific Instruments, 82(9), pp. 095101. DOI: 10.1063/1.3632980 

 

[5] Marinello, F., Carmignato, S., Voltan, A., De Chiffre, L., and Savio, E., 2010, "Error 

Sources in Atomic Force Microscopy for Dimensional Measurements: Taxonomy and 

Modeling," Journal of Manufacturing Science and Engineering, 132(3), pp. 030903. 

doi:10.1115/1.4001242 

 

[6] Kashani, M. S., and Madhavan, V., 2011, "Analysis and Correction of the Effect of 

Sample Tilt on Results of Nanoindentation," Acta Materialia, 59(3), pp. 883-895. DOI: 

10.1016/j.actamat.2010.09.051 

 

[7] Huang, H., Zhao, H., Shi, C., and Zhang, L., 2013, "Using Residual Indent 

Morphology to Measure the Tilt between the Triangular Pyramid Indenter and the 



Journal of Mechanisms and Robotics 

28 

JMR-15-1065    To 

Sample Surface," Measurement Science and Technology, 24(10), pp. 105602. 

DOI:10.1088/0957-0233/24/10/105602 

 

[8] Huang, L., Meyer, C., and Prater, C., 2007, "Eliminating Lateral Forces During AFM 

Indentation," Journal of Physics: Conference Series, 61, pp. 805. DOI:10.1088/1742-

6596/61/1/161 

 

[9] Ren, J., and Zou, Q., 2014, "A Control-Based Approach to Accurate Nanoindentation 

Quantification in Broadband Nanomechanical Measurement Using Scanning Probe 

Microscope," Nanotechnology, IEEE Transactions on 13(1), pp. 46-54. DOI: 

10.1109/TNANO.2013.2287505 

 

[10] Kim, J. H., Kim, S. H., and Kwak, Y. K., 2004, " ," Sensors and Actuators A: 

Physical, 116(3), pp. 530-538. DOI: 10.1016/j.sna.2004.05.027 

 

[11] Hwang, D., Byun, J., Jeong, J., and Lee, M. G., 2011, "Robust Design and 

Performance Verification of an in-Plane XYθ Micro-positioning Stage," Nanotechnology, 

IEEE Transactions on, 10(6), pp. 1412-1423. DOI: 10.1109/TNANO.2011.2159015 

 

[12] Li, Y., and Xu, Q., 2009, "Modeling and Performance Evaluation of a Flexure-Based 

XY Parallel Micromanipulator," Mechanism and Machine Theory, 44(12), pp. 2127-2152. 

DOI: 10.1016/j.mechmachtheory.2009.06.002 

 

[13] Polit, S., and Dong, J., 2011, "Development of a High-Bandwidth XY 

Nanopositioning Stage for High-Rate Micro-/Nanomanufacturing," Mechatronics, 

IEEE/ASME Transactions on, 16(4), pp. 724-733. DOI: 10.1109/TMECH.2010.2052107 

 

[14] Dibiasio, C. M., and Hopkins, J. B., 2012, "Sensitivity of Freedom Spaces During 

Flexure Stage Design Via FACT," Precision Engineering, 36(3), pp. 494-499. DOI: 

10.1016/j.precisioneng.2012.03.003 

 

[15] Kang, D., and Gweon, D., 2013, "Analysis and Design of a Cartwheel-Type Flexure 

Hinge," Precision Engineering, 37(1), pp. 33-43. DOI: 

10.1016/j.precisioneng.2012.06.005 

 

[16] Niaritsiry, T.-F., Fazenda, N., and Clavel, R., 2004, "Study of the Sources of 

Inaccuracy of a 3 Dof Flexure Hinge-Based Parallel Manipulator," In: Proceedings of 

Robotics and Automation, 2004 IEEE International Conference on, 4, pp. 4091-4096. 

DOI: 10.1109/ROBOT.2004.1308911  

 

[17] Patil, C. B., Sreenivasan, S., and Longoria, R. G., 2008, "Analytical and 

Experimental Characterization of Parasitic Motion in Flexure-Based Selectively 

Compliant Precision Mechanisms," In: ASME Proceedings of 32nd Annual Mechanisms 

and Robotics Conference, pp. 393-404. DOI:10.1115/DETC2008-50111 

 



Journal of Mechanisms and Robotics 

29 

JMR-15-1065    To 

[18] Li, S., and Yu, J., 2014, "Design Principle of High-Precision Flexure Mechanisms 

Based on Parasitic-Motion Compensation," Chinese Journal of Mechanical Engineering, 

27(4), pp. 663-672. DOI: 10.3901/CJME.2014.0415.076 

 

[19] Smith, S., Chetwynd, D., and Bowen, D., 1987, "Design and Assessment of 

Monolithic High Precision Translation Mechanisms," Journal of Physics E: Scientific 

Instruments, 20(8), pp. 977. 

 

[20] Hopkins, J. B., and Culpepper, M. L., 2010, "A Screw Theory Basis for Quantitative 

and Graphical Design Tools That Define Layout of Actuators to Minimize Parasitic 

Errors in Parallel Flexure Systems," Precision Engineering, 34(4), pp. 767-776. DOI: 

10.1016/j.precisioneng.2010.05.004 

 

[21] Patil, C. B., Sreenivasan, S., and Longoria, R. G., 2008, "Robust Design of Flexure 

Based Nano Precision Compliant Mechanisms with Application to Nano Imprint 

Lithography," In: ASME Proceedings of 2nd International Conference on Micro- and 

Nanosystems (MNS), pp. 701-711. DOI:10.1115/DETC2008-50114 

 

[22] Patil, C. B., Sreenivasan, S., and Longoria, R. G., 2007, "Analytical Representation 

of Nano-Scale Parasitic Motion in Flexure-Based One Dof Translation Mechanism," In: 

ASPE 22nd Annual Meeting. 

 

[23] Ryu, J. W., and Gweon, D.-G., 1997, "Error Analysis of a Flexure Hinge Mechanism 

Induced by Machining Imperfection," Precision Engineering, 21(2), pp. 83-89. DOI: 

10.1016/S0141-6359(97)00059-7 

 

[24] Huh, J., Kim, K., Kang, D., Gweon, D., and Kwak, B., 2006, "Performance 

Evaluation of Precision Nanopositioning Devices Caused by Uncertainties Due to 

Tolerances Using Function Approximation Moment Method," Review of scientific 

instruments, 77(1), pp. 015103. DOI: 10.1063/1.2162750 

 

[25] Valentini, P. P., and Hashemi-Dehkordi, S.-M., 2013, "Effects of Dimensional 

Errors on Compliant Mechanisms Performance by Using Dynamic Splines," Mechanism 

and Machine Theory, 70, pp. 106-115. DOI: 10.1016/j.mechmachtheory.2013.07.007 

 

[26] Lobontiu, N., Paine, J. S., Garcia, E., and Goldfarb, M., 2001, "Corner-Filleted 

Flexure Hinges," Journal of Mechanical Design, 123(3), pp. 346-352. DOI: 

10.1115/1.1372190 

 

[27] Chen, G., Liu, X., and Du, Y., 2011, "Elliptical-Arc-Fillet Flexure Hinges: Toward a 

Generalized Model for Commonly Used Flexure Hinges," Journal of Mechanical Design, 

133(8), pp. 081002. DOI: 10.1115/1.4004441 

 

[28] Tian, Y., Shirinzadeh, B., and Zhang, D., 2010, "Closed-Form Compliance 

Equations of Filleted V-Shaped Flexure Hinges for Compliant Mechanism Design," 

Precision Engineering, 34(3), pp. 408-418. DOI: 10.1016/j.precisioneng.2009.10.002 



Journal of Mechanisms and Robotics 

30 

JMR-15-1065    To 

 

[29] Zhu, Z., Zhou, X., Wang, R., and Liu, Q., 2015, "A Simple Compliance Modeling 

Method for Flexure Hinges," Science China Technological Sciences, 58(1), pp. 56-63. 

DOI: 10.1007/s11431-014-5667-1 

 

[30] Wang, R., Zhou, X., and Zhu, Z., 2013, "Development of a Novel Sort of Exponent-

Sine-Shaped Flexure Hinges," Review of Scientific Instruments, 84(9), pp. 095008. DOI: 

10.1063/1.4821940 

 

[31] Cowper, G., 1966, "The Shear Coefficient in Timoshenko's Beam Theory," Journal 

of applied mechanics, 33, pp. 335-340. DOI:10.1115/1.3625046 

 

[32] Chen, G., and Howell, L. L., 2009, "Two General Solutions of Torsional 

Compliance for Variable Rectangular Cross-Section Hinges in Compliant Mechanisms," 

Precision Engineering, 33(3), pp. 268-274. DOI: 10.1016/j.precisioneng.2008.08.001  

 

[33] Zhu, Z., Zhou, X., Liu, Z., Wang, R., and Zhu, L., 2014, "Development of a 

Piezoelectrically Actuated Two-Degree-of-Freedom Fast Tool Servo with Decoupled 

Motions for Micro-/Nanomachining," Precision Engineering, 38(4), pp. 809–820. DOI: 

10.1016/j.precisioneng.2014.04.009 

 

[34] Koseki, Y., Tanikawa, T., Koyachi, N., and Arai, T., 2000, "Kinematic Analysis of 

Translational 3-Dof Micro Parallel Mechanism Using Matrix Method," In: Proceedings 

of Intelligent Robots and Systems, IEEE/RSJ International Conference on, 1, pp. 786- 

792. DOI: 10.1109/IROS.2000.894700 

 

[35] Tang, H., and Li, Y., 2013, "Design, Analysis, and Test of a Novel 2-Dof 

Nanopositioning System Driven by Dual Mode," IEEE Transactions on Robotics, 29(3), 

pp. 650-662. DOI: 10.1109/TRO.2013.2248536 

 

[36] Meijaard, J., 2011, "Refinements of Classical Beam Theory for Beams with a Large 

Aspect Ratio of Their Cross-Sections," In: IUTAM Symposium on Dynamics Modeling 

and Interaction Control in Virtual and Real Environments, pp. 285-292. DOI: 

10.1007/978-94-007-1643-8_32 

 

[37] Brouwer, D., Meijaard, J., and Jonker, J., 2013, "Large Deflection Stiffness Analysis 

of Parallel Prismatic Leaf-Spring Flexures," Precision engineering, 37(3), pp. 505-521. 

DOI: 10.1016/j.precisioneng.2012.11.008 

 

[38] Zhu, Z., Zhou, X., Liu, Q., and Zhao, S., 2011, "Multi-Objective Optimum Design of 

Fast Tool Servo Based on Improved Differential Evolution Algorithm," Journal of 

mechanical science and technology, 25(12), pp. 3141-3149. DOI: 10.1007/s12206-011-

0824-y 

  



Journal of Mechanisms and Robotics 

31 

JMR-15-1065    To 

Figure Captions List 
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Fig. 2 Structure characteristic of the IFL  

Fig. 3 Schematic of the linkages derived from the mathematical model 

Fig. 4 A typical DPCM 
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Fig. 6 Fig. 5 Characteristics of spatial parasitic motions, where the lines with 

circle marks and rectangle marks correspond to the PMU and the SPMU, 

respectively. (a) Motions in the x-axis direction; (b) Motions in the y-axis 

direction; (c) Motions in the z-axis direction; (d) Rotations around the x-

axis; (e) Rotations around the y-axis; (f) Rotations around the z-axis; 

Fig. 7 SPMUs in terms of position uncertainties 

Fig. 8 SPMUs in terms of angle uncertainties 

Fig. 9 Experimental setup for measuring parasitic motions (1. Capacitive 

displacement sensor; 2. Linear interferometer; 3. Reflector; 4. The 

DPCM; 5. Piezoelectric actuator). 

Fig. 10 Parasitic motions of the mechanism in (a) the x-axis direction and (b) the 

z-axis direction 
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