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Abstract

This paper gives an affirmative answer to the question of the global existence of Boltzmann
equations without angular cutoff in the L°°-setting. In particular, we show that when the initial
data is close to equilibrium and the perturbation is small in L2 N L with a polynomial decay
tail, the Boltzmann equation has a unique global solution in the weighted L? N L>-space.
In order to overcome the difficulties arising from the singular cross-section and the low
regularity, a De Giorgi type argument is crafted in the kinetic context with the help of the
averaging lemma. More specifically, we use a strong averaging lemma to obtain suitable L”-
estimates for level-set functions. These estimates are crucial for constructing an appropriate
energy functional to carry out the De Giorgi argument. Similar as in Alonso et al. (Rev Mat
Iberoam, 2020), we extend local solutions to global ones by using the spectral gap of the
linearised Boltzmann operator. The convergence to the equilibrium state is then obtained as
a byproduct with relaxations shown in both L? and L-spaces.
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1 Introduction
1.1 Setup and Objective

We consider in this paper the nonlinear Boltzmann equation
F+v-V F=Q(F, F). (1.1)

Solutions to this equation F = F (¢, x, v) > 0 are the mass density distribution of particles at
a time-space point (¢, x) € (0, oo) x T? with velocity v € R3. The equation is supplemented
with the initial condition

F@©, x,v) = Fy(x,v) > 0. (1.2)

The nonlinear operator Q (F, F) stands for the collision operator. It is defined by the integral
formula

Q(F, F) =// B(v — vy, 0) (FLF' — F,F) do dv,,
R3xS?

where the abbreviated notations are
F'=F(@t,x,v), F,=F(t,x,v,), F,=F(t,x,v), F=F(,x,v),

and (v, v4) and (v', v}) are the two pairs of velocity before and after the collision or vice
versa. In the elastic collision case that we consider in this work, these velocities satisfy the
conservation of momentum and energy during the collision process:

2 2 2 2
R L U S T T R S A
By introducing the parameter o in S?, the scattering direction, one can write (v', v},) in terms
of (v, vy) as

v+ v—U v+ vV—v
N Lt P T LT Ll I

2 2 * 2 2

In this paper we treat the hard potential case with the collision kernel taking the form

— Uy

B — vy, 0) = |v — v4|"b(cos ), cosf = o, y>0. (1.3)

[v — vyl
Following a convention, we assume without loss of generality that b(cos8) is supported
on cos@ > 0. This is valid due to the structure of the collision operator. We consider the
so-called non-cutoff kernels satisfying

sin @ b(cos @) ~ for 6 near 0 and for any s € (0, 1).

pl+2s°

Away from the region of grazing interactions 6 = 0, the scattering kernel b is assumed to be
integrable in S.
The regime close to equilibrium is considered in this work as we seek solutions of the form

F(t,x,v) = u+ f(t,x,v), w= )= Q)3 eI,

@ Springer



L®°-Solutions of Non-cutoff Boltzmann Page30f98 38

In such a situation, the unknown f satisfies the nonlinear Boltzmann equation

alf:‘cf+Q(f7f)v f(va’v):fO(x’v)7

where £ stands for the linear operator

Lf=0w, )+0(f,n)—v-Vif.

Physical solutions satisfy the laws of mass, momentum, and energy conservation, which
translate to

/ / f(t, x,v)dvdx =0, / / v f(t, x,v)dvdx =0,

™ JR2 ™ JR2

/3 /2 lv|? £z, x, v)dvdx = 0, (1.4)
T JR

forallt > 0.

The goal of this work is to show the existence of solutions to the Boltzmann equation for
any initial data fp satisfying (1 + |v|>)*0 fp € L)zw N L%, in the perturbative framework. We
note that since the well-established work of constructing near-equilibrium solutions [3-6,
26] in the case of u='/% fy € L%sz, a lot of efforts have been made to lower the regularity
requirement on the initial data in seeking global solutions (cf. [20, 22, 40] and the references
therein). To the best of our knowledge, our work is the first to obtain a global solution in the
L°-setting for the non-cutoff Boltzmann, thus adding a missing link to the studies of the
global existence of solutions to the nonlinear Boltzmann equations.

1.2 Significance and Main Result

The problem of constructing solutions to the Boltzmann equation with initial data having
minimal spatial regularity has been highly appealing to the community in both cutoff and
without cutoff contexts of the Boltzmann equation. It is desirable to create mathematical tools
that can deal with singularity creation/propagation since they may connect to the physical
phenomena of shock formation and/or attenuation on the macroscopic scale.

For the cutoff Boltzmann equations, the development of the well-posedness theory for
solutions near equilibrium in the L°°-framework can be traced back to Grad [25] for local
existence and later by Ukai [44] for global existence under the Grad’s angular cutoff assump-
tion. Ukai’s theory relies on the spectral analysis [23] of the linearized Boltzmann operator
and a bootstrap argument. In addition to the L*°-framework, the well-posedness theory for
the cutoff Boltzmann has also been well developed in other settings. For example, in the L'-
setting the classical theory on the renormalized solution was established by DiPerna-Lions
in their seminal work [19] by making essential use of the famous H-theorem and the velocity
averaging lemma. The L?-framework based on energy methods has also been extensively
explored ( [28, 38, 39]). Furthermore, an L2 — L™ interplay method has been introduced
in [29, 45] and applied to various contexts (see [30] and the references therein) to obtain
solutions with low regularity and close to equilibrium. Earlier theory on solutions near equi-
librium has been focused on perturbations with Gaussian tails. More recently, a big step
forward is made in [27] where the authors introduced a new framework of using spectral
analysis to relax the velocity decay constraint from Gaussian to polynomial. In the cutoff
context a key point for the control of the collision operator is to work in Banach spaces with
an “algebraic structure” in the spatial variable.
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38 Page4of98 R. Alonso et al.

For Boltzmann equations without angular cutoff, the well-posedness for large data in L'-
framework was obtained by Alexandre and Villani in [1], and the L>-theory for perturbative
solutions around an equilibrium was first established in [4-7, 26]. In [3, 8], the authors
considered the space L%H,ﬁg with § > 3/2 for local existence. The particular range of f

seems almost optimal since the main idea is to use the Sobolev embedding Hf C L to
handle the quadratic nonlinearity of the collision operator. This mimics the idea implemented
for the cutoff case through the “algebraic” control || f gllgs < | fllgsligll gs-

Contrary to the extensive studies in the L?-setting, the L>°-theory for the wellposedness
of the Boltzmann equation without angular cutoff has remained open. Recently in [20, 22],
the authors were able to construct global-in-time solutions in a space based on the Wiener
algebra in x with the norm

1£llw = D sup 7 f)0 k).
k

The key point in [22] is again the “algebraic” control || f gllyw < | fllwllgllw. The Wiener
algebra setting is more general than the Sobolev spaces Hxﬁ used in earlier works and is
a considerable step toward L$°-spaces, but it is still more restrictive. On the other hand,
its benefit of being a smaller space than L° is that coercivity estimates obtained in such
setting are strong enough to prove the uniqueness of solutions. In contrast, the method used
in our paper is still insufficient to provide the desired uniqueness. We further note that the
aforementioned works are in the context of velocity with Gaussian tails, in which spectral and
coercivity properties of the collision operator appear naturally. For the recent development
on the perturbation with a polynomial decay, one can refer to [12, 27, 31] and the references
therein.

The goal of our paper is to give a global existence proof for the non-cutoff Boltzmann
equation in the L*°-setting. Instead of following the path of exploring algebraic structures,
we apply a different framework based on a De Giorgi argument [17]. The approach of our
paper is inspired by the first part of [15] where the quasi-geostrophic equation was studied.
In particular, we do not need the full machinery of the De Giorgi—-Nash—Moser method
but rely mainly on the level-set functions and energy estimates. Such an approach has been
applied to the homogeneous Boltzmann equation in [9] and a linear radiative transfer equation
in the forward-peak regime [11]. It is also applied to the inhomogeneous Landau equation
[36]. Compared with Boltzmann, the Landau operator has a more localized structure which is
closer to classical nonlinear parabolic operators. For example, the typical maximum principle
argument holds for the Landau equation at least locally in time while it is unclear how this
can be directly applied to the non-cutoff Boltzmann equation. As a consequence, application
of the level-set method to the inhomogeneous Boltzmann equation is not straightforward.

‘We comment that the full machinery of the De Giorgi—Nash—Moser method has been used
in a series of remarkable developments for the Landau and non-cutoff Boltzmann equations
[24, 34-36, 41]. More specifically, solutions with bounded macroscopic densities are shown
to have instantaneous C °°-regularization. Recently a proof of existence of L°°-solutions near
equilibrium is given in [42] by combining such regularization with the long-time asymptotics
shown in [18]. The proof in [42] is different in nature to the one presented here, since the
former relies on the C*°-regularization and the lower bound of solutions while our solution
stays in the weak sense.

With some details of the parameters left out, the main theorem can be summarized as:

Theorem 1.1 Suppose the cross section of the Boltzmann equation satisfies (1.3) with y €
(0, 1] and s € (0, 1) and the initial data Fy > 0 satisfies (1.4). Then for ko, k large enough
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with k > ko, there exists 85 > 0 such that if
| Few—w| =i [ R - 0|
L.’c,me?(.:v

(v) = V142,

then there exists a unique non-negative solution F € L*°(0, oo; L% L%(']I‘3 x R*) 10 (1.1).
Moreover, for some 8y and )" > 0, the solution F satisfies

[ (Faex0) - w)|

00,

) <
Lx.u

Ce™™. (1.5)

k
o, 500 [ (F(t’x’”)‘“)‘q,u <

Furthermore, for some Cy, % >0, the weighted L°°-norm of the perturbation decays expo-
nentially in time:

C*e_’\’.

[ @ x v =w],, <

1.3 Notations

We employ several notations for function spaces in this paper. First, L2 , or L*(T* x R?)
denotes the usual L2-space over T° x R* and L2 H3(T? x R3) denotes the space where
(I — Ay f € L2 . Any weight in the subindex denotes a weight in v only. For example,
LiL% denotes the space where (v)k fe LJZC,U where (v) is the Japanese bracket defined by
7?2 =1+ v~

There are many parameters in this paper. Among them, we reserve the key ones for
designated meanings that will not change throughout this paper:

e y: power in the hard potential.

e s: strength of the singularity in the collision kernel.

e s': regularity in x (and ) derived from the averaging lemma.

e yp: dissipation coefficient in Lemma 2.6.

e cq: dissipation coefficient in Proposition 2.5.

e ko: moment in the L°°-bound (in ¢, x, v) of the solution.

e §p: smallness of the L°-norm (in ¢, x) of the solution for the energy estimates to close.
e ¢: strength of the regularizing operator € L, with L, defined in (3.2).

o & k-th energy level.

e {p: minimal order of moments needed for the inhomogeneous embedding in (3.60).
e )o: spectral gap of the linearized Boltzmann operator.

Other parameters such as p, q, p’, k, B, B, s”, £, 0, n may change from statement to state-
ment. Constants denoted by C, Cy, Cx may change from line to line.
Since we assume that the collision kernel b(cos ) is supported on cos 6 > 0, the integration
limits for b can be either S? or Si and we use them interchangeably.

1.4 Methodology and Organization

A brief outline of the strategy implemented in this paper is as follows: the underlying condition
for the validity of the a priori estimates, in addition to sufficient regularity, is the smallness
condition

sup | fllz1 nz2 =< do, (1.6)
t,x 0
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where wo > 0 is a threshold of polynomial decay and 89 > 0 is a sufficiently small quantity.
With this condition, L)Z(’U and L)zc H; energy estimates with general weights in velocity can be
proved. The bound in L2 HS demonstrates the natural regularization in the velocity variable
reminiscent of a fractional Laplace’s equation. Using a time-localized averaging lemma, one
can “complete” the velocity energy estimate of the equation to include the regularization in
the spatial variable using the norm H; ' L2 for some s” € (0, s). This confirms the hypoelliptic
properties of the equation as expected. The hypoellipticity paves the way to apply the De
Giorgi argument through embeddings of Sobolev spaces into various L? spaces. In particular,
we construct the crucial energy functional

2 h 20 |?
+c0/ /HW 7 H dxdr
t€[T1, 1] L2, 7, J13 Koty
1

4L /Tz (I—AX)%( 2 )2 " !
Co \Jn T e,

where 0 < s” < s will be suitably chosen, K is any positive number, p is a parameter

depending on s and f ,((Z)Jr is the level-set function defined by

Ep(K,T1, Tr) := sup

)
7

£ = (@ f = K) Ly gor (1.7)

With K = K,, — K forsome Ko depending on the initial data, the main step in the De Giorgi
argument is to show that £,(K,, T1, 1) satisfies an inhomogeneous (in degree) iterative
relation (see (3.81) and (5.27)). This key iterative relation leads to the limit £, (K, T1, T2) —
0asn — oo, thus proving the weighted L°°-bound. To enforce the smallness condition (1.6)
when constructing the approximate solutions, we introduce a cutoff function x and consider
the modified collision operator

O+ Fxb £y, w+ f),

so that the smallness condition is satisfied naturally for the approximate solutions. Such
cutoff function automatically disappears after one applies the De Giorgi method and shows
a posteriori that the smallness condition holds intrinsically when the initial data is small
enough.

The strategy described above is applied first to the linearized equation and then to the
nonlinear equation to obtain local solutions with L°-bounds to the original Boltzmann
equation. A major part of this paper is dedicated to the linear analysis. Although obtaining a
solution to the linearized equation is fairly straightforward, significant effort has been carried
out to show the L°°-bounds of the solution. A delicate issue is to handle the moments required
in various estimates. Interestingly, the moment requirement imposed on solutions for linear
and nonlinear estimates drastically differs, with the nonlinear case much easier to handle. The
key factor at play is the quadratic structure of the collision operator. This structure reduces
the moment needed on solutions for the L,%,u estimates which is essential for closing the
argument. Finally, combining the local existence with the spectral gap we obtain a global
solution to the original Boltzmann equation.

This paper is laid out as follows. After including a technical toolbox in Sect. 2, we establish
the well-posedness for the linearized Boltzmann equation in Sects. 3 and 4: Sect. 3 consists
of a priori Li’v and L2 H}-estimates and L'-estimates for the collision term for the linear
equation. These estimates are used in Sect. 4 to show the existence of solutions to the linear
equation. In Sect. 5 we establish the nonlinear counterparts of the estimates of those in Sect. 3
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sup , [[fllLy, nrz < do

L2, and L2H$ estimate Ko + o + 2
' moments needed

/

2 2178
lLac,lv and L'zHU L H;IL% estimate }; Averaging Lemma
evel-set estimate )

1
&o
. / Regularity and
Averaging H? L2 level- : Aty
- . Energy Functional moment inter-
Lemma set estimate . .
~ for level sets polation with

Level-set iteration algorithm ko + €o + 2 moments

&o { supy || ()% fllze=, < C(E) (W)™ follfe, 1

Fig. 1 Flow chart of the strategy. Moments are related as ky > wq > 0 and so does regularity as s > s’ > 0.
The constant C (&p) is independent of the smallness parameter &g

and apply them to establish the local existence of the nonlinear Boltzmann equation. In Sect. 6
we combine the results in Sect. 5 and the spectral gap property of the linearized Boltzmann
operator to establish the global existence of the nonlinear Boltzmann equation. The existence
result proved in Sect. 6 is only for the weakly singular kernels. We extend the result to the
strong singularity in Sect. 7.

To help the reader better understand the structure of the proof, we show a flow chart of the
main steps in Fig. 1. Starting from the smallness assumption, the L?-theory is performed. The
velocity regularization appears in a standard way whereas spatial regularization is obtained
through velocity averaging. The L2-theory comprises both f and K-levels f I(<€)+ A higher
k-moment is needed (to be precise, k = ko + £p + 2 for some ¢y depending on s) in the
L?-estimates to prove algebraic ko moments in the L>°-estimates.

2 Technical Toolbox
2.1 Function Spaces

In this paper we use two classical function spaces, namely, Bessel potential and Sobolev-
Slobodeckij spaces. Most of the work is based on the former, yet, the proof of some estimates
is simpler if performed in the latter.

Definition For p € [1, 00) and B € R, the Bessel Potential space is

HPPRY) = {u e LP@D | F7{( + D) Fu) e LP@®RD), @.1)
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where F is the Fourier transform. The norm that equips H#7 (R?) is naturally

el ey 2= |7+ 165 Fud | oy = 10 = 202 1y

Definition For p € [1, c0) and 8 € (0, 1), the Sobolev-Slobodeckij space is

WhP(RY) = {u e LP(RY) | / /d ) = uI? g < oo}. 2.2)
R

Clx =yt

A natural norm that equips W47 (R?) is given by

1
Ju(x) — u(y)|” v
= Pd dyd .
et e (et (/Rdmocn x+/ /R oy D

The Bessel potential spaces and Sobolev-Slobodeckij spaces agree for p = 2. More generally,
the following relation holds:

(i) Forall p € (1,2], B € (0, 1) it holds that WA P (R?) — HPP(R?).
(i) For all p € [2, 00), B € (0, 1) it holds that H?? (RY) < W8P (RY).
The proof of this fact can be found in [43], Theorem 5 in Chapter V.

2.2 Useful Facts About Polynomial Weights

In this section, we list some useful estimates that are needed for later estimation. Recall that
_ ¢
gl = |@‘e| 0 tBeR
v

First we present two lemmas related to commutator estimates of fractional derivatives.
Since their proofs are technical and not directly associated with the Boltzmann operator, we
leave them to Appendix 8.

Lemma 2.1 (cf., [32]) Let 1 < p < oo and suppose £, 6 € R. Then there exists a generic
constant C independent of f such that

o UREhE ? ) f |

that is, these two norms are equivalent. Here (D,) is the Fourier multiplier with the symbol

().

We will also need a homogeneous version related to fractional derivatives.

clurimns

= | < .
LY LY LY

Lemma 2.2 Suppose o € (0, 1) and f € HO‘(]R3) Then (v)~2 f e H"‘(]R3) with the bound
2 2
”( A )a/ (< HLZ(R3) =C H( Av)a/ f HLZ(R3)
Next we recall the now-classical trilinear estimate.

Proposition 2.3 ([4, 40]) Denote a™ = max{a, 0}. Then the bilinear operator Q satisfies

[ oo a] = (i, +1F 12 ) glge, el
R3

(m—y /2)F +y+2s 24-2s+m y/2—m

forany o € [min{s — 1, —s}, s, m e R,y > 0and 0 < s < 1. Here, f, g, h are any
functions so that the corresponding norms are well-defined. The constant C is independent

of f 8 h
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Lemma 2.4 ([2]) Suppose f and b are functions that make sense of the integrals below. Then
(a) (Regular change of variables)

/ / b(cosO)|v — vg|¥ f(v )dadv_/ / b(co 3_‘_)/(9/2)| — v]¥ f(v)do dv.
(b) (Singular change of variables)
/ f b(cosO)|v — vy |” F(v)do dvy = / / b(co 3+y (9/2) — vi]¥ f(vy)do dv,.

Proposition 2.5 ([7]) Suppose for some constants Dy, Eog > 0, the function F satisfies
F=0, [Flp=Do>0,  [IFly+FlLogr = Eo < .

Then there exist two constants co and C such that
F, dv < —¢ 2. +C 2
o savs—eol iy, +CUris

Throughout this paper, we use du to denote the measure
dit = do dvdv,dx.

For the convenience of the later analysis, we record a simple decomposition and bound
related to the nonlinear Boltzmann operator:

Lemma 2.6 ([12]) (a) Let G, h be functions that make sense of the integrals below and Si
be the upper half sphere with cos @ > 0. Then for any s € (0, 1) and £ > 0,

// (G, hyh (v)* dvdx
T3 xR3
=/ (G, (v)*h) (v)*hdvdx
T3 JR3
71\ ne ¢
+/T3/R3/R3/S2+b(c059)|v—v*lyG*hh (v) (<v> (v)* cos 2) di
+//// b(cos 0)v — val” Gk (0) 1 (V') (cos” )dﬁ, (2.3)
T3/R3R3/S2

(b) Suppose in addition G > 0 and G = u+g. Let yy, y1 be the positive constants satisfying

/M [v — vl” (vy) dvos > y1 (V)7

and

3
Yo > —%/ b(cos ) (COS%_S_V % — 1) do, forallt > —;y.
SZ

Then we have
// 0(G, h)h (v)** dvdx
T3 xIR3
1
< 7/ / / / b(cos 0)|v — ve|” Gyl |? ()2 (cos2f—3—y g _ 1) dz
2 T3JR3JR3 Si
+f / / f b(cosB)|v — z,v*|7’G*|h||h’|(v’)‘Z ((v’)e — (v)¢cos 7) dz (24
T3RIR3/SZ
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- <V0 ~ Cesuplg m) |wyerrr2
X

+/ f // b(cos )[v — v,|” G lhl[h'] (o) ((ﬁ)e—(v)fcos 7) dim. (2.5
T3/ RVRISZ

Proof Part (a) follows from a direct addition-subtraction applied to the definition of Q. Part
(b) follows from (3.15) and (3.16) in [12]. O

Cancellation plays a vital role in dealing with the strong singularity. Let us recall a useful
representation for [v'|:

0 0 0 0
[V |2 |v|200s 5+|v*|2sm 5+2cos§smf|v—v*v w, (2.6)

and, as a result,

N2 o2 2? 2 Q Q 0
(V)" = (v)“ cos 2+( ) sin? 2+2005231n [V — vg| (V4 - ), 2.7
where
o—(o-uwu Vv — Uy
=, u= . (2.8)
lo — (o - wyul [v — vy

By its definition, w satisfies that w L (v — vy), thus, v - @ = v, - . Consequently, one has
the freedom to choose v - @ or v, - w in the estimates. We also introduce the notation @ for
later use:

- vV=v

0= ——7--, (2.9

[v" — v

Lemma 2.7 (see [12]) Suppose £ > 6 and (v, vy), (V', V}) are the velocity pairs before and
after the collision or vice versa. Let w be the vector defined in (2.8). Then,

()" — (v)cos’ § = ()2 |v — vsl(v - @) cos" ! §sin §

Y (2.10)
+ (vi)"sin” 5 + Ry + Ry + R,
where there exists a constant Cy only depending on € such that
1R1] < Co (v (v) T sin P G, Ra] < Co () (vy) sin’ §, o1

and |9 < C¢ (0) vt sin” G
We are ready to establish an all-important commutator estimate.

Proposition 2.8 (Weighted commutator) Suppose
G=p+g geLPLy ,NLI,, £=8+y, ye(©1, se(1).

(a) For general G, F, H making sense of the terms in the inequality, we have

F ./,
///[ESXRGXSZ G*WH ((v >‘Z — ()¢ cos 2) b(cosO)|v — vy]” diw
<t ff// G (F (W2 F (v/>72) H' (v, - @) cos’ § sin §b(cos )|y — v,|1*7 diz
T3 x RO x§2

i
0| I
L{?yo‘v X,v

+Cg<1+sup||g||L1 )min{llFlle ||H||Lz
X t+y
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+Cy (1 +sup g ||%> min {1F Iz IH 2, o IF o, 1H Dy, ) 2.12)

where @ is the unit vector defined in (2.9).
(b) Suppose G = u + g is non-negative and there exist £, K such that

g <Ko, €£>8+y. (2.13)

Then for any s € (0, 1) and the same £ as in (2.13), we have

F ¢
G H'(v/ — () cost £) b(cosO)|v — v, | dix
JIJ[ oo Gt (1) = 01 cost §) bcostil = .l
< e//// G. (F W2 F (v/>_2) H’ (v, - @) cos’ & sin §b(cos 0)|v — v, |77 dje
T3 xROxS2
+Ce 1+ Koymin {IF 2, 1H 122, . IF lugs, 1H ey, }

+Co(1 + Ko) (sup |F/ oyt Hu) I gy - (2.14)

Proof The proofs for both parts follow from a revision of the proof of Proposition 3.1 in [12],
based on taking advantage of angular cancellations and using cutoff techniques such as in
[10]. Applying Lemma 2.7, we decompose the integral as

F ¢
H ((v) = (v)* b(cosB)|v — v,|” diT
////PxRﬁxSZG*(v)K ((v) (v)* cos 2) (cosO)|v — v |V di
F
:z//// Gy H'|v = v,|(v - ) cos ™" § sin §b(cos 0) v — v,|” dz
T3xR6xS2 (V)

F .. B
+ ////T&Rﬁxy <G* <U*>e) WH Slne %b(COSQ)h} — v*|7 dm
+Z///[H‘3XR6XSQ U) HSRb(COSHNU—U*VdM = ZF (2.15)

n=1

The main difference between (2.12) and (2.14) is that in (2.12) the extra y-weight falls on g
while in (2.14) itison H.

(a) Deriving the bound for I'y requires careful use of symmetry in the case of the strong

singularity. The idea is similar to the proof of Proposition 3.1 in [12]. In particular, we
decompose I' as

r = E//// Gy (F’(v’)iz) H' (v, - @) cos’ 2 sin 0b(cos9)|v — v " dm
T3 x RO x S?

ML et ()
T3XR6XSZ [V — vy

—19 1+
X COS 2sm 2b(cosé’)lv—v*l Yd

¢ . 2 _ V) H (o,
¥ ////TM F = F W) B )

x cos’ 2 sin % b(cos9)|v — v*|1+7 dw

2 Cii+Ti2+ s
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By symmetry the first term I'; 1 vanishes. This follows from the regular change of variables
v — v’ and using v" — v, as the new north pole. In this way we have that

, 2N ., ~
F]]_e////ﬂ‘szﬁxSZ F< > )H(U*w)

x cos' § sin §b(cos 0) v — v, 'V d6 dv'de du,,

where @ = (cos ¢, sin ¢, 0) and the integration in ¢ vanishes. The second term I'; 7 is readily
bounded by

ral=c ff[[ 6wy i o

=Ce\1+supligly Jminy[[Fllzz [1H g2 o I1F e, 1H Lt
24y X xX,v X,V X,
X )

where we have used the Young’s inequality and the regular change of variables v — v'. We
will leave I'1 3 as is since in the later analysis, Proposition 2.9 will be applied in each specific
case. Putting the components together gives the bound of I'y as

F1<€//// G* F )2 - ’(’)‘2)H’(v*.a‘))
T3 xR6 xS2
X COS 2sm9b(cos€)|v—v*|1+yd,u

+ce<1+sup||g||Li+y)min{||F||Lz 1H 2, IF g 1H ey, - @216)
u <

X,

Next we show the estimate for I'y. Start with the direct bound using Cauchy—Schwarz and a
regular change of variables stated in Lemma 2.4:

1/2
rp,<C (/// |G| ()T F2 dv du, dx)
T3 xR
1/2
X </// |G| (vs) T H? dvdu, dx)
T3 xR6xS?

<c <sup 6w HL) IF Nz, IH Dz,

=c (1]
X

Ll) IF ez IH Dz -

A second way to estimate I'; is

g (sup 6w | ) [Frwr| i
x Li' Li?v X,V

<co(ts o] ) [rror | v,
X v X, v ’

where again we have applied the regular change of variables. Overall, we have

Iy < Ce (1 +sup ()7 ¢ HL> min {nF Iz IH Iz
X v ’ -

|F/ )|

H .
! ||L;m}
2.17)
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Estimate for I'3 is similar to I'>. By the bound on R in Lemma 2.7, we have

 _IF| - _
Is<C //// (1G] (0 =") = [H'| sin' = §b(cos O)]v — v.|” 7
T3 x RO xS? (v)

< (1 +sup )1+ g HLl)min{“F ez, I1H 2,
X v o ’

Fro= | IlL;,U}~
(2.18)

Estimates for I'4 and I's are more straightforward. Using the upper bound of R, and a regular
change of variables, we have

F
T4l = Ce //// (1G] (v:)?) l—lz |H’|sin” §b(cos 6)|v — v.|” dit
T3 x RO xS2 (v)

<Cy ///f (1G4 (v)**7) |F||H'| sin® §b(cos 0) dt
T3 xROxS?
<G <1+sup||g ||L;+y)min{||F||Lgv||H||L;“,, VPl IH Dy} 219)

Similarly, we can bound I's by

F
Is| < C, //ff (16 ) L1157 sin? 8b(cos O)]v — val? di
T3 xROxS? ( )4

v
ECZ(1+SUP ||g||Li+y>min{||F||L;v||H||L%u, VPl IH Dy} 220

The desired estimate in (2.12) is obtained by adding all the bounds for I'y, - - - , I's in (2.16)-
(2.20).

(b) The proof is similar to part (a) with a revision based on the extra condition (2.13) on g.
In particular, we use the decomposition in (2.15):

5
F ’ ne _
f//A3xR6xSZ G*WH ((v) —(v)ecosz %)b(cos0)|v—v*|ydM:ZFn,

n=1

where I',,’s are exactly the same as in (2.15). The estimates of I'{, I'4, I's remain the same
as in part (a), which give

ITil+ T4l + [Ts|
<? //// G, (F W - F (1/)72) H' (v, - @) cos® %sin %b(cos@)lv — v |7 Az
T3 x RO xS2
+Ce (1 +supllg “L}HV) min {||F 2 WH N2 o IF lege, 1H u} . (2.21)
X .

X

To prove (2.14), we combine (2.13) with the positivity of G and the singular change of
variables to estimate I'; and get

F
4 A -
—H g — Y
///[JI‘3X]R6XS2 <G* (ve) ) (v)[ S5 b(cosO)v — vy dﬂ’
F
=< [/// (u* () + Ko) |—L|H’| sin‘ & b(cos 0)[v — v,]” dix
T3 xR6xS? (v)

< Cu(l + Ko) (sup [F/we| Ll) 1H gy 222)
X v

Il2| =
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Similarly, using the positivity of G and (2.13), we have the bound of I'3 as

F
N3] < Cy /f// (G* <v*>‘*‘) 'Z'1|H’|sinH §b(cosO)[v — v,|” dz
T3 x RO xS2 (v)*~

L;,> IH Ly, - (2.23)

< Co(1 + Ko) (sgp [P/ |

Combining (2.21), (2.22) and (2.23) gives (2.14). m]

We summarize explicit bounds for the first term on the right-hand side of (2.12) and (2.14)
in the following lemma:

Proposition 2.9 Let @ be the unit vector defined in (2.9). Suppose G, F, H are functions that
make sense of the integral below.
(a) If s € [1/2, 1), then for any pair of (s1, y1) satisfying

n_2+vy

s1€@s—1,5), 7=T+s1—2<g, (2.24)

we have

/ / fz Gy (F (v)™2 = F'(v)%) H'(vs - @) cos’ § sin §b(cos §)|v — v, "7 do dv, dv
R3JR3J/S%

SCUG Ly, e IF s WH Lz, (225)

(b) I s € (0, 1/2), then

/ / / G (F O e o (v)fz) H'(vi - @) cost % sin %b(cos&)lv — v ["7 do duy dv
R3JR3/S%
<Cl|G ”LLV min {HF lz2 WH gz s IF llee 1H “LL] . (2.26)

(©IfF € Wl’oo(Rf}), then for any s € (0, 1) we have

f / /2 G (F )72 = F/(o)7) H' (v, - &) cos” § sin §b(cos 0)]v — v,]'* dor du, dv
R3JR3JS2

< CIF ey G Iy, IH Ny - 2.27)

Proof Part (a) is an immediate application of (3.13) in [12] (with a reshuffle of the function
names). Part (b) is a direct bound using the fact that b(cos 6) sin % is integral if s € (0, 1/2).
Hence,

LHS of (2.26) < cf / / Gl <|F| ()2 4 |F| (v’)_z) |H'| (v3) [0 — vy do dus dv
R3JR3J/S%

< C/ // |Gl <U*>2+y (|F| + |F/|) |H/|d0dv*dv.
rR3JR3S2

Depending on the property of F', we can obtain two types of bounds here:

ff/ 1Gal () (IFI+ 1F]) |H'|do dvedv < G 1,1 IF 1oz 1 H Iz
R3JR3JSZ y v v
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and
|G« (U*>2+y (|1 [+ 11 /|) |H/| dodv,dv < |G ||L1 | F llpeo N1 H [IL1 -
R3JR3JS% y ' v

A combination of them gives (2.26).
Part (c) follows directly from the Mean Value Theorem, which gives the following bound:

’ U)2_F1< ‘lv_vller
< (IF = 172+ |02 = )11 1o = v+
—v| (vl + [v'Dlv = V| -
HVFHw FIF |l oo~ | [0 — v,
( B )2 BT )R )2 *
v — vy |27 ﬂm+wmw—vﬁﬂ .
= <||VvF||L<>O 7* + ||F|| 5 5 * sm%.
v ()? (v)2 (V)

Since on Sﬁ_ it holds that
\/T§|U_U*| =< ‘v/_v*‘ < |v—vyl,
there exists a generic constant C such that

(vl + 10 DIv = w7 ol — w27l — Y

(v)? (v')? (v)? (v')? (v)? (v)?

<C <U*>2+y .

Hence, the (partial) integrand satisfies

‘(F O (v’>_2> (04 - )cos‘Z 8 sin §b(cos )| [v — v,

v — vt um+www—wﬁw>
C||IIVu,F oo ————>—— F *
(n L L IF TERE (vs)

< CIF llyreo (V') (0e)**7,

when restricted on Si. Inserting such bound into the left-hand side of (2.27), we get

LHS of (2.27) < C||F || 1. // 1G] ()7 (o) H dv, dv
v R3xR3
< ClIF lly1= IG IIL;W IH Iy -

We also record a proposition using the symmetry cancellation:

Proposition 2.10 [16, Lemma 2.1] Suppose H € W>®(R3). Then for any s € (0, 1), it
holds that

§c< sup  |[VH@w)| + sup |V2H(u)|>|v—v*|2.

[ul=lv|+]v«] [ul<lv|+|v]

/ (H' — H) b(cos ) do
S2
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2.3 Interpolation Results

In this section we collect several results about interpolation in fractional Sobolev spaces that
will be used in the sequel.

Lemma2.11 Letn,n' € (0,1). Then forr =r(n,n',d) > 2 and a = a(n,n’,d) € (0, 1)
defined in (2.33), it follows that
1—a
2 7z
dv) .
L3

% ’
ol =C (f ||(—Au)"/2<p(x, 2) ”iZ dx) (/ H(l — A" Pp(,v)
’ Td v R4
(2.28)

The constant C only depends onn, 7', d.

Proof By the Sobolev embedding in R¢ and T¢ there exists ¢ depending only 7, /, d such
that

2
/ [(=A0)"200x, ) |3, dx = c/ (/ lo(x, u)|”du)" dx, (2.29)
Td v Td R4
/)2 2 q d
/ (1 =AD", v)|7, dv > C/ (/ lo(x, v)| dx) dv, (2.30)
R4 X R \JT1d
where
1 1 1 7
=1 —=_ L , 2. 2.31
72 4 > =27 d q, p> (2.31)
Set
q—2 p
= €(0,1), a==a; (1), (2.32)
200
r=pa;+2(1 —ay) > 2, a=——¢€(0,1). (2.33)
r
One can readily check that
o] 2 1 — oy q q —a
— =, == >1, =2 1 —a), —(1— =
o p w27 r=2u+q(—a) oy (L —a2) 5
(2.34)

Then, using the Hoder inequality we have

o 11—«
/ / lp(x, v)|" dvdx 5/ (/ lo(x, v)|? dv> 1 (/ lo(x, v))? dv) 1 dx
Td JRA Td Rd R
9 o 1-op 1—an
o) I—ayp
< (/ (/ o x,v)I? dv) dx) [ (/ o, V)2 dv) ax
Td \JR4 Td \JRd
% o % 1—an
= (/ (/ lp(x, v)|? dv) dx) (/ (/ lp(x, v)]? dv) dx)
Td R4 Td R4
a 2 4(1—a2)
< C(/ I(=A0)"2(x, )72 dx) (/ (f lo(x, 0|7 dx) dv)
Td v R4 Td
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P 2 o ' 2 {(1-a)
fc(/w |=a0"00x,) |72 dx) (/Rd |a=a076¢,v B dv) ,

where the Minkowski’s integral inequality is used in the second last step. Inequality (2.28)
then follows by the definition and property of « in (2.33) and (2.34). ]

Observe that the estimates hold in the proof of Lemma 2.11, or equivalently, the existence of
o, a1, oz, r in the correct range is guaranteed as long as p, g > 2. Based on such observation,
we have a second interpolation similar as Lemma 2.11:

Lemma2.12 Let n,n’ € (0,1) and m > 1. Then, for some 7 = r(n,n’,m,d) > 2 and
a=am,n,m,d) e (0,1), we have

1—

1—a
2
dv .
Ly

IR

||<p||L;USC(f ||<—Av)"/2<o(x,-)||izdx) (/ [ (=AD" v)
‘ T4 v R4

The constant C only depends onn,n', m, d.

Proof Using Sobolev imbedding we have that

2
[oresoeaoacze [ ([ fowol a)’ ar
Td v Td R4

7 =5 q
/||<1—Ax>"/2¢2(-,u>||L;ndv2c/ (f |go<x,v)|qu> dv,
Ra’ Rd T‘l

where ¢ = ¢(n, n’, m, d) and

o

2 1 1 I ~

== T — =3 qu>2,

q m d p 2 d
which are in a similar form as (2.29) and (2.30). By the comment before the statement of
Lemma 2.12, the desired inequality holds with

-~ qg—2 - - -~ - - - 2
G=a e, @=Laen, Fop@+20-a)>2 a=-"=.
542 2 r
[m}
Next we show a “Leibniz” rule for fractional derivatives:
Lemma2.13 Letp € (1,2),0< B < B € (0,1),
/ 14 . / P
=—— that 2p' = . 2.35
p -, at is p =2 ( )

Then for any ¢ making sense of the terms of the inequality below, it follows that

H(—A)ﬁw2

. 22 5
S c<||go||Hﬂ<Rd> 021 e, + o ”LW))

where the constant C only depends on d, 8', B, p and HP(RY) is the homogeneous Bessel
potential space.
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Proof By the continuous embedding of the Bessel potential space in the fractional Sobolev-
Slobodeckij space for p € (1, 2], it follows that

p
<C//\¢(X) <p(y)!ddy
I R Jra  |x — y|¢tFP

<e(fofyat b ) S e
R Jjxr—yi<t JRE S p—yi>1 Ix — y|¢tP

A simple computation shows that

H(_A)%

L=Cle|, .

where C depends on d, B and p. To estimate /1, decompose its integrand as the product

[0’ @) = W|" o) —eWIP o) + e ()7

=yl e = yIFP xR

Then a direct application of the Hélder inequality with measure [x — y|~? dx dy and pair
2 2 :
(E, ﬁ) gives

L

() + eI
I < dxd <C / /s
s </R/| e ey ey w0, o |,

which combined with the estimate for I proves the result. O

2.4 Strong Averaging Lemma

The following result is a time-localised version of [14, Theorem 1.3] that is needed for the
Cauchy problem.

Proposition2.14 Fix 0 < T < T, p € (1,00), B = 0, and assume that f €
C([T1 1], L)]C} v) with A’S/zf S L, x.v Satisfies

of4+v-Vif=F, te(,00).
Then, for any r € [0, %], m e N, B_ €0, B), if we define

§ = (I —rp)B-

= Tt E (2.36)

and

F=flam®, F=Flag.m,

then it follows that

sc(|ma-ania—ay -ty

+ H<—a,2>%f

P~
[
L

p
Lt‘x,v

+ | a - anTEa - a2 £

x,v

+ |- ac- i - s TEF|

!xv
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5 ~
a2y + Pl ) @3D

where the constant C only depends ond, B,r,m, p.

Proof Multiplying the transport equation by 17, 1,)(¢) we arrive at

2 A+ F

Wf+v-Vof =(f(T)S8(t —T1) — f(T)8(t — To)) + F +F, 1€ (—00,00).

Write the sources as
A=(- A= Ea-apt(a-ac—a)Fa-anEa),
F= I—=Ar - atz)%(l - Av)%((l — Ay — 8[2)’%(] _ Av)*%]’_:)’

for0 <r <7 € (0,1] and m € N. By [14, Theorem 1.3] and the additive contribution of
the sources one has that

H (A% T

H( DT

= C(Iflp,, + a2 T
Lp WALV 1,x,0

r X tx,v

+ @ a - A - Ea - anEa

P
1,x,v

+ | a - ac-gh A - an iR

)

It remains to estimate the term involving A on

fxu

b_ o[ (=B (AP _ (1-Dp
for s” = min {m+1+ﬂ’ m+1r+/3} = mti+p°
the right. First by [14, Lemma 2.3] we have

[ a—ac—)75a - a)7%a

p
1,x,v

<c H<v>1+m (I-A) 21— 7 (-A ‘

l,\u

By the definition of A, we can explicitly compute
=0T (=207 = A0 FA=Br =) (1= 2075 - a)~% (1)
(= To) (1= A0 72 (1= A% f(T),

where By_, is the Bessel kernel of order 7 — r in R. The asymptotic behaviours of the Bessel
kernel near 0 and oo give

o=l
0=<Brr(t—T) = Cd,?,rw,
o—li=T2|
0=<Brr(t —1) = Cdrrw, reR.

As a consequence, it follows that

[ e =1 (1= A0 2 = A~ E (1) |

L?

1,x,v

< Cazp | )7 (1 = 8072 = A7 £(T)

’

LY,
under the condition ¥ > 1 — L 47 > 0, which together with s* = o N)ﬂ 1mplles the choice
(2.36). Analogous estimate follows at the point t = 7>. O
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The next proposition is an estimate for Q (F, u):

Proposition 2.15 For any F € L! (]Rf,), the quantity Q(F, ) is in LOO(Rg) with the

bound

y+2s

1QF. ) gy < CUIF g, e - (2.38)

Proof The proof follows from a similar line of argument as the proof of Proposition 2.1 in
[4]. First we decompose |v — v, | as

v — )" = @ + D,

where @z is smooth and ®z = 0 near v = v, while ®, = |v — v,|” near v = v,. The main
property of &, is

|Ve®.(8)] < V| € NU{0}, (2.39)

<E>3+V+|01| ’

where 55 is the Fourier transform of ®.. Denote Q., Oz as the corresponding collision
operators such that

O(F, 1) = Qc(F, u) + Qz(F, ).
Then by the trilinear estimate (2.1) in [4], we have

10c(F. )l < CIF Iy, - (2.40)

Hence we are left to bound Q.(F, w). Take an arbitrary h € L' (R3). In the Fourier space,
we have

(Qc(F, ), h)

///S y (m )(CIA%(S*—S_)—ac(é*))f@*)ﬁ(&—E*)Té)déd&*do,
(2.41)

where

Si:%(éilélo), €71 = |€]sin§ with COSQZ%'G‘

Note that £+ is perpendicular to £ ~. By Taylor’s theorem, we have

1
Qe(6x —&7) = Del€s) = =& - V(&) + (/0 (1= )V?P (&, — téf)dl) ET®E).
(2.42)

Similar as in [4], we decompose £~ as

=5 0-Gao))s
¢ g 7)ie )" g 7))
Inserting (2.42) into (2.41), we get
<QC(F1H/)7h>

Mo Gioo) G (o) 6 -7)
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X VO (£ F(EDE — £ER(E) dE . do

- f// b(io) (1 (5 o))§-véc@*)ﬁ‘@*m(s—sgﬁs)dsdgda
soxs . \E] 7)) 2

/(1—r)/// (— o) PEIR(E — £0h(E) (V8c(6 —167) : (67 ©87)
s2xre  \[§]
2 (0O, . n)+ (02 (F. ). h) + (0P (F. . h).

By symmetry < 21)(F s L), h) vanishes. By the property that
()
€]

(o2l <c [[[ 9] [Fe|ime - e i) de de.do

<CIF ||h||L1/ &) if* 72§ — &) d& dé,

SCIFE Ly Inlipy - (2.43)

. §
:2sm2%, cosf = — -0,

(3

we have

To bound <Q£3) (F, ), h>, we first use the property of £~ to get

(0D (F. o). h)|

< [a-nf[[, o(& o) el sl i@ v - ol e

sannunhnLl/ /// IGE — £ [V Be, — 15| eI d d&. do dr

2
<C||F||L1||h||L1////S e el — s |§|>3+V+2d§dc§*do—dt

Make the change of variables
w =& —§, z=6& —1§".

Since b(cos 0) is supported on cosd > 0, we have 6 € [0, 7/2] and

I —
= |det
1—%(1—0

5]
=(1—1/2)*(1 —tsin? %)zf(l—tsm 2) = 1/8.

‘a(w,z)
084, &)

Similarly, by sin % <2 /2 and the fact that £T 1 £~, we have

w—zl= & | ="+ (1 —n&| = [gF] = L2,
which gives

E] < V2w — z].

@ Springer



38 Page220f98 R. Alonso et al.

Applying the change of variables (&, &) — (w, 2) in Q?), we have

2
(0D k.. ) = CIF Iy Ik ||L1/ /// [(w) >>3+(y+>2 dwdzdo dt
< CIF Ny liRlyy-

Combining the estimates for Q(l) £2), (3) and Qg gives the bound in (2.38). m]

Remark 2.16 Tt is clear from the proof of Proposition 2.15 that we can replace i by 1 (v)*
for any £ and obtain that

locF. u < CelIF ), - (2.44)

) HL oR3)

Finally we state some elementary interpolations and the specific form of the Gronwall’s
inequality used frequently in later sections.

Lemma 2.17 Forany a > 0 and k € R, we have
LE®) > Ly 5 R, LI®R) > L 3, R, LE®R) < L 3, ,®).
Lemma 2.18 Letr C1, Cy be two positive constants. Suppose u(t) > 0 satisfies

%uz(r) < Cru(t) + Cou* (1), uli=o = uo.
Then

u? (1) < "V (uf + CF ).
Note that the coefficient in the second term C 12 is independent of C».
Proof First by the Cauchy—Schwarz inequality, we have
%uzm < CI+(1+C)u().

Then by the usual Gronwall’s inequality,

2 A+C)t o1 —e(te A4C)i (2 | 2
I/{([)Se +CIT(:2 Se (u0+Clt).
o
3 Linear Local Theory: A Priori Estimates
We start with the theory for the linear equation
WF +v-ViF =Q(G,F)+eLyF 2 Q(G.F), (t.x,v) € (0,T) x T? x R?,
3.1

where T > 0 is fixed and G is a fixed nonnegative function and we write

G(t,x,v) = pu() + g, x,v) > 0.
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The operator L, is a regularising linear operator defined by
Lo () = = (v)** ¢ — Vy - (0)** Vo)), >0, 3.2)

where @ > 0 will be specified and fixed in the sequel.

The goal of this section is to establish a priori estimates in various L2-based spaces. Hence
we suppose F (¢, x, v) is a sufficiently smooth nonnegative solution to (3.1) and let f (¢, x, v)
be its perturbation around the global Maxwellian, i.e.,

F(t,x,v)=pu) + f( x,v) = 0.
Then for any € € (0, 1], the pair (F, f) satisfies the equation

df+v Vif =€LoF + Q(G, F)
=eLo(u+ f)+0G, n+f), (t,x,0)eO,T)xT> xR (3.3)

3.1 Local in Time L2-Estimates

First we derive a uniform-in-e L2-estimate for Eq. (3.3).

Proposition 3.1 (Bilinear uniform-in-€ estimate) Suppose G =  + g > 0 satisfies that

inf G lly = Do > 0. sup(IG Iy +1G lLigr) < Eo <00 (34)
. 1,x
Suppose s € (0,1) and £ > 8+ y. Let F = u + f be a solution to equation (3.3). Then
d 0 12 Y0 try/2 4|
alwirl, =- (3 ~ Cesuplg ||L1y) [,
+c(1+suplglly ) [wf s ’
¢ xp § L‘%‘FV L%.v
cod2 2 € 2
9 [ s [, aemglore sl
T3 HS ) 2 L2H|]

; (3.5)

12
+C. (e+sgp ||g||Lé+MmLz) Jorr],

xX,v

where &y is a small enough constant satisfying (3.15), yo, co are the positive constants in
Lemma 2.6 and Proposition 2.5 respectively, and by is a constant that only depends on s, y.
All the coefficients cy, Yo, 82, by, Cy are independent of €. Furthermore, for any 0 < T} <
Th <Tand0 < s’ < ﬁ, we have the regularisation

T , 2 T
/ H(I—At)“'/zf dt+/
Ty L)Z(,v T,
B e 2 72 412
sc [T (@1l la-anPrl ) a
1 , 2

T
+C|(1+su 2 / p)3ty s
( up g ”Lé+y+sz2) . | w) /1

+C @ F@) | +C 0 @ | +C (62 +sup g ”i;+y+z.m2) (T, = 1),
(3.6)

2

dr

_ s'/2
(A=A f 2,

2
dr
L,%,u

where the coefficient C is independent of €.
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Proof Multiply (3.3) by (v)2¢ f and integrate in x, v. The regularising term is bounded as

¢ f/ La(u+ f)f ()% dvdx
T3 xR3

— e / f 2 (02 f = V- (0 V1)) f dvda
T3 xR3

be / / La(o)f () dvdx
T3 xR3

€
2
— = — €
2 ”f ”L%-m(TSXR}) /:/T3><R3

2
+Cee | s, +Ceelf iy,

€
2
— = — €
2 ||f||L%+a(T3><]R3) /:/TSX]R3

vee|w s

2
Lx,v

2
(v)+t va‘ dx dv

2
(v)+t va’ dx dv

+Cee | (0)" £

3.7

5
Lx.u

Decompose the integration of the collision term as

/f OG. i+ f)f () dvdx
T3 xR3

_ // 0G, )f () dvdx + /f 0G. 1 f ) dvdx 2 Ty + T,
T3 xR3 T3 xR3
(3.8)

where by the trilinear estimate in Proposition 2.3, we have

T 14
Ty <Ce (sn;p lg ||L;+y+2smz> [ ¢

To bound Ty, we use (2.5) in Lemma 2.6 and (2.12) in Proposition 2.8 and get

(3.9

T < - <J/o — Cesupllg ”Li) [y ¢ [
X

LZ

+A3A3/S2 b(cosO)|v — U*|7G*|f(|v()lz> |f/|<v’)[ ((v’)l — ()¢ cos 2) dix (3.10)

<ﬁf///TRS |f|<> —|f’|<v’>f*2)|f/|(vf>‘f(v*.5)

cos’ 2 sin eb(cos 0)|v — v dim

Lo, <1 +sup |l ||Lé+y> H(v)lf

2
o (Vo - Cosupllg ||Lly) lwere |

L2
31

Here we treat the mild and strong singularities separately. If s € (0, 1/2), then we apply part
(b) of Proposition 2.9 and bound the first term on the right-hand side of (3.11) as

/,///']NXR6><SZ 1) = 1] <”,>l_2> Lf] (U/>£ (V4 - @)

cos? 2 sin Gb(cose)lv — v du’
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ce) Jor
< e( +s1;p||gI|L;+y> (v)

If s € [1/2, 1), then by part (a) of Proposition 2.9 and interpolation, we have

I o 012 0112 10 o

sin %b(cos v — vy du‘

<G (1 +sup llg ”Lw s mL2> H L2H)] )’ f ’ 22

<8 [t s

2
t
e TG (1 +supllgly m) [ 7|,

x My /2
where §; can be chosen arbitrarily small and by = bo(s, y, s1, y1). In fact, one can show that
2s 2s
1 i Y1
s — 5 §—=81Y —V1

by = +2>0.

Since the particular form of by is not needed we omit its derivation. Moreover, since the
choices of s1, y1 only depend on s, ¥, we can view by as a constant that only depends on
s, y. We can now combine both cases and get that for any s € (0, 1),

////Taxmxsz @2 =110 ) 11 - @) cos” §

sin §b(cos ) |v — vy dﬁ‘

oo s ;

2
bo ¢
+Cy <1+s1;p ||g||L;+y+2rm2> Jor s ‘L,%v

Substituting this bound into (3.11) gives

2gs
L: Hy/2

T < — <Vo —Cysupllg ||L11,> H(W””/z
X

2

+ 81 )" f

, (3.12)

+Ces (1 +sup g I ) [t s
X l+y /2

L3 LiH,

where &1 can be taken arbitrarily small. Combining (3.7), (3.9) and (3.12) gives the energy
estimate as

i |

2
- (yo ~ Cesupllg m) [ 2], +ces (1 +suplg ) ) [
X X,V

-l

o o

L2H1

12
+ CK (6 + Sl;p ”g ||L11’,+V+25m1‘2> H (U) f L%,v LZHS/Z '

(3.13)
where all the constants are independent of €.

To complete the basic energy estimate, we include the H*-regularisation. To this end, we
only need to perform the second kind of estimate for 7}, as done in the proof of Proposition
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3.21in [12]. By Proposition 2.5, equation (2.3) in Lemma 2.6 and the same estimates in (3.10)-
(3.12) for Ty, we have

To :/ / 0(G, W) f) ()¢ fdvdx
T JR3
YA ne
+/1r3/R3/R3/§1b(C080)|v_v*|VG*ff (v) ((v) — (v) cos 2) dw
) € _
+/1r3/R3/R3/82 b(cos )| — vul? G ff (V) (v)* (cos ¢ — ) di
col1 bo ¢ %
sy, Ce (1Rl [t 1

2
+C (1 +sup g ”le> H“’)“mf '

bo 14
s+ (1 +sup g ||%) o)

e
< —
=-aw|w'r ], 3w

2
+Co (1 + sup ||g||L1y) [CRstrd (3.14)
X X, v
Choose 41, 82 small enough such that
70 cod2
5HC | L+suplgl | <=, 8 <1, 8§ < —. (3.15)
x v 2 4

Multiplying (3.14) by §, and adding it to (3.13) gives (3.5).
Finally we apply the averaging lemma in Proposition 2.14 to obtain the regularisation in
x. In light of Eq. (3.3), if we invoke Proposition 2.14 with

S_
=y, =2, r=0, p=2, s a
B=s, m r p 26 13)
thenforany0 <71 < T, < T,
2 s'/2 2 T s'/2 2
/T| AN S 2, dr +/T] A A f 2, dr

T
<l ra g +c|w? ra |, + C/T [a=apr], dr

LI 1 2
+CfT [y 1 —a)""0(G, F) HL,%,U dr

1

By the trilinear estimate in Proposition 2.3, it follows that
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[P =206, F) |2 < () 1= A0 (QG. )+ Q. 1) | 12
+e | A - a0 LaF |
<C (1 +1g IILéwanz) Wz, Fl8 Ly, a2 +€CUflLz, +Ce
In this way, we are led to the desired inequality showing the spatial regularisation of f. O
Applying the Gronwall’s inequality to Proposition 3.1, we obtain the following bound:
Corollary 3.2 Suppose G = u + g > 0 satisfies that

inf G iy = Do >0, sup (IG I+ G g ) < Eo < 00,
5 1,x

Let F = pu+ f be asolutionto Eq. (3.3) withs € (0, 1). Assume that the following conditions
hold:

Y0
su 0 < 00, su <8y < —, 8+ y <l <ky—5-—1y.
z,f llg ||Lk0(]R3) t,f llg ”L;(R3) 0 4, Y 0 Y

(3.16)
Let

b
Z(g) =1 +sup gl .
t,x ko
where by is the same exponent as in Proposition 3.1. Then it holds that

[ rw

< CpeCe @)1 <H<‘>z fo

2 2 5 2
+supllgllject +€], tel0,T),
L3 L2, tx Lk

v

(3.17)

and
t 1
€082 ( [ [ )72 = a1 dr)+§ f [ e —an'2r|3, dr
0 X,V 0 X,V

2
sceecm&'”(H«Vfo p +sup||g||izor+ezz), te0,7).
tx 0

X,

Furthermore, if in addition,

¢>3+2a, (3.18)
then for any 0 < 5" < m it holds that
1 , 2 1 , 2
/0 (1= A, /szL,%,‘, dr+/0 (1= A 2f 0
< CTFO (10 foly, +supliglzr +€1). (3.19)

where the exponent 10 is chosen such that 10 > 8 + y.

Proof Applying the additional bounds in (3.16) to (3.5) gives

2 2
_YO0 | pyetrr2
I (A

X,

2 cod2 | g € eta 4|2
e [ = Jwrey

o o

L2 H )
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+Ci (1 +supllg ||’;°m) [

C032 H

2
2, + Cy (6 +sup e I\Loc) H

X,

L%’,v
€

h ” (v)€+a f

L3HS T4

+ (62 +supllg ||2?> ) (3.20)
X 0

< H ye+y/2 g

+Cy (1 +supllg IIL%) H(v)l f

Estimate (3.17) follows directly from applying the Gronwall’s inequality to (3.20). When
integrating in time (3.20) one concludes that

L3H;

c0d2 ‘ 2 € /’ H tta 2
' €% dr + <
[ ﬂ)L2+ 0<w e, S g o
2
< CgE(g)/ dt + CpeCe=@1 (8 +sup llg ||§oo) f+ H(m‘ o ‘
0 L%, 1,x ko L2,

2

< CpeCt=®@1 (”(_>e fo‘ + sup ||g||ioot+ezt).
L, tx ko

This bound together with estimate (3.6), with 77 = 0 and T, = ¢, gives (3.19) for sufficiently
large C > 0 under the condition £ > 3 + 2. O

Our main L®-bound will be based on various LZ-estimates of the level-set functions
defined as follows: for any £ > 0 and K > O define the levels f(z) = f (v)* — K and

4 4 4 €
£O =0 O

(720 (<o

3.2 L2-Estimates for Level Sets

The focus of this subsection is to prove the following natural a priori estimate for the level
sets. It is a building block for the energy functional presented later in the argument.

Proposition 3.3 Suppose G =+ g >0, F = pu+ fands € (0, 1). Suppose in addition
G satisfies that

inf Gl = Do >0, sup (G Iy + G liogr ) < Eo < 0o,
s t,x

Then for any £ > 8 + y,
(a) the (bilinear) collision term satisfies,

/ / Q(G. F)fy), (v)" dvdx
T3 JR3

s—mO—Cwmmm)Mﬁ\
X

I VY

L2L2

LZHX
2

+QC+%MMU-H@MMHHMJH

+C1+K) (1+Sl;p||g||L1 )H ® H (3.21)

Liry’

where 84 satisfies the bound in (3.29).
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(b) The regularising term satisfies

/ / Lo(F) fy, (v)" dvdx
T’i

o, 2

v,

+ Cooa(14K) Hf“) H o G2

-2 H Tlr2m) ez,

Proof (a) As in the proof of Proposition 3.1, we make two estimates of the Q-term: one
with H®-norm in v and one without. To derive the one without the H®-norm, make the
decomposition

f / 0G. F) Y, dvdx—/ / G f——)f“) ()¢ dvdx
T% R%
/%ngg <L 1(([)+()[dvdx

/ / 0G0 fO, ) dvdy 2T+ T+ T3,
(3.23)

By the definition of Q and the positivity of G, the first term 77 satisfies

I = ///Aszﬁxgz f= —) (f(ﬁ) ( ) f(E) (v >z) b(cosO)|v — vy |” At
5//// G fx (6) L(f(m e > f(w >b(C059)|U—v*|Vd/,L
T3 xR6xS? ( )

(3.24)

Continuing from here, the part of the integrand involving f 1((5) . satisfies

% (f“> O @) s’ § = (7))

+Wf“) £ @) () = >fcos‘~’§)

((f“) W) cos § — (£, )) KL @) () - @ eos' 5).

By the regular change of variables, (2.12) in Proposmon 2.8 and Proposition 2.9, we bound
T as

T, < 7//// ( f(‘” (v )) cos2t (f“) ) )b(cose)lv — |7 di
T3 xR6 xS?
£
[
T3 xROxS?

< (1 ~Csupllg ||Lny> Hf,i)
X

+ 22
Ly

f(e)( )(( > — (v)*cos’ 2)b(cos€)|v—v*|7dp,

2 2

e (1estenyy ) |0,

L
f()

1212

0)
+C (1 + s;lp llg ||L;+V+ZSQL2> ka. 2

v/2
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2

o0

© |?
<y (1-Csuplglly HfK,+ ‘
X

L2 Li n L3HS ),

2

+Cos, <1+sup||g||Lz +supllg I )Hf“)\ , (3.25)
x v X 34y+2s

where b is the same exponent as in Proposition 3.1 and §3 > 0 can be arbitrarily small. In
the estimate above we have combined the mild and strong singularities. Next we estimate 75.
Writing out Q, we get

n=k //// * (f(a H(v > f(z) ()Z)b(cose)w_v*p/dﬁ
T3 xROxS? U
:K//// G. (£, ) = £, @) bleosO)lv - v.1” At
T3 xROxS2
(Z) ne )
+K///A3XR6X82 i+ )ﬁ (( > — (v)" cos 2>b(cose)|v_v*|ydﬂ
_K//// Gyf (15) (v’)( — cos 2)b(cos6)|u_v*|ydu
T3 xR6 xS2

Applying the regular change of variables to the first term, then (2.12) in Proposition 2.8 and
part (c) in Proposition 2.9 with F = 1 to the second term and a direct estimate to the third
term, we get

13 13
1< CK (1 +supllg ||L;) l50,] ,  +cx (1 +supllg ||%) |7,
X X

Lz} HL;L;

<K <1+sup gl )Hf“) H
X +v

Liey’

Applying similar estimates and Remark 2.16 to 73, we have

T35// Q( )f(l) dvdx
////rrszf,st * <<)> << /)Z _ <U>@ cos 7) b(cosO)|v — v |” dix
0
- /Af//ﬂngﬁxsz G*fK,+(U )M( — Cos 2>b(COS9)|v — v, |V d

)
< ¢ (1 +suplg ||%) 73 ”Llu . (3.26)

Combining all the estimates, we obtain the first bound for the right-hand side as

/ f 0(G. F)fy, (v)" dvdx

2 2
(€) ()
< <1—cS1;p ||g||L1V) F Y VN
2
bo ()
Cean (1 |1 L,
+ L&(<+%pMH4W+S?HMQaV )
)
+Ce(1 4+ K) <1 +sup g ||%) 1]y (3.27)
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Next we derive the second bound with the H*-norm. To this end, we use Proposition 2.5, part
(a) in Lemma 2.6, inequality (3.24) and similar bounds in the proof of (3.25) to re-estimate
T, as

n=]] Gty (FO 0N = 1 ) bleosO)lv — v.l? dE
T3 xR6 x S2
////IF3><R6><S2 * (l) f(e) (v )—) (< >£ . (v)ﬁ cos 7) b(cosO)|v — v |” diw
//// G+« (l) f(f) (v )( — cos 2)b(cose)h) — vV di
T3 xR0 xS?

2 2
(f) bo (5)
< —-— +Ce{1+su + su H
>\ Vi, + € ( pllglyy, +swpligly )
+Cy (1 +suplg I ) H o (3.28)
. v L3,

Multiply (3.28) by a small enough 44, choose &3 small enough and add it to (3.27). This gives
the desired bound in part (a). The specific requirements for 63, 84 are

cod4

1
Co(1+supligly )8s < zco, 83 < 22 (3.29)
X 4 8 4

(b) To estimate the contribution of the e-regularising term to the energy estimate of the level
set, denote

Tk =f/ (LaF) fiy ()" dvdx

T3 xR

= // — (v ) f(li) (( >2a -V, (<v>2a Vv)) Fdvdx.
T3 xR3

Decomposing F gives
Tg = // ( ) f(f) (( ) -V, - (<v>2a Vv))/»bdv dx
T3 xR3

+// f(Z) ()% =V, - (v) v)) dv dx

']I‘3><]R3 w )

O (W~ Y, - (¥, < _L)
+//1rsst £, () @ v) (-

dvdx 2 Th+ T2 + T3, (3.30)
Then TI% is directly bounded as

{4
f()

1
TR =< Cé,a

x,u

Carrying out the computation of differentiation, we get

< K// (K) to <v>2(x72 ( >2(x) dv dx < CZO{ K H (K)
'Jl‘3><R3

where we have applied the positivity of fi" ) and the bound Co.a ()22 — ()2 <
C 2 o 1jv<v, for some constant Vp large enough
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To estimate T,%, we break it into two parts:

K
TR—/?/T%(RS( I(<@)+ ((v)Za_Vv.« ) )<f—<>>) dv da
K
:_/[EBXRz (v)l Ig)—t—( ) (f_T) dvdx
([) 2ot _i A 3.1 3,2
+//mv er ( () w)(f o )) dudx & 731 4 73

2
ThenTlg’lz—H() £, ‘

2 Integrating by parts, we have

B //T%dk* Y ( f(l) ) ( >2a V) (f - %)) dvdx
_// (v)2 VU( ) £ ) ( fic. ) dvdx
T3 xR3 (v)

3,2
TR

2 2
<= v |, +cefwe
Hence,
2 2
¢ z
1= [ Jor
Altogether we have
L PRl A MR VA
k=772 Ticr L§H1 2, b ’
which concludes the proof of part (b). O

To show that [ f1{v Y® < K in the later part, we will need to bound not only the level set

function fK but also the one for (— f )(z) since the former only gives f (v Y < K. Given
the hnearlty of the Boltzmann operator Q(G F) in F, it is not surprising that estimate for

—-f );? .. follows a similar line as that for fK’ - The equation for h = —f is
Oh+v-Vih=—-0(G, u—h) —€Lo(u—"h),  hli=o=—folx,v). (3.3
Proposition 3.4 Let h = — f. Suppose
G=pu+g>0, F=pu+f=pn—n,

inf Gl = Do >0, sup (G I3+ G liogr ) < Eo < 0o,
s 1,x

Then for any s € (0,1) and € > 8+ vy,
(a) The bilinear collision term satisfies
- f 0(G. Pk, (v)" dvdx
T3

_cody H (@) 2

L2L2

© |
<-w(1-Csupligll. th( ’ L2HS ),
X
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+Co(1+supligl Hh(“ ’2
¢ xp 8 Ll+y

’

C(1+K)(1 ’h(“ ‘
+ Ce(1 + )( +s;1p||g||Lé+y> =

where 84 is the same constant in (3.29).
(b) For the regularising term it holds that

//La(F)h(Z)Jr(v)Z dvdx
T3 ’

2
)
__§H<U> hKJr‘LZHl
2
er Hh“’ ] a4 K) Hh“) H1 .

Proof (a) Make a similar decomposition as in (3.23):

/Tz . 0(G. Pk, (v)* dvdx

:/w/ 0 G,h—%)h‘,ﬁ?Jr(v)f dvdx

R‘&
fw/R} G K h(“ ()¢ dvdx

/ / 0 (G, M)h“) W) dvdx 27y + o+ 5. (3.32)

Since Ji, J> have the same forms as 77, 7> in (3.23), by taking 64 with a bound in (3.29), we
get

o],

LzHS

Jl+12§—)/0< CSUP||<§.’||L1>HhKﬂL‘LzL2

2
(L) )
+C (1 +sup g ||L}+y> N HL%,U +CK (1 +sup g ”Li+y) N HL,LL; .

Decomposing J3 similarly as 73 in (3.26) and applying Proposition 2.15, inequality (2.12)
in Proposition 2.8, we have

//Q(G —whY, ()t dvdx

S/ﬂ,} A-@ 0 G, —M (U)Z) h([?ervdx
(=) ()¢ 7, e
+//f/1rsxR6st G*h<2)+( N—" o) ((v) — (v)¢cos 2)b(cos@)|v—v*|ydu
* ////}I‘3XR6XS2 G*h%?-i-(vl)u (U>Z ( — COS8 *) b(COSQ)h} — v*|y d//L

©
< ¢, <1 +sup g ||%> |

where note that inequality (2.12) in Proposition 2.8 does not require positivity of the functions
in the integrand. Estimate in part (a) is a combination of the bounds for Jy, J>, J3.

’

LiL]
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(b) Decompose the integral in part (c) in a similar way as in (3.30):

/TS /RSL (F)hY, (v)* dvdx

=[], (@ (@2 = 9 @ v ) dva
T3XR3
// ( R (0% = V- ()% V) K )dvdx
T3 xR3 (v)t
h(l) 2a_vv. Zavv (/’l—£>>dd
//m< + () (W) (=57 ) ) dvdx

It is then clear that estimates for the three terms above are similar to those for Tlé, TI% and
T1§ in Proposition 3.3, since they rely on the absolute values of the terms. Hence we obtain
a similar bound. ]

3.3 A Level Sets Estimate for the L'-Norm of the Collisional Operator

In this part we estimate an L!'-norm related to Q(G, F), which provides the basis for a later
application of the averaging lemma. By subtracting K from f (v)‘ and multiplying Eq. (3.1)

by f, 1((€)+, we obtain that

(D + 0 Ve(fPDF =20 F) (0 P, (txv) € (0,00) x TP x R
(3.33)

When applying the averaging lemma to the level sets in the next section, it will be important

to estimate

],EZO, k>0, T>0.

o) (1= A) (G, F) W) 1,)]dvdxdr,

One key observation is that the dominant part of the integrand above is its positive part.
Lemma 3.5 Let (F, f) be a pair satisfying the linearized Boltzmann equation (3.1). Then,
forany j,£ >0,k >0, K >0and0 <T; < T, <T, it follows that
T

V(1= A2 (Q(G F) () f“’) ,-,v)‘ dx dr

T,

z/ W) (1= A) (DT, - v) dx

+2/ / ~ AT (OGL F) (0)° ) ,~,v)]+dxdz, Vv e R,
T JT3

where [-1* denotes the positive part of the term.

Proof First we fix v € R3 and integrate (3.33) in (¢, x) to obtain that

/3( IO DT x, v)dx—/ (f& D% (Ti x, v) dx
T

/ / 0(G., F)(t,x,v) (v)" f¢ (t.x,v)dxdr, (3.34)
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for any v € R3.
An application of the Bessel potential in velocity to (3.34) then leads us to

05/ W) (1 = A (LT, -, v) dx
T3
- f W) (1= A)2(FL)0, - v) dx

+2/ / ) (1= A)THOG. F) 0)° f)) () dxdr,  YueR
Ty
(3.35)

Hence, if we denote
G = (1-A)" (0. F) " 1))

and G_ and G, as its negative and positive parts respectively, then for any v € R3,

T
f ' G_(t,x,v) dxdr < %/ (W) (1= A) ™))% (0, x, v) dx
T T3 T3

T
+/ / Gy(t,x,v) dxdr.
7, JT3

I (1= Ay~ “/2(Q(G F) () f“)) ~,v)’ dx dr

We thereby conclude that

o Ll
1
=/ / Gy, v)dxdt—i—f / G_(-,-,v)ydxds
T, T3 T, T3

T
%/ W) (1= A (FP )2(T1,~,v)dx+2/ /g+(""”)dm
T3 0 T3

IA

7/ (W) (1= A) (DT, - v) dx

+2f / ) (1= A)2(0G. F) ()" £, ,.,v)rdxdz, VueR3,
7 JT3

which proves the lemma. O
The counterpart for A = — f states
Lemma 3.6 Let h be a solution to the equation
dh+v-Veh=0(G, —p+h) +eLo(—p+h) = O(G, —p +h).
Then, forany0 <T) <Tp, < T, j,£ >0,k >0, K >0, it follows that

o Ll

< %f W) (1= A)Th) )0, -, v) dx

o (1= A2 (B(G. —p+ ) ) B ) v dxdr

T2 y +
+2/ / Y (1= A)T(O(G, —p + h) (v)* h(K?Jr)(-,-,v)] dx dr,
T
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Vo e R},
where [-]* denotes the positive part of the term.
The remainder of this subsection focuses on proving the following theorem:

Proposition 3.7 Suppose G =+ g > 0and F = p + f satisfy equation (3.1). Then, for
any

[T, 121 [0, T), s€(0,1), e€[0,1], j=0, £>8+y, «>2, K>0,
it holds that

Jo L L

= CIW2 AT, +Ce (1+sup||g||L;+y)Hf}f)+
xX,v f.x

T = A)T(0G, F) ) )‘ dvdx dt

2
2

2 2
+C|(1+su H ([) +C(1+ su H (l)
( t,)? le ”L1+ +2s ﬂLz) L7 HS p le ”L}“* Ll

txty 2

oo, (3.36)

+CU+K) (1+SUPH8||L1 )H O,
1.x

where C, Cy are independent of € and Ty, T. Identical estimate holds for Q(G, —u+h)
with f 124)4_ replaced by h%) n

Proof First note that for any « > 0,

» 2
A@ A}( 1—=Ay)"~ K/2(f(13) ) (Ty,x,v)dxdv < C H(U>J/2 fl((e,)-',-(Tl’ .,‘)‘ ,

2
Lx,v

which explains the first term in the right side of (3.36). Thus, using Lemma 3.5 we have that
forj >0,£>0,x >0,

Ll
/ // V(11— A )"/2(Q(G F) (v f“))rdvdxdz
7 JT3 JR3

f / / (1= Ay~ "/Z(Q(G F) ()" fy )IAKdvdxdt
T, JT3 JR3

—2/ f f O(G. F) () f(1— A, ((v)leK> dvdx dr,
T

where Ak is the set given by

W) (1= 872 (06, F) 0" 7, )] avardr — 1 ) 70 (1 )12,

I /\

Ak = {(t,x.0) € (T1. T) x T> x R¥ [ (1 = A)T/2(Q(G. F) (v)* f,) = 0}.
(3.37)

Using that O(G, F) = Q(G, F) + € L (F), we have

o Ll

<2/ / QG F) ()" £, (1= A ™((v)/ 1a,) dvdx dr
Ty T3 JR3

W) (1= A P(OG, F) 0 £ dvdrdr = C L2 10 1,012,
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+2efTT2 /TS/ La(F) ()¢ £, (1= A) ™/ ((v)/ 14,) dvdxdr.
!
Denote in the following
Wi = (1= A0 () 14, ) 2 0. (3.38)
Then, for k > 2 it holds for all derivatives up to second order that
|Wk )]+ |ViWk )| + |VZ Wk )| < C(v) . i k=1,2,3, (3.39)
with C independent of K. In fact, noting that the k" Bessel kernel B, (w) in dimension d

satisfies

lwl*=4(1+o(1)), if 0 <k <d,
0 < Be(w) = Cau { log (1 +0(1)), if € =d, as |w| — 0,
(1+o0(1)), if K >d,
and

ol

_
0= Be(w) = Cd,KW

(1+o0(1)), as |w| — oo, (see, [13, (4.2), (4.3))),

we have

) Wk )] < (v)™/ (/{M(” Be(w) (v — w)/ dw + /{W” Be(w) (v)/ (w) dw) <C.
Since the inequality |V; B, (w)|7 < C'(Be(w) + Bye—1(w)) holzls (see [13, (4.5)]), we have the

estimate of the first-order derivative. The estimate of second order is also obvious because
similar inequality holds (see (4.4), (4.1) and (3.7) of [13]). In this way, we are led to estimate

Jo L L

= CI @2 f (T

T = A)T(OG. F) (v)° £y )‘ dv dx dr

<2/ / Q(G. F) (v)' £, Wk dvdx dr
7 JT3 JR3

+2e/ / / Lo(F) ()° £, Wi dvdxdr
T R3

T
2 de+e/ T dr. (3.40)
7 T

1

We will estimate the main term Q and the regularising linear term T,}" separately. The proofs
align with those for Proposition 3.3. We start with Q and write it as

/ f 0(G, F) (v)* f“’ Wk dv dx
']1'3 ]R3

=/TB/R3Q G, f— ) )0, Wi dvdx
/ / v)! £, Wk dvdx
T3 JR3

/ / 0 (G, 1 f(‘” Wk dvdx 2 T/ + T, + T3 (3.41)
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Then by the definition of Q and the positivity of G, the first term TlJr satisfies

////ﬁr?x[@éxsz ;= 7) (f(z) YWk @) (v ) f(g) z)

b(cos0)|v — v |” dr

@ |1 ) (g) ,
Sf//[E3xR6xs2G* W(f (U)WK(U)< > fx & ())
b(cos)|v — v,|¥ dpz. (3.42)

By Cauchy—Schwarz, the part of the integrand involving f ,(f)Jr satisfies

f“)w (A2 W) () = 10 Wi w))

1
—< ; (f“) W £, 0OWr @) @) cos’ § — (1) )" WK)

(v) f(z) (v)f]({e)Jr(v YW (V) (< > (v)¢ cos® %)

<3 ((f(z) (v/)) W (v) cos? (f(l) ) >

1 2
+ Wf“) W, (v)Wm)(( ) = ) eos’ §) + 3 (£ @) (Wi = Wi).

Write the upper bound of T1+ correspondingly as
+ + + +
I =T, +T,+T;. (3.43)

Similar as in the estimates of 77 in (3.25), the bounds for Tlfl and Tlfz follow from the regular
change of variables, bound (2.12) in Proposition 2.8 together with Proposition 2.9:

505 [ (G0 w12 )

x b(cosO)|v — vi|¥ du

//// f([) (v ) YWk () (<v/>€ _ (U)Z cos? 9)
T3 xR6 xS? © ) K 2

x b(cosO)|v — vi|¥ diw

2
<1 (1 —Csuplg ||Luy) | 7wk
X

L212%,

v/2

(Z)
+C (1+s1;p IlgllLl1+y> Hf Hf 12,
<z> <K>
+C (1 + sup llglzy, ,n ) H L2 T+ 212
xHy/2
Inserting the bound of W in (3.39), we get
. © o
T+ T <G (1  sup gz, ) H 12, 1212
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c(1 o
+ + sup llg ”Ll 4asNL2 120
x Ty /2
+C(1+supligly ) H © ‘2
¥ L3yy oL 27, /2-

Note that in the estimate above we have combined the cases of the mild and strong singular-
ities.
The bound of T1f3 is derived by using Proposition 2.10, which gives

ey
T3 x RO x §?

x( sup  |[VWx@)|+ sup |V2WK(u)|)|v—v*|2+y

[ul=lv|+]vs] [ul<lv]+[v|

: C//// G* (e) (v)) (v)/ ((v)j+2+" + (v*)j+2+?’) dm
T3 xROxS?

2
<C(1+sup||g||L1>H ® +C<1—|—sup||g||L1_ )” 2 ‘
X i+

2L;er/ZJrl L2L2
(3.44)
Combining the estimates for 77", T}, Tj'3, we have
T < co(1+swlglyy \V@\z +C (14 sup g 7,
1 =t XP 8Lt PlgNLL 0L 1,
2
+C (1 +supliglly ) ” S I (3.45)
x J+ Lij+y/2+l

The estimates for T2+ and T;r is similar to those for 7> and T3 in Proposition 3.3. In
fact comparing the forms of T2+, T3+ with T3, T3 defined in (3.23), one can see that the only

difference is that f I(f, ) 4 in T2, T3 is now replaced by f I(f, ) + Wk. Since no particular structure
of fr 'y (9 is used in the bounds of T» and T3, we simply replace f 1(<£ )+ in those bounds by
fx (K) WK and obtain

{4
Tt + 15 _/w/Rz (L ) f Wi dv dx

[ ] 0G0 Wi dvas
T3 JR3

5ca+m(uwwmhl)H®Hll
x Lyljyy

The bound of Q is the combination of the bounds of T1+, T2+, T3+, which writes

o=c(1+swlgiy )| [
= S Lisy L2
+c(1+suplell, Hf“’ ‘2
xp § L3+7+230L2 K.+ LfH;/z
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+C<1+sup||g||L|v )H ® ]
X j+

+C+K) (1 +suplg ) H ©
X

2

2
LYL]+;//2+1

(3.46)

171
Ly L.f+V

Next we estimate T,'{ defined in (3.40). The estimate follows the same line as the one for
Tr in part (b) of Proposition 3.3. We start with a similar decomposition as in (3.30):

i = [ (= @ AW (0P = 9, 0 V) 1) dwas
']I‘3><]R3

(Z) 2a o K
//szRz< K+WK((U) = Vy - ({(v) V))( 7 )dvdx

f/ < ) Wi (0% =V, - (02 V) <f - L)) dv dx
T3 xR3 ( )

+
2 Tgy+ TR,2 + TR’3. (3.47)
It is then clear that the first two terms are bounded similarly as T,% and TI% which results in

T+ T <Ca+K |0 -
x=j

The third term T,'; 5 needs more careful estimates due to the presence of W . Via integration
by parts once, we have

T,;f3=_// Za(f“)) Wi dx dv
’ T3 xR3

_//Tsst W (@ i W) -9 <<> fw))‘”d”
S

2
= //3 @ Wi [Vofi, | drdv — Rem, (3.48)
T xR '

where the remainder Rem has five pieces

Rem = /A3XR3< )2 (f“) ) v, ()t v, ((v)*‘) dvdx

f(f)
[ o we v v dray

T3 xR3 (v

+// ()2 W fw) v fw) ( )4) dx dv
T3 xRR3

" /./1r3xR3 wi (f(e) ) VoW - Vo ((Urz) drdv

5
1 2a ) A
- v( )vwaa: Rem ;.
5 [ 0w (50) vk drao > ke

It is clear that Rem |, Rem,, Rem3 are directly bounded as

|Rem| + |Remy| + |Rems)|
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1 2
o // )22 Wy (f“) ) dxdv+f// 2w ‘va,(f)Jr‘ dx dv
T3 xR3 8 JJT3xR3 )

IA

1 () ‘ @ |? H ) ‘2
< — \Y% . (34
<5 [ e w (70) + [t ) avavs e £, s, G4
By integrating by parts, Rem4 satisfies
— (K) -t
|Rema| = Wk Vy - | (02 () (fe) Vo)) dxdv
T3 xR3
<Cy // ()2 Wk (f([) ) dx dv
T3 xR3
+C4// 2 Wi | £ [90 £, | v
T3 xIR3
1 ) ‘ @ |? H () ’2
< - \Y%
=3 /A3XR3< ((f ) ofk 4| ) dxdv+Ce | fg 22,
(3.50)

The last term Rems needs more careful treatment. Integrating by parts, we have

—Rems = [/ I(<Z)+ VU ()2 . v, Wk dx dv
'IF3><]R3

(3]
+5//was<> (f ) Ay Wk dx dv. (3.51)

The main observation here is for any x > 2,
(= AWk = (= A)' " () 14, ) 2 0,

where the pointwise positivity is a consequence of the positivity of the Bessel potential.
Hence for pointwise 7, x, v we have

AyWg < Wg.

Applying such relation in the second term of (3.51), we obtain that

1 y2a (O 1 ©
— AyWg dxdv < = Wk dx d
2//]1’3sz (f ) v v_Z//T%dR% (f ) e

which is aleading order-term in moments. However, it is dominated by the dissipation because
it has a smaller coefficient % Using integration by parts, the first term in (3.51) satisfies

/f “Lr vv ()2 .V, Wg dx dv
T3 x ]R3

/fﬂ*? R3 (4) (Z) (vv (v ) ) Wk dx dv
2 ./j/']]‘} R3 I(f)Jr (Av <U>2a) Wk dx dv.

These terms can be controlled similarly to the Rem| and Rem as they are lower-order in
moments. Thus,

‘ //3 % }fﬁr "V, (02 V, Wi dx do
T2 xR-
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< [ e ((2) "+ [moil) avavre [ |

The conclusion is that

R <1 (Z) 2 20{W d d
—Rems < 5 s fx+) W) x dxdv

1 2
+ f// (v) ((f“) ) + |V, ) dxdv+Ce| £,
8 T3 xR3

2

L2 L§ 5

g,
(3.52)
Now combining the estimates for Rem, ..., Rems with the dissipation terms in (3.48), we
have
1
T,'{gf—f// (f“’) Wy dx dv
8 sl sz
5 ) )
-2 v ’ dxdv+Ce | £
sféwRJ” k[Roril] axav e i,
Together with the bounds for T[;, | and T[{ 5» We obtain that
+ (i) 0
Ty =C H L2L2/ +CA+K) H HL'LI. ’ (3.53)
X X J
which, when combined with Q, can be absorbed into the upper bound for Q in (3.46).
For h = — f, all the previous estimates follow identically except T3+, for which we apply a
similar estimate for J3 in the proof of Proposition 3.4 instead of 73 in Proposition 3.3. Then
the same bound follows. O

3.4 Time-Space-Velocity Energy Functional

In this subsection we complete the L2-energy estimate for the level-set function by adding
the regularisation in the spatial variable. To such end we introduce the energy functional for

s”€(0,5) C(0,1),£>0,p>1,
L

a—mﬁ@”)

Ey(K, T, Tr) ;= sup (K)

te[T1,12]

1 L
+ R
Co ./Tl

The constant Cy does not play any essential role and the parameters s” > 0, p > 1 will be
suitably chosen as the discussion progresses. We start with imposing one condition on p: let
r(1) and r(p) be the exponents given in Lemma 2.12 such that

2
yRrO | axae
H;

p g
dr ) . (3.54)
LY,

/

r(1) =7(s,s"”,1,3) > 2, r(p) =7(s,s", p,3)>r() > 2. (3.55)
We require that p satisfies the condition

r(p) r(l) =2
2p r(p) —

> 1. (3.56)
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Such p exists, since by the continuity of r(-),

r(z)r(l) —2 r(1)
AN S A A

>1 asz— 1.
2z r(z) —2 2

Hence a sufficient condition for (3.58) to hold is by letting p be close enough to 1. Since

such closeness is needed for later parts, we simply enforce it here: let p? € (1, 2) be fixed
and close enough to 1 such that

r(p)r() -2

min —_—

(pf1 2p r(p) =2

> 1, (3.57)

and in what follows we restrict to
1 <p<p” (3.58)

The reason for imposing (3.58) or (3.56) will be clear in the proof of the following key
interpolation lemma:

Lemma 3.8 (Energy functional interpolation) Let the parameters Ty, T», s, s”, £, n be given
such that

0<T1<Th<T, 0<s"<se(0,1), £>0, n>0.

Let £ be large enough with the specification in (3.72) (£o depends on n but is independent
of £). Suppose

sup | () £, <.

Let p > 1 be fixed and satisfying (3.58) and let £,(K, Ty, T7) be the energy functional
defined in (3.54). Then there exists a constant q, which is independent of p and satisfies
1 < g < @ such that the following holds: for any 1 < q < g, we can find a pair of

parameters (ry, &) with the properties
Te > qy >q > 1, & > 2q. > 2q > 2, (3.59)
such that forany0 < M < K and0<T) <T, <T,

o (s

where C only depends on (Cy,s,s”, q, p). The parameters q, ry, & are defined in (3.65),
(3.73) and (3.67) and they only depend on (s, s”). In particular, all of these parameters are
independent of K, M, T\, T> and f.

_CEM, Ty, T)T

— Ex—2q ’
L4((T},T») xT3 xR3) (K —M) «

(3.60)

Proof Recall the definitions of r(1), r(p) in (3.55). For any (0, &, q) satisfying the relation
l1<0<2<2¢g<é&<r(l) <r(p), (3.61)
which is depicted in Fig. 2, we define g € (0, 1) by

1=, 8 e, (3.62)

3 6 r(p)’

Note that for a given pair of (6, p), the parameters 8 and £ are in one-to-one correspondence.
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1 0. 622q 2. ¢ r(1) r(p) @)
T dose T dose

Fig.2 Choice of parameters

We observe that for any p satisfying (3.58), by the definition of S, it holds that
BE _BE _r(p) &6 _r(p) £-6
2p 2 2 r(p)—60- 2 r(h-2
and by (3.56),
B _BE _rp) -6 r(p)r()=2
2 2p 2pr(p-—90 2p r(p) =2

The limits above are uniform in p as long as p satisfies (3.58). By continuity, there exist
G+, 0% such that if

— 0 as(0,&) — (2,2), (3.63)

>1 as,&) — (2, r(1)). (3.64)

l<qg<gqgi<r()/2 and 06, <0 <2, (3.65)
then for (B, &) satisfying (3.62), we have

ﬁ<1 as & — 2gy and & > 2q,,

and
%>p>1 as & — r(l).

As an example, we can choose

11’(1)—2! 6, > 2 lr(l)—
2 r(ph) 2 r(pH

ge=1+ (3.66)

Such a choice guarantees that

r(p*) 2q. — b,
2 r(h)—2

Itis then clear that the choices of g, 6, only depend on pﬁ, s, s”. By (3.63), if & is sufficiently
close to 2¢., then f£€/2 < 1. As a result, for any ¢ € (0, 1), there exists £,(¢) paired with
B+«(¢) such that

fﬂ*@f*@ +(1_§)ﬂ*(§)$*(§) L (.67)
The notations £,(¢), B«(¢) are simply emphasizing the dependence of &, B on ¢ instead of
indicating they are functions of ¢.
With the preparations above, we now fix (g, 0) satisfying (3.65) and let¢ = a(s, s”, p, 3),
where & (s, s”, p, 3) is the parameter in Lemma 2.12. Next we fix a pair of parameters &, B
satisfying (Bx, &) = (B«(2), £«()), such that (3.62) holds and

ﬁ*é‘* - g)ﬂ*é* . .68
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With these parameters chosen we carry out various interpolations. First,

q e 29
e, = o
L?,x,v T, u
1 £ 50
== KM ), ()& fu L& dr
1 n w0 o0 [A=BOE oy Bk
=< W /Tl H(v) 0 fA,LJr ‘Lg,v V) Mt | o dr,
(3.69)

whereag = 5 (5& + 2,B*>.Application of Lemma2.12with %, n, n/, m) = (r(p), s, s”, p)
and Lemma 2.2 to (3.69) gives

n (1—B)éx Bty
© ©
/;1 H(v)ao fM,+ " M+ L dr
n (1= ) Bty
sc [, oot (072 i) [
T
1-¢
Tﬁ*é’f*
x || ()~ (1—A)z(“>)2 dr
L
1-¢
T (1—BEx CBes 2|72 Bebs
4 14 L 14
sC/ [ 72, [ st | - a7 (£5) dr,
T[ XU v
(3.70)

where C = C(s, s”, p). By (3.68) and the Holder’s inequality, the integral term in (3.70) is
controlled by

{4
(sop e s |

T 2
(-0 |

< (s o 2,
t

EBxéx

(1=PBs)&x ) ([) 2 2
Lﬁ v T, ( Av) 2 f ’ v ar
p Q;I,ﬁ*é*
dr)
LYy

(I=B)kx Lp.e
Ep(M, Ty Ty %" 5 (M, Ty, Tp) 7 Febe,

Interpolating the LY ,-norm with

1 1 _ / /
) = 1'3 + E B € (0,1), (3.71)
it follows that
(1—Bo)Ex ag (1=BN(1—B)&x
© —g7 £ @) 1B (=B)éx
Jore i 3, = o™ i 1722

X,

—B"Y(1— ’ Ex
< OB g g 7 7y BB
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by taking
=1 ioﬂ,. (3.72)
Overall, we have
[ e s, [ " oo 0 ar = cet g on
T
with
—pa-poT+ BBy e,

2

We can make B’ arbitrarily close to 1 by taking 6, in (3.65) close enough to 2. This way we
have

r*=(1—(1—/3’)(1—,3*))%* > gy > 1, (3.73)
hence the desired bound in (3.60). ]

Remark 3.9 The parameters (0, ¢x, s, &+, Bx,» B7) in Lemma 3.8 can be made explicit. Here
we give an example of these parameters such that Lemma 3.8 holds. First we fix p? which
satisfies (3.57) and let

1r(1) =2
2 r(p%h

Note that for each 6 € (1, 2), equations (3.62) and (3.68) provide a system that uniquely
determines (£, B) in terms of 6. We recall the system below

1 _1-p B tﬂé e BE
+ R

p=r" q=

£ 0 roph
where ¢ = @(s, s”, p?, 3). For a fixed 6, we can solve and obtain
r(p?) —0 1

# —ct

and 22 41 =1, (3.74)

£=£0) =

+0, B=p0)= - €0, 1). (3.75)

+W

e | =

[sd
2

The condition for & comes from the combination of (3.71) and (3.73). At this moment we
only need ¢ € (1, r(1)/2). Hence we require

1 1 _ / /
5= lﬂ + é and (1 —(1—p8)01 —,B))% > . (3.76)
Solving (8, B’)-system above, we obtain the condition on 0 as
2
0<2-0<2— ————. 3.77)
572 *
U+

The existence issue is equivalent to whether there exists 8 € (1, 2) such that (3.75) and (3.77)
hold simultaneously. In order to check this, we note that by (3.75), forany 6 € (1, 2), it holds
that

r(ph) =6 r(ph) =2
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In particular, it holds that

r(p*) —2
r(p?)

Hence the right-hand side of (3.77) satisfies

lim (£(0) —2q.) = 2+2 —2gy =12¢, >0, c,€(0,1). (3.78)

, 2 , 2 2 4e,
lim (2 ——— )= lm(2- ————)>2-——— = =i ¢ € (0,2),
e = 92 1+E-2) 1+2c, 1+ 2c,

=8
(3.79)

while the middle term clearly satisfies limg_,2(2 — 6) = 0. This shows there is a range of 6
values that satisfy all the desired properties. For a particular example we first introduce two
parameters

1 ct=2 1
cﬁ:7>2, o’ = min

1
th H-mp) @
where ¢, is defined in (3.78). Then use the parameter ¢, defined in (3.79) and let
0, =2 —afey € (1,2).
By (3.75) we can solve and obtain

V(Pﬁ) -0 g r(Pn) -2- aﬁc**)
=7 7 0 =
rph ¢ * r(p*)

Now we check that (3.77) holds: by the definition of o, we have

(2 —afe).

oo r(pf) — @ —dfend 4 alen, = rrH =2 <1 - L) o cpn
) r(ph) r(p%)

. 1 4 " 1 2
=c*c‘—ozti 1-— - s = 2c4 c——an 1-— P ——
r(p?) ) 14 2c, 2 r(ph) ) 14 2c,

ot ct—2
>2ci | — — = 2¢.

2 2

Hence, repeating the previous estimate, we have

2 >2 2 >2 2 1 2-9
- — — = Cyx > A7 Cyq = 2 — Oy,
1482 77 14E-D T I+ T ** :

that is, inequality (3.77) holds. With such (0, &), we obtain 8, B/, r. via formulas (3.74),
(3.76), and (3.73).

Remark 3.10 We also make a comment regarding £( in Lemma 3.8. Note that by Remark 3.9,
B’ and &, B, are functions of 0. Hence £y depends on n, 6, which in term depends on 7, s, s”.

With Lemma 3.8 at hand, we are ready to prove the precise estimate regarding the energy
functional (3.54) in the context of the Boltzmann equation.
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Proposition 3.11 (Energy functional interpolation inequality) Let T > 0 be fixed and let
Lo > 0 be sufficiently large such that it satisfies (3.93). Assume that the given function G

satisfies (3.4) and

G=nu+g=>0, supligllyy <8, supligllze <C.
t,x 4 t,x ko

Fix ¢ such that
8+y <L=<ky—4-v,
and assume that f is a solution of (3.3) which satisfies

F=p+f=0, sup| (" ft,- )l <Ci<oo.
! ,

Then, there exist s” > 0 and p > 1 such that for any

0<T1 <, <T, e el0,1], 0<M <K,

if we let £,(M, T1, T») be the energy functional in (3.54) with the parameters p, s”

Sollows that

T
/ 1) (1= A £, 12 dr
T

+Cio(/ ||<1—A>z(“>)||pdf)

(3.80)

, then it

< ClLP f L @I +CIEP £ DI, + 3

CK 2“: E,(M, Ty, To)Pi
(K — M)

)

(3.81)

where the parameters B; > 1 and a; > 0 are defined in (3.96) and C is independent of
K, M, f, Ty, T». Furthermore, the estimate holds for h = — f, solution to Eq. (3.31), with

f(g) replaced by (— f)(z)

Proof We start with the bound of the term that involves the x-derivative on the left-hand side
of (3.81). This constitutes the main part of the proof. To this end, fix o € (0, 1/2). From

equation (3.3) one has that

L (0) 409, (10.) =286, Py 52,

SU-A—E0-A)3EGY, >,

that is, we have defined g}f’ as

G =201 = A, =) F1-a)IF (0GP W L), k2,

where « can be any number larger than 2. In what follows we take
o+k <3.
Choose the parameters in Proposition 2.14 as

(1 —20)p_

m=«+ o, € (0,5s), =
p e 20+0 4+« +pB)
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(1—0op)B—

—} r=o, k>2,
p(l4+o0+x+pB)

=: 5" < min {ﬁ,
where 1 < p < 2 is chosen to be close enough to 1 such that (3.58) holds and

op <1, op*=op/(p—1)>6, (3.84)

1 p
<P < <qs
2=p
where g, is defined in (3.66) and the third condition guarantees that
H™oP (T3 x R3) 2 L' (T2 x R}) since H™P (T3 x RY) € L™ (T2 x RY). (3.85)

With the choices of these parameters and (3.83), we now apply Proposition 2.14 and obtain
that

Jo- a0 ()

4
Ll,x,u

=c([w

(o m) HLQL - a0 (10, )’ H

N N TN

= c(|w? (2 (Tl)) = a0 (10’ HL

ofeey], )

In what follows, we bound the terms on the right-hand side of (3.86) in order with the bound

for f ,(f) +(T2) left to the end. Let n = 0 in Lemma 3.8. Then the third term on the right-hand
side of (3.86) is bounded as

—o.p
Hy

)

e

4
Ll,x,u

4 H (—Av)2 (Z) H + ” (3.86)

COE (M, Tl Tz)”
—2p ’

(K - M)f’

(3.87)

H (Z) withr, > p and &, > 2p.

For the fourth term one invokes Lemma 2.13 with p’ = p/(2 — p) to get

ot ()

AG

1,x,v

P
DE (10 H e o
LY

( (l)

P

=cf" [ (lean

“<(/,
+C./;,

(—ADIfE,

12y

dr.

P
Ly

dr)l s

I R

) dxdrt
p T

dt)
Ly,

oy
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Since (3.84) holds, we can apply Lemma 3.8 in the p and p’ norms with n = 0 to obtain that

ot ()

1 1 Ik
- (SP(M, 1, 1)) e, (ML T Tz)”)
0 >

., (K — M)® (K — M)n
(3.88)
where the parameters satisfy
r;>p/, %(1+r;/p/)>1, Ty > D,

ay=E—2p)/p>0. ar= (& —-2p)/p >0. (3.89)

So far for Lemma 3.8 to apply, we need

ao(s, s”) 2B (s, s")

by > ————r, ,§) = —————, 3.90
T By P = T (3-90)

where 8’, B, are defined in the proof of Lemma 3.8.
Next we bound the last term on the right-hand side of (3.86). Using Lemma 2.1, the embedding
in (3.85), the assumptions for G in (3.80) and Proposition 3.7 with j = 4, we get

oyt 6

L?

1x,v
1

P
dr)

=2 (f: ”<v>4 (I—A, =) 3(1—A) 372 (é(G, F) )t £ ) ‘

T;
gzcg/ 1= A RBG, By 8], de
Tl X, v

< CIWP 0 TR, +c/
T

4
K ||L2Hs/ dr
1

& (l) (l)
+Cg/ [REI: ||L2 dr + Ce(1 +K)/ ) fi il dr (3.91)
Ty -

Letting n = 12 and n = 5 respectively in Lemma 3.8, we can bound the last two terms
in (3.91) as

22p=2 ~ E,(M, Ty, Tr)"™
(l) ) 2p pUM, L1, 12
fn 1) fx 7z S raayyovr= 2/1 ()% fK+M+|| Co TR
22p-1 E,(M, Ty, o)
(£) = () 2p p(M, 11, 12
/T] ) felillzs, d =] /T ()% s I}, AT coi(K_M)&_l ,
(3.92)

where for such estimates to hold, we require that

ao(s, s”) y 1 12
by > —M - s =
°=1 (5 ExGs, )

_IB/(SJ”)7 1 — Bs(s,s") + 2B (s, s )),
Br=FGs.s", (3.93)

where again 8/, B, are defined in the proof of Lemma 3.8. Then we are led to

ot 62, < croR i, +¢ [ 1, @

1
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~ Ep(M, T, o)~ E,(M, Ty, )™
Co(1+ K)-L , 2.
O+ K) e TO k aez 0 &7
Since ﬁ > 1, we have that
(l + K) 6[)(M5 T]s TZ)r* _ 5p(Ma T]a T2)r* K gp(Mv T17 TZ)V*
(K — M)5—1 7 (K — M)5—! K—M (K— M)52

- K gp(M, Ty, Tr)™ gp(M, Ty, Tr)*
S K-—M\ (K- M);ET (K — M)&—2

Therefore, we conclude that

[t e[, <crw? s ani, +c /T 10 e

CoK [(E,(M, T\, Ty)* E,(M,T),T»)"™
0 <p( 1, T2) o ( 1, 1) ) (3.94)

K—M\ (K—M)yE&-1 (K — M)&—2

with constants C, 50 independent of € € [0, 1].
Finally we bound the second term on the right-hand side of (3.86). By the positivity of
the Bessel potential and Fubini’s theorem,

2
/ W (I = A2 (/TS (£ ) dx> dv.

Integrating Eq. (3.82) first in x and then in ¢, v gives

2
/ W (I = 82 ( /T () dx) dv
/ / £ (Tl)) dvdx
T3 R3
b3
+/ / / W) (1 — Ay~ /2 (Q(G F) (v f“)) dvdx dr
T T3 JR3

e
) T

where the last term satisfies the same bound as in (3.91). Hence the term involving fy © (1)
does not add new terms to the bound. Overall, we obtain from (3.86), (3.87), (3.88), (3 94)

that

1 NG &
—la=ans ” T,
o H( 27 (10,) = o |
Cy

Co

~ 4 )
bo_K _s&M.Th, )"
COK—MIA:1 (K — M)4i

W= 80 (01

dr,

1= 202 (3G. F) 0 £,

1
Lx,v

L Pl )

S A SN dr

, (3.95)

where the constants C, Cy, Co, 50 are independent of f, K, M, Ty, T, and as a summary,

B1 =r«/p, 52:%(1+r;/p/), B3 =1y, Ba = 1y,
ar=E—-2p)/p,  a=(E-2p)/p. a=&-1, a=&-2. (3.96)
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Note that 8; > landa; > Oforalli =1,---,4.
For the first two terms on the left-hand side of (3.81) we invoke Proposition 3.3 to get

cod4
+7
4 Jy

+C@/

Co K (E,M, T, Tr)* &E,(M, Ty, TH)™
K —M)ET1 T (K—ME—2 )

dr
/2

“H)

LIHS

2

b

where the last step follows from similar bounds as in (3.92) and the subsequent procedure
that led to (3.94). Together with (3.95) and by choosing Cop = Co (s, £) > 0 sufficiently large
such that

dt+Ce(1+K)/

(e) ) (7) H

L'Ll

3
Co _ 0%
Co
we obtain the desired estimate in (3.81).
Since (—f )%) satisfies the same bound as f " O in Proposition 3.7, the same estimate for

’

(-f )(,? 4 asin (3.81) holds with Proposition 3.4 replacing Proposition 3.3. O

Before showing the L>°-bound of f, we need a closed L2-bound of the zeroth level energy
& = £E,(0,0,T) = sup 9

&y given by
te[O,T] f /11'3
Lt G
+C—0</0 |1 - 207 (£ ) 17, dt) : (3.97)

where f. denotes the positive part of f and
{4
£ =) fi

Proposition3.12 Let T > 0 be fixed and € € [0,1], s € (0, 1). Assume that the given
Sfunction G satisfies (3.4) and

N2 p® H dx dr

G=n+g=0, suplglipy <do, supliglie <C. (3.98)
tx 4 t.x 0

Fix ¢ such that
max{8 +y,3+2a} <l <kyp—5-1y,

and assume that f is a solution of (3 3) which sazisﬁes w4+ f = 0. Then for any 0 <
s’ < ﬁ, there exist s” € (0, s’ % ) and P’ = p°, y,s,s") > 1 such that for any

1 < p < p°, we have

2j
& < Cee“T max (H(-)e fo ‘ ,
jell/p.p'/p} L

X,

+supllglyh T/ + ezf'Tf) . P=p/Q-p).
t,x 0
(3.99)

The same estimate holds for (— f )5_ and its associated &.
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Proof The estimate for &y follows from the basic energy estimates and the averaging lemma
in earlier sections. By Corollary 3.2, the first two terms in & satisfy

4
sup Hf+ / / J//Zf()H
t€[0,T) T3
< sup H(v)e / / Ny /2 dx dr
t€(0,T)
< CpeCtT <H<~>f fo|,, tsup ||g||i,33T + 62T> 2 e, (3.100)
X, t,x

since by (3.98) 0 < X(g) < 1+ C. Let us concentrate on the term with the spatial fractional
differentiation. Invoking Lemma 2.13, it follows that for p € (1,2),0 < s” < B € (0, s),

T s 2 P

(1—A)7 (9 dr
/ 0T ()],

r 4
§C/ H(—Amf” dr
2p
© © , P
/(Hf +H ‘Lﬁ)dt, =gt (3.101)

The controls of the L2P- and L?F -norms of f + are similar and both through suitable
interpolations. First,

o) ﬁl’

H )

LS"’)’ where &(p) =

2 1
Li”v_H 2 =y
(3.102)

For any 8 > 0, let (n,n’) = (s, B) in Lemma 2.11. Then by choosing &(p) = r(s, B8, 3) in

that Lemma we have
1
2 2 2
(0) ()
£O%, ) HHg dx) (/ Hf (v HHf dv) . (3.103)

L&(p) =C (/1;3

Consequently, one is led to
| £ (e)” by < <c| s (0 }2(17 1)<H(1 ”)zf(Z)”L%_v + H(l—Ax)z (Z)“L2 )

If B is in the range

|

B e (0, 2{1 ys/>, (3.104)

then we have the following interpolation

2
4
<Cuy (H(v)”2 0L+

This can be seen by using the Plancherel and Young’s inequalities:

L Z e ) o
R3
nez?

|-

H(l—A RN

) . (3.105)
Lx,v

[ = a0ty
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5> () e

nez’

( )24 1 (1= 1/q) (n)zﬂqu)

Take g = 2“)/ . Then the restriction on f is that

gV
T 24y

Since £ is an increasing function in 8, we obtain the corresponding range for & and for p
by (3.102) as

B<s' (1—1/q)=

B e (2, r(s,s’ﬁﬁ)) — @ "), ped,2—2/")=(1, p",  (3.106)

where r(-, -, -) is defined in Lemma 2.11. It is clear by its definition that p® depends on
£, y,s,s’. Using such parameters and combining the previous estimates, we obtain that

H 2(p—1) (H 7/2 f(e) ) )
Lx,v

2,
Integrating this estimate in ¢ € (0, 7') and invoking Corollary 3.2, with {—moments, one is

led to
¢
/ Hf( )

Note that by making p close enough to 1, we have p’ € (1, pP) where p’ is defined in (3.101).
Therefore (3.107) also holds with p replaced by p’. Furthermore, integrating (3.105) in
t € (0, T) and invoking Corollary 3.2 once more, it holds that

dr

T
[ a-ants];
0 X,U

e (rowr

Using the estimates (3.107)-(3.108) in the estimate (3.101), we conclude that

T % 1 v
/ dr] =<¢C (DF + DF) ,
0 LY,

which combined with (3.100) gives (3.99).
The same estimate holds for (— f )ﬁ and its associated & since Corollary 3.2 applies to
the absolute value of f, which dominates both the negative and positive parts of f. O

el

H(I—A )z fO

L~ L2HS

2 dt <CDP, pe(,p). (3.107)

2

H(l —ADT S

) dr < CD. (3.108)
L2

(a-a0 (£0)]

We are now ready to build the main L°°-estimate for the linear equation (3.3).
Theorem 3.13 (Linear case) Suppose G = 1 + g > 0 satisfies that

inf G lly = Do > 0. sup (IG I,y +1G g1 ) < Eo < oc.
5 t,x

Let F = u+ f > 0 be a solution to Eq. (3.3) with s € (0, 1). Assume the following holds:

sup [(v)” g ) <d0.  supligle <C.  max{8+y.3+2a} <L<ko—5-y
1,x v t,x
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Assume that the initial data satisfies

H<v>‘f+2 fo < co. (3.109)

g, <o |0 nl,

X, X,

Additionally, assume that the solution satisfies

sup () £l < C,

where £ satisfies the bound in Proposition 3.11 (more precisely, (3.93)). Then it follows that

sup H ‘ < max {2 H fo l’”},
tel0,7T] x v
where
Bi—1

lin — Cy T 2j J 2jrij ¢
Ky" :=Cye max max +sup gl T/ + €T
t,x ko

1=i=4 je{l/p.p'/p}

L2
x,u

N

. 3.110
g (3.110)

p

Proof Choose (p, s”) close enough to (1, 0) so that

" / y ! s

S2E+y’ s<72(s+3), p < min{p”, p’},

where pf and p” are defined in (3.58) and (3.106) respectively. Such p, s” guarantee that
Lemma 3.8, Proposition 3.11 and Proposition 3.12 hold. We implement a classical iteration
scheme to prove an estimation of the L°°-norm for solutions. To this end, fix Ko > 0 which
will be specified later and introduce the increasing levels My as

My = Ko(1—1/2%, k=0,1,2,---
Take 75 € (0, T) with T > 0 fixed in the analysis. In order to simplify the notation, denote
fo=fy) o and & :=E,(M.0.T),  k=0,1,2,---
Choose M = My_1 < My = K and T} = 0 in Proposition 3.11. Then
Ep(My-1,0,T7) < Ep(My-1,0,T) = &1,  k=1,2,---,

and

T s
1y + [ | a-ank ar

1
1 e V4 P
+ — / dr
Co \Jo L,
4 2k(a,+1)5ﬁ,

= Cl2 KO [z, + [0 KO [z +C

i=1

X,

(1— AT (fi)?

Ky
Taking supremum in 75 € [0, T] one arrives at

4 ok(ai+1) 5ﬂl

& = C WP @ [, +C ) fk<0>||sz+CZ (a1
’ 0
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Terms related to the initial data vanish by setting

Ko =2 | fo

Then we are led to
4 2k(ai+l)g]/jil .
g<cy k=t K>2H H . 3112
;< ; e 02| fo (3.112)
Let
a,-+1
0o = max [27T), g =g(1/00)f,  fork=0,1,2,--,
1<i<4
and
ﬂ,’*l Bi
Ko = Ko(&) = max {4C"z oy } (3.113)

Then one can check via a direct computation that £ satisfies

4 sk(ai+1) (ex  \Bi
2 &
& = &, & =cC § %
i=1 0

, k=0,1,2,---.

By a comparison principle (since & = £7) one obtains that
E <& -0 as k— oo,

since fB; > 1 (so that Q¢ > 1). In particular, we can infer that

Ko, G114)
1€[0,T) Tko.t 2, L,

sup H O (.. HLZ —0 for K():max{2H(v)[fo

which implies that

sup H<v>e fe, 0| = Ko. (3.115)
t€[0,T) LY,

Thanks to the estimates on &y given by Proposition 3.12, it follows that

Bi—1
2j i . 3im Ta
Ko(Eo) < Cre€tT max max (H(-)‘Z 0 +supllglsh T/ +€ JTJ>
I<i<4 je{l/p.p'/p} f L%, t,f Lig
i p
— Klm’ - )
o V=50

Thus, given (3.114) and (3.115), one is led to
sup |(0)° £, | = max {20 ) folluss,, K4}
t X,

A similar bound is also valid for — f* since Lemma 3.8, Propositions 3.11 and 3.12 all have
their counterparts for — f. O

Remark 3.14 In fact, since the negative part f_ satisfies f_ < u, it has a Gaussian tail and

sup

o sup ||f ”L max{ || fo”oo 0(&0)

2
Ly, tel0,T

I
VI
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4 Linear Local Well-Posedness

In this section we establish the local well-posedness of a modified linearized Boltzmann
equation. The ambient space for contraction is

Xy = L0, T; L2L3(T? x RY)), “.1)

where conditions on k will naturally appear along the argument and the weight is only in v.
We will find a solution in the subset Hy defined by

Hi=1{g € Xl n+g=0} 4.2)
The precise form of the equation under consideration in this section is

Wf+v-Vef =€eLo(u+ )+ O+ gx (0¥ g), )+ Qlgx (W ), 1),  (4.3)

where g € H; and we recall the definition of the operator L, defined in (3.2):

Loy = (%Y = - (02Vep)), 20, (“44)

where «, to be specified later, is chosen to close the energy estimate. The cutoff function x
satisfies

1, la| < do,
x(@) =10, lal > 230, 0<x=1L “4.5)
smooth, foralla € R,

Note that since g € Hy, we have u + g)(((v)k0 g)>0.
The main well-posedness statement for the linear equation (4.3) is

Theorem 4.1 Suppose s € (0, 1) and € € [0, 1]. Let g € Hy and let x be the cutoff function
defined in (4.5).
(a) Let T > 0 be arbitrary but fixed. Suppose the initial data fy € Hy and assume that

ko > max{7 + y, (k—a)++)/+3—|—2s}, k>8+vy, 4.6)

where (k — o) is the positive part of k — a.. Suppose 8 is small enough such that (4.18) is
satisfied. Then Eq. (4.3) has a unique solution f € Hj.
(b) In addition to the assumptions in part (a) we further assume that 8y satisfies (4.26) and

ko > max {€o + 1542y, £o+ 10 4+ 2« + y}, 4.7

where L is the weight chosen in Theorem 3.13 (more precisely, (3.93)). Then there exist €,
and 8. small enough such that for any T € (0, 1), if the initial data satisfies

P [ ] (4.8)

xX,v Xx,v

[wyo=to=s=r ,

then for any 0 < € < €, the solution obtained in part (a) satisfies

H(v)’“’*“”*y f H s, VT e,1).

=
L= ([0, T1xT3 xR3)

The choice of €, 8, only depends on y, s, k.
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Proof (a) We will use a similar strategy of applying the Hahn-Banach theorem as in [12] to
obtain a solution in Hy. Denote 7 as the operator

Th=—-8h—v-Vh— (eLa + Q(u + gx (V) g), ~))* h,

where the adjoint is taken with respect to the inner product of LJZC L,% (T3 x R3) for each
time ¢.

The main step is to show the coercivity of 7 on test functions. Let S be the test function
space given by

S = CP((—00, TT; C®(T?:; C(RY)))
and for & € S denote
(Th, h) = // W) R Thdxdv.
Then

1d 2 2k 2o 2a
(Th,h)k:—ia||h||L%Lz+e//;r3XR3 W) ((0)** h = Vy - (v)** Vy)h) hdx dv

B //Ts o 2t gx(v)*° ), Wi (v)** dx dv. 4.9)

The bound of each term is as follows. First,

€ / / ) () h = Vy - (v)** Vy)h) h
T3 xR3
> 2 + < W)*t* v, h * dxdv—C ellhl|? (4.10)
- 2 LgLiﬂt 2 T3 xR3 v k L%Li ’ ’
For ease of notation, denote
TS = f/ 0w + gx (0¥ g), hyh (v)?* dx dv. 4.11)
T3 xRR3

It is clear that 7 has a similar structure as Tp in (3.8). Hence we first get a similar bound as
in (3.10):

2
T(;“ < — (yo — Crsupligx ”L‘y> H<U>k+y/2h
X

L2

X,v

LKLy -
+/T.z/1;/,;sfggb(c°”)'”_”*'y“‘**g*x*) I (0 = @t eost §) am
(4.12)

However, unlike (3.11), we cannot apply Proposition 2.8 directly since having a bound
depending on an L}(—norm of g is unwarranted. Instead we revise the proof of Proposition 2.8
to obtain a proper bound. To this end, we make a similar decomposition as in (2.15) by using
Lemma 2.7:

|h|<v>k 7.0k nk k k6 —
fqr3fﬂ{3fﬂggfgi"<0059>'”‘”*'y 0t -+ g0 S S () = 0 cost ) a
5

-y (4.13)
n=1
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Estimates for I'f, '} and F;‘ are the same as in the proof of Proposition 2.8, which combined
with part (b) of Proposition 2.9 gives

2
T |+ 05| + 12| < Gk (1 o+ sup llgx ”LJHV) H(v)kh .

2
< ¢ (1 +sup llgx ||L;3) [ (.14
X

2
Lx.v

by taking ko large enough such that ko > 7+ y. The bounds for I'; and I'5 are trickier, since
as mentioned before we want to avoid introducing the L ,ﬁ-norm of g. We do so by using the
extra weight (v)* from the regularizing term in (4.3) to compensate for the loss of weights.
The term I'; is given by

I} = //// b(cos ) v — vy |” (vs)* sin® (§) (s + guxh (<v')k h’) do dv, dvdx
T3 xR6xS2.

= //f/ b(cos 0)[v — vy |” (vy)* sin® (§) psh ((v/>k h’) do du, dv dx
'JI‘3X]R6XS3_

+ //// b(cos 0)[v — vy (vi)* sin® (§) guxsh ((t/)k h/) do dv, dvdx
T3 xR6xS2.

< Ci | n

2 ko—27F
ey CUY (A P N A VS Y 1295

k+2y+27 —

+Cx (sup H ()Fo=3" gy ‘
X

L},) 172022 12z s

2k+y+3T—ko

where 3% denotes any number close to and larger than 3. In the above estimate we have
applied the bound

(vsing <2)+(v),  ko>4+7y.
Since by (4.6),
ko>74+y>5+vy, k+vy+3—a<ko, (4.15)
it holds that

I3 = G|t

L2

Xx,v

2 k 2
o+ G (swlexig ) ot

[y n|

c « ) |t
+ k(sgpllgx IILk()) {v) " L2,

2

‘(v)k“" h

€
< (Ck + Cresup g ||L;o> [ n] | +5supligx oz
X 0 3 0

2
+
L2, 21

L3,
(4.16)
The same bound applied to I‘;‘, which combined with (4.14) and (4.16) gives

2

2
Lx.v

Ty < - <V0 ~ Cusup g ||L;o> [+
T3 0

‘(v)k‘“"h ‘

2 €
+ Cre (1 +sup llgx ||L;c) [@*n|, +5supligx oz
x 0 3 0

2
L%.v 2 T L.%,v
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Combining estimates of all the three terms in (7 %, h ); we obtain that

(Tho b= =5+ L e 12 05y + (VO—Ck sup ||L;3(Rs>) |wytrr2
6
+3 ( —suplgx ||Loo> | — Crellh )
> S+ S ] izm Gl e, @17)
by taking
80 < min{1/2, yo/2Cp)}. (4.18)

Note that the restriction of & is independent of €. By Gronwall’s inequaliy, we have for any
te[0,T],

2
k+o
A ‘ L2m)
(4.19)

2 1/2
h dr)
L2H]
r 2C
k,eT
fo e I1Th 1,22 dr.

T T
1 €
2CkeT L 2Cet a2 € 2Ck.eT
/ FTTh, Ry dT = S ||h(r,,)||L§L%+4ft e

1

Note the following bounds:

T T 12, a7
/ T (Th, h) dr < AT Th?, , 1 dr 2T
t 0 LiH o t

and

<v)k+ot

T
/ ke (Th, Y, dr < [ sup H
t tel0,T]

These together with (4.19) give
T
sup (e, ) 23 <2 / PO Th | 12, dr,
te[0,T]
which further implies that
2

T T
/ Xk (Th, h), dr <2 </ e*Che™ || Th ”LZLﬁ dt) .
t 0 !

Asa consequence,

T
€[ 2Cker
4 )i

Moreover, we have

2 pT
i eZCkl'
16 Jo

This also implies that

2
(vyke ‘

2 r 2C
eT
i dt§2</0 TN Thl a2 dr) .

2
<v>k+01 h
L2H]

T
d1:</ EOT\Th?,, ) dr.
0 Lkafat

T
sup [1h(t, - ) |12 _2/ PO (Th, by, de
1€[0.7] L3 (T3xR?) 0
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2
<v>k+(x h ’
L‘C

T 12
<2 </ eQCk'r df)
0 PH)
12
([ eerimi,,, o)

< S/T T\ Th?,, . dr.
€ Jo LiH o
Define
W=7TS={w|lw="ThheS}.
Then W is a subspace of
Vi =L"0,T; L2LY(T* x R*) and ), = L*(0,T; L2H ' (T? x RY)).
Note that if we let
X =X =L®0,T; LILY(T? x R?)) and X® = L3(0, T; L H}, ,(T* x R)).
Then
yi=a®, yr=x®,

where the adjoint is taken in the weighted space L0, T; LﬁL,% (T3 x R?)). Thus for any test
function & € S, we have shown that

Ihllxaey 1Ay < Cellwly, . Ihllyo +Ihllye < Cellwlly, - (4.20)
Denote
Re = —¢ () 1=V, - (v)** V)

Define the linear mapping on W

T
G(w) = {ho. foli + /0 (h, Q(gx. ) dr

T
+/ (h, R¢)y dr, forany w € Wwith 7h = w.
0

Then by (4.20),

o fodi] < 1o 2z 1o ll2re < Wl I fo Nl 22

= Crokellfollp2p2 mingllw Iy, lwlly,}

T
/ (h, Re)k dr
0

By the trilinear estimate in Proposition 2.3 and (4.20), the forcing term involving Q(gx, 1)
satisfies

and

< Crlhllzorz,) < Crlh |y

< Criemin{llw [y, . [lwlly,}.

'/ (h, Q(gx, 1))k 0(gx, wh (v)** dvdx dr

T3 xR3
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T
=G lgx Nz 2
/(; /T:‘) §x L(k—u)++y+2sﬂl‘

<Cryi (sup llgx ||ng) 72y
t,x

)+ ”L2 dx dr

< Crke <SHP llgx IILkog> min{l|w [ly, , lw lly,},
t,x
provided

k—a)T +y +25s+3 < ko. 4.21)

This shows G is a well-defined bounded linear functional on W, which then can be extended
to )1 and )%. Therefore, there exists f € X M N x@ such that

(ho, folx + (h, Q(g, W) + (h, Re)p = (w, f)  foranyw € W,

with the norm of f satisfying

max{[l f Ly s 1 f lx@} = Crrelfoll 22 + Croke <1 +sup g x IIL;33> - (422
’ tx

To show that f € Hy, we need to prove that ;« 4+ f > 0. This can be done similarly as in
[12].Let F =+ fand G = n + gx. Then G > 0 and F satisfies

HF +v-ViF =—¢((v)* 11—V, () V) F + Q(G, F). (4.23)

Let n : R — R U {0} be the convex and decreasing W -function given by

nx) = %(x_)z, X_ = min{x, 0}.

Multiply (4.23) by (v)% n/(F) = (v)* F_. This gives
% (W) (3(F2)? +v - Vi(F2)?) = =€ ) (FF_) + () e F_V, - () V) F
+ (¥ F_Q(G, F).

The term involving Q(G, F) is estimated in the same way as in Sect. 7.1 of [12]. We only
need to check the regularizing terms. After integration they satisfy

/Rz <_6 {v) v (FF,)) dv = —¢ H(v)wrk F_ ?

2
LU

and

/3 (<v>2keF,vv () VDF)) dv
R
= —e/ v, (<v>2’< F,) () V, F)dv
R3
= —c / ()22 " (F)|V, F2 dv — € / Fovy (%) - ()2 V,F) dv
]R3 R3

€
R3

(v)
1
e/ (V)22 ' (F) |V, F|*> dv + —e/
R3 2 Jr

_ 22k (P |V, FIP dy — ¢ / F v, (%) - (0 v do
R3

_ 2 . 2a 2k

_ P2V, ((v) v, (v) )dv
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’

< Cre H<U)a+k71 F ‘

2
< E H(U)O{+k F_
L2 2

2 k 2
1 H W) F_
L? L?

which only adds to the lower-order term in the energy estimate. Hence the similar estimate as
in [12] holds and gives F_ = 0, that is, F is non-negative. Combined with (4.22) we have that
f € Hy. The uniqueness of f is guaranteed by the basic energy estimate in Proposition 3.1.
(b) Although (4.22) gives a regularization in v which can induce an L°°-bound of the solution
by Theorem 3.13, the bound is undesirable since it depends on €. Now we show the derivation
of a uniform-in-€ bound for a smaller weight by using the De Giorgi method in Theorem 3.13.

The main step is to show that by letting £ = ko — £9 — 7 — y in Theorem 3.13, the solution
from part (a) satisfies

Lo+L
sup ([0} fll1 < C.
te(0,1) :

where C is independent of €. The main reason that € enters the energy estimate in part (a) is
because, in the estimates of I} and I'j, we have to make use of the artificial regularization
€L, to help us control the weighted L°°-norm of g . To avoid this difficulty, we lower the
weight by introducing

k1 = ko —-5- Y. (4~24)

By taking ¢ = ki in Proposition 3.1, we obtain the energy estimate

Yo
- (3 ~ iy suplgx ||L;) [ g
X

2 2
L2, = LZ,

X, v

e

2
ki
s (1 + sup lgx ||%V> [k 7| 2,

_@ U)kl H , dx_EHw)liraf 2
4 Jrs H 2 L2H]
ki
+Cy <1+s;1p||gx ||L£l+y+ﬂz> [ f R 2
By the embedding of weighted L'-norms into L,‘:j, we get
d ko | Yo kity/2 oI
], =- (1 ~ Cuy suplgx ||L;3) [z,
2
+C, (1 +sup g x ||L,33> jwt ],
~ 9% [ b p|Y v e (1 supllex g ) [ w7 |
4 Jps Hy 1> “ xp SIS L3,
_N0 |yl ‘2 H k ‘2
s=ler ], v febr]
o s, e
- —= C ! , 4.25
il A sz, T W™ f 2, (4.25)
by letting
1
Sofmin{f, Yo } (4.26)
2 4Cy,
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Therefore for T < 1, there exists C; such that

sup | ()"
t€(0,T]

fl, =@ (Hw)"l fol . 1) < 0.

The constant C; only depends on ko, y, s. By interpolation we obtain the bound

sup [ s
tel0,7T] L)m)

<10C (H<v>k1 fo

2 +1><oo.

Given (4.7), or equivalently,
ki —lp — 2 > max{8 + y, 3+ 2a},

we now apply Theorem 3.13 to obtain that

sup
t,x,v

Wit g | smax w2 | Lkt @2

where K(l)i” is defined in (3.110). From the definition of K(l)i”, it is clear that there exist
€x, T, 8, such that if they are small enough, then

sup (v)k"‘z(’*2 f < 0.
t,x,v L)C?c,)v
Specifically, we require that 7 < 1 and
. ﬁiil
Cr, ‘sl max  max (5*2] + 8%/ +e£]) Y < 8, 8y < %80.
I<i<4 je{l/p,p'/p}
It is then clear that the bounds of 7', §, are all independent of €. ]

5 Nonlinear Local Theory

In this section we establish the local existence of solutions to the nonlinear Boltzmann
equation

Ohf+v-Vif=0w+f.u+f), fli=o= folx,v).

The proof is divided into three steps: first, we show the local existence of the regularized
modified nonlinear Boltzmann equation which has the same form as (4.3) with g replaced
by f. Next, we use the De Giorgi method to show the L,f(‘)’-bound of the solution, thus
automatically removing the cutoff function. Finally, we use strong compactness to pass to the
limit in € to recover the solution to the original Boltzmann equation. This whole process will
be carried out into three subsections. Note that in this section we need to restrict ourselves to
the weak singularity case with s € (0, 1/2). This is due to insufficient regularization provided
by the operator € L, in the contraction argument (see the last step in (5.5)).

5.1 Local Existence to the Modified Boltzmann Equation (MBE)

The modified equation has the form

Of+v-Vof =€La(u+ f)+ QG+ fx (W) £+ £, (.1
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where L, and y are the same as in the linear equation (4.3). The local existence of solutions
to (5.1) will be shown by applying the fixed-point argument in X} to the linear equation (4.3)
with a suitable k.

Theorem 5.1 Suppose s € (0, 1/2) and

ko > max{€o + 1542y, Lo+ 10+20+y, k —a+2y +25s + 9+ £o},
k > max{8 + y, a}, o>y +2s+2,

where £ is the same weight in Theorem 4.1 (precise statement in (3.93)). Suppose €, 8o, fo
satisfy the assumptions in both part (a) and part (b) in Theorem 4.1. For each such €, if T is
small enough (which may depend on €) then (5.1) has a solution f € L,%((O, T) x T? x R3).
Moreover, f satisfies the bound

o-to=7-7 | 5. 2
H(v) f L>®((0,T)xT3xR3) =9 (5.2)

Proof Let k > max{8 + y, a} and Hy C X be the set defined in (4.2). For a given g € Hy,
define the map

F:Hy— Hi, Tg=Ff,

where f € Hy is the solution to (4.3). Theorem 4.1 guarantees that I is well-defined provided
8o, €, T are small enough. Moreover, if we choose k > «, then the assumptions in Theorem 4.1
require that

ko > max{€o+ 1542y, o+ 10+2a0+y, k—a+y +2+2s}, k>max{8+y, a}.

Our goal is to show that I" is a contraction mapping on the space Xy = L>(0, T; L2 L3 (T3 x
R3)) for T small enough. Let g, i € H; and fg, fn be the corresponding solutions such that
8 fs +v - Vafy = —€Lafy + Qu+gx(v)g), fo) + Qgx (v)* ). ),

3 fi +v - Vi fir = —€Lafi + Q(u + hx () ), fi) + QUhx (v) h), ).

The difference of the two equations reads

0 (fg _fh) +v-Vy (fg - fh)
=—€Lo (fo— fn) + Q(u+ gx (V) 8), fo — fn)
+ Q@gx (W) g) — hx () h), fi) + Qgx (V) 0 &) — hx (W) h), w),  (5.3)

with the zero initial data for f, — fj,. Given sufficient regularity obtained in Theorem 4.1,
we can now apply direct energy estimates. Multiply (5.3) by (f, — fz) (v)?* and integrate
in x, v. Then by similar estimates as for (4.17), we have

1d 2 € |l otk 2
2 dr ” Jo = Jn L2L2(T3 xR3) + 4 H(U> (fg = fn) 12m)
< Cre | fo = fn ||i§Lgarsst) + //MRS Q(gx (V) g)
—hx (YR, fi)(fe — fu) W) dxdv (5.4)

- /fw L QX Q) = ()" 1), 1) = fi) @) dxdv.
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By the trilinear estimate in Proposition 2.3, we have, for k > «,

[ 0w = ol . fidcse  fid ) dxdo

ko k() —
= [ lex@e o —necwrom], 1 g, o
<c (sup i “sz_a) g = llzz | fe = fo |z
X X o
= ==L FCelle—hI, (5.5)
~ 16 5 LiLy”

where the last step is precisely the (only) reason that we have to restrict to the weak singularity
in this section. The interpolations in the estimates above require that

y+2s+k—a<ky—4—9—vy, y+2s+k—a+2<k, k>8+y.
A sufficient condition is
a>y+25+2, oa<k<ko+(a—Qy+2s+9+4o). (5.6
By Proposition 3.4 in [12], the last term in (5.4) is bounded as

f/T @y QX ) = h () ). 10 (S = i () e

= G axtw’ ) = hxwiom |

Ve il
=Crllg =nll2p2 (I ”LZwa
< Crellg =1%o+ 12 | fe = Fi sz -

where we have written (f, — f3) (V)% = ((fg — fn) (v)) (v)**7 when applying Proposi-
tion 3.4 from [12]. Combining the inequalities above, we obtain

V) (fy - fh)

< Celfe = fillzaz + Crells =h 13,2

.12 €
Y I

2dt L7H1 -

which, by choosing 7 small enough which may depend on €, gives
[ fe =l Slg =2
g~ Jhllpeori202) = 5 18 = Ml 7, 213"
Therefore, I' is a contraction mapping and we obtain a unique solution to the modified

equation (5.1). The uniform bound in (5.2) is a direct consequence of Theorem 4.1. ]

5.2 L;(‘:-Bound of Solutions to MBE

In this part we show that the solution obtained in Theorem 5.1 is in fact a solution to the
regularized Boltzmann equation

Of+v-Vif =elon+ )+ QM+ fon+f).  fli=o= folx,v). (5.7

The main step is to prove that such a solution satisfies

ko ” < 8. 5.8
H(v) f Lo([0,T)xT3xR3) — 0 (5-8)
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This way the cutoff function automatically vanishes and we recover a solution to (5.7).

Note that f already satisfies a uniform-in-e¢ bound in (5.2). Our goal is to enhance the
weight to (v)¥_ For a large part, the proof of (5.8) parallels that of Theorem 3.13 for the
linear case. The central difference, which will manifest itself repeatedly in the proofs below,
is that the moment requirement on f for the quadratic problem (5.1) is substantially lessened
in comparison to that of the linear equation (4.3). This is due to the quadratic structure of
the collision operator which permits us to strategically allocate moments to the appropriate
entry of the collision operator. Similar as in Sect. 3, the L,‘:g-estimate is built upon various
L?-estimates of the solution f and its level-set functions. Hence we will need to lay the
ground by proving several propositions before showing the L}:;’—estimate.

5.2.1 Local in time L2-Estimates

As the first step we show a uniform-in-e weighted L2-bound of f, the solution to (5.1). The
following proposition is the analog to Proposition 3.1.

Proposition 5.2 (Nonlinear uniform-in-€ estimate) Let f be a solution to equation (5.1) with
singularity s € (0, 1). Suppose

< Ep<o0.
LiNLlogL

inf [+ £ 0|, = Do> 0. sup fut Fxc p)
) ’ (5.9)

Then for any £ > 37-12-5;/’ the solution f satisfies, for 85 > 0 sufficiently small,

2 2

4 s

; St

co
(G5 = Cosupfly L r2) /T N

+ (Cz +Csupllf ||L}+y) N

2
Yo _ L+y/2
= (Gssswisi) fwr s Lo

2
Lx,u

wir| | ax
Hy o

2
L Gl iz, (510)

In particular, if the following additional conditions hold:

cods 3745y
Stl,lf If ”Lé%zsmz <8y < 30, € > max{=52, 3+ 20}, (5.11)

then forany e < 1 andt € [0, T), we have
2 cods !

| 0% / /
L3, 8 Jo Jm3

where the constants cq, 85, Cy are all independent of €. Furthermore, we have the regulari-
sation in (t, x) as

T /
[ Ja=ars

T
<c [ (@ s, +la-an Pl ) @

2

[ ro]

2
W) f dedr < ([ fo| , +€T),
Hyp

(5.12)

2
Lx,v

2 T '
S
N dr—i—/o H(1 —AY) f‘

2
) dr
Lx,v
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T 2
+ c/ H<v>5+y+25f HLZ dt+C w2 fo |5, +CEaT, (5.13)
0 X,V X,V

/ S
foranys' < 6

Proof This is a direct consequence of [12, Propositions 3.2, 3.4, and Step 1 in Theorem 6.1].
Note that the cutoff function y does not change the proofs in Propositions 3.2 and 3.4 in [12],
since the coercivity is guaranteed by (5.9) and the upper bounds follow from

[fxl =11
Bounds for the regularising term € L, and the (¢, x)-smoothing in (5.13) are both handled in
the same way as in the proofs of Proposition 3.1 and Corollary 3.2. O

The uniform L2-bound in Proposition 5.2 is the first place that one observes the weight
difference in the sup, -norm compared with the linear case: the weight (v)¢ does not appear
in the sup,-norm in (5.10) as opposed to (3.5) in Proposition 3.1.

5.2.2 A priori L2-estimates for level sets

Let us proceed to show the nonlinear counterpart for the a priori estimates for the level sets.
We recall that it is a building block for the energy functional interpolation.

Proposition 5.3 Set F = u+ f > 0 and s € (0, 1). Suppose ko, do in the definition of x
in (4.5) satisfy that ko > 8 + y and 8o small enough such that (5.17) holds and

< Ep<o0.

. ko
inf 12+ £ (0 f) HL% =Dy> 0. sup e+ fxc) Lt

Then for any 8 + y < £ < ko,

// QU+ fx (W) ). F) ) ) dvdx

_ coe3 H 2 ( (l)
+ Cosup|lfll,i
L2, xp f Liy

4
f()’

3

cuat+ &) |12, |
+ (1 +K) || fx L
(5.14)
where €3 is a constant with the bound in (5.22).

Proof The proof follows from a similar argument to that of Proposition 3.3 for the linear
case. We focus on removing the high moment dependence, such as in the norm L“Lé 4y 0
estimate (3.21). First we make a similar decomposition to that of (3.23):

L[ o+ rxmrsily wf avas

=/ / w+fx, f—*)f(z) t dvdx
T JR3
+/ / At fx ) O dvdr 2T+ (519
™ JR3
where we have abbreviated f X((v)ko f) as fx. Similar as for 77 in (3.23) (with G there

now replaced by u + fx), by the regular change of variables together with (2.14) in Propo-
sitions 2.8 and 2.9, we bound 7] as

~ 1
T < 5////T3XR6Xs2(M*+f*X*) ((f“) ) cos2 § — (1)) )b(6080)|v—v*\”dﬁ
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I *+f*x*>f“( 10,0 (W)~ ) cos 2)b(cose)w—vmcm
T3><]R5><S2

1 G
<-3n (1 ~Csupllfx ||L;W\_mz> |7,

LZLZ/ + Cy

{4
L]Ll +C@ (1 + SuP HfX “L3+V+23n1‘2> H " H M

/2

+Ce (1+50) (supllfllLl )H

(5.16)
where 51, y1 are defined in (2.24) with s1 < s and y; < y. If we impose that
o <min {1, 5}, (5.17)
then
2 2
RNV e Y
L212
x"y/2
() (©)
e (sgp 1 ||L{+y> 7]y, + el (5.18)

Next we estimate Tz by writing it as

h= //// (¥ f*x*)u<v)€"'+l< (f(l) @) (v ) f([) )b(cose)lv — vV dix
T3 xR6 xS2

//// (s + faXs) ( ) (f“) W) — f(“ (v)) b(cosO)|v — vy |” dix
T3 x RO xS2

w0+ K -
] et faro i () - it cost §) beeosorly — w1 a
//f[szR&sz(u*+f*x*)( @+K> o (v)( — cos 2>b(0089)|v—v*lydu

é 1+T22+T23 (5.19)

By (2.14) in Proposition 2.8 and (2.27) in Proposition 2.9, we have

 + e+ +K) |72 |

oG <1+sup I1£x “Li+y> |4,

1L Lie}

sca+r ||
LiL}
The third term ]’:2,3 is directly bounded as

|T23|<C4(1+K)H © H .

In order to bound fzy 1, we use (2.44) and a regular change of variables to obtain that

Ty = ///f (et fuxon @ (12,01 = 12, 0)) beos )y — v.J¥ i
T3 x RO xS2?

K //f/ (e fu) (FOL0) = 0L )) bleos 0)]v = v.l? diz
T3 xR6xS?
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fﬁg On+ fx, v )ﬂ“dmu+CK”ﬂ“H

Lie}

<ca+Kme’

Liry’
Overall we have

Ty < Co(1+K) H ® H .
L}Lly

Combining the estimates for Tl and Tz, we obtain the first bound for the right-hand side as

2
/ f O, Y, ) dvdr =~ | 40, N, e (supnf i, )H O,

+cﬂf®” +CU+KWfWHUU. (5.20)

LiL;

Next we derive the second bound with the H*-norm. To this end, we only need to re-
estimate 77 as

Nl < /f[/ (s + f*;:*)f([) (f(e) (v )( ) (l) ( )l) b(COSe)lU U*ly die
T3 xROxS? Jk —
< //// (s + f*X*)f(e) <f(€) W) — f(/) )b(cos@)lv — v dm
T3 xROxS2?
//// (s *X*) (Z) ([) (v )7 (< )Z - (v ) cos 2>b(c059)|v — |V dm
T3 xR6xS?
//// (e f*X*)f([) f,(([)+(v)( —cos 2)b(COS‘9)|U—U*|y d
T3 xROxS?
(5) 2 ® (Z)
- ‘ iy, ‘ (s I ”th> H HLlll +Ce H

Let €3 be a constant such that

(5.21)

2
L%Ly/2

Cyez < cp/8. (5.22)

The desired bound in (5.14) is obtained by multiplying (5.20) by a small enough €3, adding
it to (5.20) and then interpolating L2 y /2 between L H 5 2 and L O

Remark 5.4 Although in the proof of Proposition 5.3 it seems that the cutoff function plays an
essential role in removing the (v)‘-dependence in the L{°-norm, the above estimates in fact
hold (with some modifications) even when we treat the original Boltzmann operator Q (F, F).
There are two ways to achieve this goal: first, if f is the solution to the modified equation
obtained in Theorem 5.1 and £ = k¢ (which is the case when we apply Proposition 5.3 in
the later analysis), we can use the L%, -bound of f with a lower weight kg — £9 — y — 6.
Then the majority of the weight can be transferred to the first component of Q(F, F). Thus it
eliminates the need for a high moment in the L$° term. The second way is even more general,
in the sense that we do not need any a prior L*>°-bound on f. Instead we make use of the
nonlinear structure and decompose the first entry in Q(F, F) into

F=p+(f =K/ W) +K/ @)

and allocate all the (v)* to such term and bound it using oy ) The price to pay here is to have
an extra K in the coefficient in the upper bound. It does not generate any essential problem
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since K is the upper bound of f which will eventually be small. However, it is more in line
with the linear estimates to have homogeneity in K. Hence we opt to use the special structure
of x in the proof of Proposition 5.3.

5.2.3 Level Estimate for —f

Similar as the linear case, we need to show that not only f (v)¢ < 8 but also
—f () < .
Hence we establish the counterpart estimates for the level set of — f.

Proposition 5.5 Let h = — f. Suppose F = u — h > 0. Suppose ko, do in the definition of x
in (4.5) satisfy that ko > 8 + y and 8¢ small enough such that (5.17) holds and

ko)‘

< Ep < o0.

inf 1 — hx (o m) | = Do >0,
el X h) Ly~ 0= LinLlogL

Then for any s € (0, 1) and 8 +y < £ < ko, the nonlinear estimate has the form

/ / QG — hy, R, ()" dvdx

_ C0€3 H ® ’2

(5)
i, FC (SI;PIIfIILl )H

| HCH ) H ® H

b

LiL]
(5.23)
where €3 is the same constant in (5.22).
Proof Decompose the term of interest in a similar way as in (5.15):
_ _ © 0
[ [ 0w e g, ) avas
/ / o — hy, h——)h(‘” )¢ dvdx
T3 JR3
_ K _ 0 ¢
+/T3 . Q n—hy. % u) R, () dvdx.
Since we have
pw—hx =0, —h@"x()h) <,
the same estimates in (5.15) and (5.16) apply to obtain (5.23). O

5.2.4 Level-Set Estimate for L'-Norm of the Collisional Operator: Quadratic Version

Proposition 5.6 Let f be a solution to Eq. (5.1) and denote F = v+ f. Then, forany T > 0
and

s€(0,1), €¢>0, 0<j<ko—5—y, 8+y<l<ky, k>2, K>0,
it holds that

AT

T =20 P+ 1. F) ) £0,)] dvdxdr
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2
e

2
=clw” il o, +c |l o

2 2
oL v

el ],

Lo 528
’X Ljty

2 ©
o we (ks ) |50
r,x

LixLiiy o4

where the coefficients C, Cy are independent of T and recall that

O+ fx, F) = OQ(u+ fx, F)+eLgF.
Furthermore, an identical estimate holds if fl(f’ is replaced by (— f)(E)

Proof The proof is a slight modification of that of Proposition 3.7. We only need to show the
bound of

T
/0 /T /R Q(u+ fx. F) ' f, Wk dvdxdr,

with the aim to remove the £-moment dependence in the sup,.-norm in (3.36). The definition
of Wk is in (3.38). Similar to the linear case, write

Quuad :=/ / QG+ fx. F) ) £ Wi dvdx
T JR3
= [, [ o (ns e r = ) @ £ Wi avas
T3 R3
+/ / Q<u+fx,u+%) )£, Wi dv dx
T JR3 (v)

A f1+ + 'TV2+. (5.25)
Decompose the upper bound of the first term T{" similarly as in (3.43) with G replaced by
w+ fx:
T <TH+ T+ T (5.26)
The estimate for 714,'3 remains the same as for T]'E in Proposition 3.7, which gives

2

e (1 +sup £ x ||L1) |7

+C (1 +suplfx Ny, ) 7
! |

2L2

272
Ty /241 LiLjp

, provided j <ko—5—y

272
L¥Li sy 21

Similar to the estimates of T] in (5.16), the bounds for T1+1 and Tf“2 follow from the regular
change of variables together with (2.14) in Proposition 2.8 and Proposition 2.9, which has
the form

o= (0 w10 -2 )
(L’)
xb(cos&)lv—v*P’dp,-i-//// (1ts Tk @
T3 xR6 xS2 ( )

L@ IWk @) () = )" cos §) beos o)y = .l diz

<—7co(l—C8()) H O Wk

+Co(t+80) | £

e

L2L2/ L%,
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+Ce (1+80) (sup 11z, ) | 7w

HLLL;

0) (Z)
e+ || L |rwe] L
HVII Li/Z
Inserting the definition of Wk, we get
~ ~. 2 2 2
Tz e[ il |, i, +ee| il
1t T =Ce|f, 1212 / 120, J. e,
+c (sl sy, )70 |
X Ll JIEH it
Combining the estimates for T1+1, T‘]+2, T1+3, we have
e U W o A /o
L§L2 L3H; ), L33, 0
£)
+C¢ (s H ( H
¢ ( apll ||L{+y> 1

The estimate for T; is similar to those for Tz in (5.19) with f ,(f) . replaced by f ,(([) + Wk. This
gives

Tr<ca+n0 || <car i

1 1_ 171
LlL) Lith,,

The bound of Q7444 is the combination of the bounds of Tf“, T;, which writes

Qquad <C ” (0) ’2

2
)
1213 +C ” ’

272
L Lj+;//2+l

2
il e P
LXHV/

4
+ Ce (1+K+supI|fI|L: >Hf1(<)+‘
X r '

71
Liljyy

The regularizing term L, is bounded in the same way as in (3.53), which will be absorbed
into the estimate for Q7“??. Combining the estimates for Q7“%? and L, and integrating in ¢
gives (5.24). O

5.2.5 Time-Space-Velocity Energy Functional: Quadratic Version

Now we establish the key iterative inequality for the quadratic case which is the counterpart
of Proposition 3.11.

Proposition 5.7 (Energy functional interpolation inequality) Let T > 0 and £o > O be the
same weight as in Theorem 4.1 (precise statement in (3.93)). Let 8 + y < £ < ko. Suppose
f is a solution to (5.1) which satisfies

sup [ Il <80, sup [ ()T ft, - )l < C.
t,x +r t v
where 8¢ satisfies the smallness condition in (5.17). Furthermore, suppose that

(ko f)

< Eg <o0.
LinLlogL

ot o, 2000
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Then there exist p, s” suchthatforany0 < Ty < T» <T,e € [0,1],a > 0and0 < M < K,

T

2
170 T2, + / I )72 (1= A3 @I, dr

T

l T s 1
+*</ [(1—ap=(f ([)) ||p,, dr)
C T

<20 f @I+ 12 @l T

4 .
CK 3 Ep(M, Ty, Ty)P
K -M P (K — M)4i
(5.27)

for constants cy := c({,s,y) and C := C({, s, y, a). In particular, C does not depend on
Ty, T», T. The parameters s", p, Bi, a; depend on £, y,s in the same way as in Proposi-
tion 3.11.

Furthermore, the estimate holds for (— f) with f ,(f replaced by (— f )(l)

Proof By replacing Propositions 3.3 and 3.7 with Proposition 5.3 and Propositions 5.6, the
proof is the same as that of 3.11. O

5.2.6 Baseline Level &y and Level Set Iteration: Quadratic Case

Similar to Proposition 3.12, we now show the boundedness of the baseline case £ which
prepares the ground for the & -iteration.

Proposition 5.8 Suppose s € (0,1), T > 0 and 3”5}/ < € < ko. Suppose f is a solution
to Egs. (5.1) and (5.9), (5.11) hold. Then the baselme energy functional &y defined in (3.97)
satisfies

2j
S < Coe“T max (H(')Z fol
€{l/p, p'/p} L

X,V

+eszf), P =p/2-p). (528

Proof The proof follows a similar line as for Proposition 3.12. We only need to replace the
linear energy estimate in Corollary 3.2 with its nonlinear counterpart in Proposition 5.2. The
proof of the x-regularizing term in Proposition 3.12 applies directly since it holds for general
functions rather than merely solutions to any equation. O

The L;?-bound now follows:
Proposition 5.9 Let T > 0 and let f(t, -, -) be a solution to (5.1) with
k=ky+¢+2, s€(,1), te][0,T]
Let £o be the weight in Theorem 4.1 (precise statement in (3.93)). Suppose

ko > max{£y + 2y + 2s + 13,

37457
>}
Moreover, suppose

< &p.

(5.29)

ko+Lo+2
<8 [k g

XU

< oo, H(Wko*zo* -

H o fo

2
Lx,v
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Forany T < 1, if 8¢ satisfying the assumptions for Theorem 4.1, Propositions 5.2 and 5.3
(more precisely, (4.18), (4.26), (5.11) and (5.17)) and 5, € are chosen small enough (which
depends on by), then we have

e

< &p. (5.30)
LOO

tx,v

The smallness of 8, is independent of €.

Proof Take ¢ = k¢ in Propositions 5.7 and 5.8 and we only need to show that the assumptions
in these two propositions hold. First, by the L°-bound in (5.29), we have

su <
t,f If ||L:];+V+2SQL2 = 00,

inf e+ £ ey = oy = @) [ 100 £x |l e | 2 87 (g7 —d0) > 0. (5.31)
and
sup (I1F 1 + 1P Nzaog ) < s0p (e g + 1 zaogr ) +sup (17 gy + 172 I 1ogr)
tx tx t,x

< Co(1 +80),
since kg — o —7 — y > 6+ y + 2s. We are left to show that

sup | (vt |
t

, <oo. (5.32)
L

) ) < Q.
Lx,v

Note that for (5.12) to hold, we only need the bound in (5.31). In particular, the weight
in (5.31) is independent of ko, which again marks the essential difference between the linear
equation and the nonlinear one. Combining Proposition 5.7 and Proposition 5.8 with the
same argument in Theorem 3.13, we obtain that

To this end, we apply (5.12) in Proposition 5.2 and get

sup H (v)fotho g ’

< C sup H <v)£0+k0+2 f
13

L2

X,V

| <Cr (1 + |ttt g |

sup ()2 7 | = max {20 )% follugs,. K§“ 0} (5:33)
t

X,V
where
Bi—1

K" g0y = Cp e T max max ( Yo o1 +62jTj) “op= 2 —p).
o (&) ko e () fOHLﬁ.u p=p/2-p)

Hence for any 0 < T < 1, (5.30) holds by taking §, and € small enough. O

Remark 5.10 The result in Proposition 5.9 applies to the full range of singularity where
s € (0, 1). This provides the basis for extending the well-posedness result below from the
mild to the strong singularity.

To pass in the limit in €, we need to show that the time interval of existence is independent
of €. To this end, we need to find an explicit relation between the smallness of the initial data
and the solution, that is, the relation between &, and &g. This relation is derived from (5.33)
by setting

80 = max {211 ) folless, K§““ ().
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Take T < 1. Since e, < 1,80 < 1,2/p > land 2p’'/p > 1, we get

quad C &1 C 1 5i — 1
Ky (&) < Crge™ 0 max (8 +€x) 4 = Crpe™f0 (8 + €)™,  no= min
I<i<4 I<i<4 aq;
Hence, we set
1 1 7o
8 <min { 58), —————8.° t.
’ 2% 2(ChgeCroytim

Denote the function

1 1 1
- = ~ mi - xm}. 5.34

H=5x) g mn {x, (Ckoecko)l/nox ’ } (5.34)
Then $) is invertible on [0, 1]. With this setup we have the following corollary of Proposi-
tion 5.9:

Corollary5.11 Let 0 < T < 1 and let f(t, -, -) be a solution to (5.1) with k = ko + €0 + 2,
s € (0,1)andt € [0, T]. Let £y be the weight in Theorem 4.1 (precise statement in (3.93)).

Suppose
ko > max{€o + 2y +2s + 13, 2157},

Suppose &g satisfies the same bounds (4.18), (4.26), (5.11) and (5.17) as in Theorem 5.9.
Let

8 = H7"(%/2), (5.35)
where §) is defined in (5.34). Moreover, suppose
Y P A [ (] PR (CARR e )
(5.36)
Then it holds that
H<v)k0 7 ] . =%/2<b. (5.37)

We summarize the above results and state the local well-posedness of the regularized
Eq. (5.7).
Theorem 5.12 Suppose s € (0, 1/2) and

k0>max[zo+15+2y, eo+1o+2a+y,%], a > 200+ 2y + 25 + 11,

where Ly is the same weight in Theorem 4.1, which only depends on s (precise statement
in (3.93)). Suppose

[whn) <6 Wit p| <o

L2

xX,v

with 8, defined in (5.35) and 8o satisfying the same bounds as in Theorem 5.9. Then for any
T < 1, there exists €, such that for any € < €, Eq. (5.7) has a solution f satisfying

H(v)ko 7 ” ooy S 0072 <o (5.38)
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Proof Take k = ko + €9 + 2 in Theorem 5.1. Then the combination of Theorem 5.1 and
Proposition 5.9 shows that there exists 7, which may depend on €, such that (5.7) has a
solution f which satisfies (5.38). We claim that such T, can be extended to 7" independent
of €. Indeed, by Corollary 5.11 and Theorem 5.1 we first extend 7 to i, where i is the
largest interval such that

80-

o1

~ <
L>®([0,Te)xT3xR3)

Such a bound, together with the basic L?-estimate in Proposition 5.2, the L2-level-set estimate
in Proposition 5.3 and the L°°-estimate in Proposition 5.9 that are all independent of €, gives

ko H < 80/2 < .
”(U) f Lm([O,TG)XT3XR3) - 0/ =90

Hence i can be continued to the maximal interval [0, T) forany 7T < 1. ]

We are ready to pass to the limit and obtain a local solution to the original Boltzmann
equation (1.1).

Theorem 5.13 Suppose s € (0, 1/2) and
ko > 5€p 4+ 32 + 5y + 4s,
where £ is the same weight in Theorem 4.1 (precise statement in (3.93)). Suppose fy satisfies

| o

< 00,

ko+Lo+2
R [ A
LX,U

o0
Lx,v

where 8, is defined in (5.35) with 8¢ satisfying the same bounds as in Theorem 5.9.
Then for any T < 1, the nonlinear Boltzmann equation (1.1) has a unique solution

feL>®0,T; L%o+lo+2(T3 x R3)). Moreover, f satisfies the bound

ko ” < 50/2 < 8. 5.39
H(U> f L®([0,Tp]xT3xR3) — 0/2 < ( )

Proof Denote f€ as the local solution to (5.7). By Proposition 5.2 and (5.38), we obtain the
uniform-in-€ bound of f€ in the following space:

L2((0.T) x T3 x R?) N L0, T; L gy 12(T? x RY))
NHY(0,T) x T Hyy 4y 12 RP)), 8" < 5t
We can extract a subsequence, still denoted as f€ such that

Ire ”Llfg((O,T)x']l'3x]R3) < 80/2. (5.40)

By the uniform polynomial decay and a diagonal argument, we have
f€— f strongly in Lzz,xL%0+2((07 T) x T? x RY). (5.41)

Such strong convergence then implies the convergence of Q(f€, f€) to Q(f, f) as distri-
butions. Indeed, if we take ¢ € C° (R%) as a test function, then

H / O(f€. £ (v) dv — / 0(f. () dv
]R3 R3

2
Lr.x

= H /I, L PEosO) (£ @IS W) = F@0 @) (PW) = $) [v = vl dor v du

12

1,x
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<19l | [ 1@ @) = F0) @) 1o = vl dudo
R3xR3 Lt2,,\'
<CIV e | [[[| 17w = @l 1A @I = ol du,do
B 2,
+CI% s | [[ 175 = @l 1@l - vl duau
R3xR3 sz,x

=ClIVd e (S[UP | r€ ”L;o> Ir€ _fHL,Z 2 0 ase— 0.
WX X

Therefore we obtain a solution f to the nonlinear Boltzmann equation (1.1), where f lives
in the space

L0, T) x T® x R3) N L™(0, T5 LE(T> x R3) N H (0, T) x T HY, 00 12 (R¥)).

[m}

6 Nonlinear Global Theory

In this section we extend the local-in-time result of the previous section to global, thus proving
the main theorem for the weakly singular case. The key step is to use the spectral theory of
the linearised Boltzmann operator for the hard potential case.

In the sequel £ stands for the operator

Lf=0W,)+0(f,n)—v-Vif.
The nonlinear Boltzmann equation is recast as
Wf=Lf+Of. ). (t.x,v)e©T)xT xR 6.1)

We recall the consequence of the spectral property of £ shown in Theorem 5.8 in [12]:

Theorem 6.1 ([12]) Let h be the solution to the linear equation
dh=Lh,  hl—o=h",

where hi" has zero mass, momentum and energy. Let £ > # so that the spectral gap of

L (Theorem 4.4 in [12]) holds. Then there exists Ty > 0 such that

[l raoll, asclu-se (@), . 62
and for any t > T,
H<u>Z f, =¢ (% n 1) Pl (<v>Z h) ‘ a6

Here A > 0 is the same decay rate as in the spectral gap estimate in Theorem 4.4 in [12].

Using Theorem 6.1 we show a lemma which is an intermediate step in establishing the
global L2-bound.
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Lemma 6.2 Assume thath € L> (0, T; L%L%) has zero total mass, momentum, and energy:

1
f/h(t,x,v) v dvdx =0.
T JR3 |v|2

Then, for any s € (0, 1), £ > w and t > 0, it follows that

[

where ). > 0 is the spectral gap of L in L%L%.

2

()t /w F (1) dr
0

dw < C(1 +r2)/ h(r)HLzH s dr,
L,%,v

Proof Assume first that ¢ < Ty with Ty defined in Theorem 6.1. Then

1
/ (U)l/ L'(w r)h(t) dr dw < TO/ / l L‘(w T)h(‘l,') X
0 0 L2 Lx,v

<T0/ / V)l LE DR 2 dwde

<cC To/ [(1 =A™ () h(r)]
0

dr dw

2
L% ) dT,
6.4)

where for the latter inequality we used the time invariance of the semigroup and (6.2). For
the case t > Tp split the integration as

t w 2 To t w 2
/ (v)zf LWy dr dw = (/ +/ > U)Z/ LW p(r)dr dw.
0 0 L2, 0 T 0 L3,
The integral in (0, 7o) falls into the previous case. For the interval (Tp, t) one has
t w 2
[ (U)Z/ LTI R (rydr dw
To 0 L2 v
w—Tph
( / / ) L= p(7)de dw. (6.5)
—To L3,

Note that for the first integral in the right side of (6.5) one has that w — 7 > Tp. Invoking (6.3)
one has

| £ F ()

1 _ _ —
2, fc(ﬁﬂ)e MO = A W) F@

where A > 0 is the spectral gap of £. As a consequence,
2
dw

t w—Toy
/ <v>‘/ LTI E(Ty de
To 0 L%,v
t w—Tp 2
5/ (/ | e F@)|,, dr) dw
To \JO v
1 t w—Top 2
<C <— + 1)/ </ MO = AT W FD dt) dw
TO To 0 X,v
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C 1 t w—Tp 5 ” ) 2
) [ el - anr w ol o an
TO X, v

c (1 t = .
m( +1)/0 [a—an™2 @ Fo, dr,

where we have used the Cauchy—Schwarz inequality and changed the order of integration
for the last two steps. Finally, for the latter integral in (6.5) one simply has that

t w 2 t w
/ (v)* / LTI (Dyde| | dw < Ty / / | @) L@ DF@)|37, dr dw
To w—Tp L%m To TO X,

<T0/ / )t eF = r)F(v:)”L2 dw dt

<C TO/O (1 =A™/ () F(T)||i;v dr.

Overall, we conclude for the case t > Ty that
t w
/ ()" / e~ (1) de
0 0

Estimates (6.4) and (6.6) prove the theorem. ]

2 t
dw < CTO/ | = a2 F@|3 dr.
L, 0

(6.6)

Proposition 6.3 Let F = <+ f > 0 be a solution of the Boltzmann equation (6.1). Assume
that

sup [ fll a2 <80, I10) follz, < +oo.
1,x : :
with £, 8 satisfying (5.11). In addition, suppose

€ > 5y +37.

Then it follows that

[yt

SCIG follz e 1elo,T), (6.7)

X,

for a constant C := Cy()). The time relaxation rate ' € (0, \) where A > 0 is the spectral
gap in L%L% of the linearised Boltzmann operator. Furthermore,

/0 "Ja- AP dr+ fo pwtra- A f|f de = CIO folljs
(6.8)
for a constant C := Cy¢()\)). All constants are independent of T > 0.
Proof Set g(1) = e)‘/’f(t) with A’ > 0 to be chosen. Then g satisfies
g +v-Vig =" (Qu+f. )+ 0(f, ) +2g  g=e"f.

Since ¢, §p satisty (5.11), by multiplying estimate (5.10) (with € = 0) by e we get

d 2 2
7H(U)5 , +(@—A/)/ , dx+02/
L,\',u 8 T3 L /2 T3

dr

) g ’ )y H dx
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2
<c [ lelisar

where ¢; = %. Hence, integrating in time, one gets

2 t
+ VO )»’ / / dxdt + / /
1 T3 L3, 0 J13

+C// lg]7> dx de. (6.9)

Let us estimate the right side of (6.9). The equation for g can also be viewed as

o

= @ s

d ~
= (CH+N g+ 0(f ) = Lg+ O(f. ).
Then, we can write
~ o
g = e~ fo +/ LD O(f (), g(0))dr. (6.10)
0
By [12, Theorem 4.4], the operator £ has an spectral gap A in L2 Ly provided
£ S5y +37
- > —.
2 2
Then,
[r2efip |, = ce e ol (6.11)

X, v

Furthermore, Q( f@®, g(t)) has total zero mass, momentum, and energy for all ¢ € (0, T').
Then, Lemma 6.2 implies that for any A" € (0, A) it holds that

/0 e [0 " eEm 0 0(f(1), g(r)) de

!
<c [ fure

By Proposition 2.3, it follows that

2

dw
L2

X, v

(6.12)

[ = a2

N 2 2
= (IO f @y + 1 @) |72 @ | <810 e@I.

Consequently, from (6.10), (6.11), and (6.12) one is led to

' 2 2 2 ! 2
i /T} Igl2: avar <c [0 o, + ¢ [0 s@ih e @13
0 x.v 0

Take ' < min{%, A} and use estimate (6.13) in estimate (6.9) to conclude that

2

” ()¢ , - 619

+ (c2 — C83) f / ) g(0) H dxdf =C H<v>e fo
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2
= > 8. 6.15
Vo 2% (6.15)
Then (6.14) leads to

| rol,, <clw fol, e rel0.7).

Choose 8y > 0 such that

Plugging this estimate in (6.9) and (5.13) (with € = 0), one obtains (6.8) and concludes the
proof. O

We now have all the ingredients to show the main theorem for the weak singularity and it
states

Theorem 6.4 (Global Existence) Lets € (0, 1/2) and y € (0, 1]. Suppose 8y is a constant
small enough such that bounds in Theorem 5.9 and (6.15) are satisfied. Let £ be the same
weight in Theorem 4.1 and ko be a constant satisfying

ko > 5€p 4+ 35+ 5y + 4s.

Let 85, defined in (6.17), be the constant measuring the smallness of the data. Suppose the
initial data fo has zero mass, momentum and energy and satisfies

[k 1o

<8 [ g

< 00. (6.16)

LE,OUQL,%.V L,%,u

Then the Boltzmann equation (1.1) has a unique solution f € L*°(0, oo; LJZCL%UJFZOJFZ(']I‘3 X
R3)). Moreover, f satisfies

K
Proof The reason that Theorem 5.12 (or Theorem 5.13) can only treat a short-time existence
is because that the bound in (5.33) (with € = 0) relies on 7. It will exceed dp if T is large,
which will render the L?-estimates invalid. Such dependence of T is through K¢ uad 0
since & grows with T (see (5.28)) when the spectral gap is not used. Equipped now with
Proposition 6.3 we can replace Proposition 5.2 in the proof of (5.28) with (6.7) and (6.8) to
get

5i
f=Co_mx JoRp| scw|0h ),
Y jett/p.p'/p) L2, ! L3,
As aresult, there exists Cy, independent of T such that
quad ko o . Bi —1
Ky (&o) < Cp H() fo iz, o = min, "
Similarly as in (5.34) and (5.35), define
1 . 1 1 h 1
Hx = He(x) = ~min {x, ——x" ¢, 8y =9, (60/2). (6.17)
4 Ck/rl()
0

Under the smallness assumption in (6.16), we obtain in the same way as in Theorem 5.12
that

H<v>’<0 f H (Sd0/2<8.  forall T >0.

L(0,T;T3 xR3

@ Springer



L®°-Solutions of Non-cutoff Boltzmann Page 830f98 38

This shows for any 7 > 0, the solution can be extended beyond 7', thus giving the global
existence. With the weighted L°°-bound, uniqueness follows from a direct energy estimate
similar to (5.10). ]

7 Strong Singularity

In this part we show the well-posedness for the nonlinear Boltzmann equation with a strong
singularity. The only reason we have to restrict to the weak singularity in Sects. 5—6 is because
that in the construction of solutions in Theorem 5.1, when using the fixed-point argument
in (5.5), the regularizing term € L, needs to be used to control the H>-norm. All the a priori
estimates are performed for the full range of s € (0, 1).

To circumvent the difficulty mentioned above when constructing approximate solutions
in the strong singularity case, our strategy is to smooth the collision kernel into a weakly
singular one and repeat the process in Sects. 3—6 to find approximate solutions uniformly
bounded in the smoothing parameter 7. Note that we can as well simply regularize the kernel
into a cutoff one by removing all its singularities. But that will require introducing new
estimates for cutoff kernels. Since all the tools are available for the weakly singular kernel
in the previous sections, we take a weak-singularity smoothing. The weak singularity itself
will not play an essential role.

Without extra means, we will not be able to obtain uniform bounds in 5. This is because
the regularity gained by part of the collision term cannot compensate, uniformly in 7, the loss
of derivatives in the rest of the terms. Consequently, many estimates will not close for the
nonlinear Boltzmann operator with the smoothed collision term. To overcome this difficulty,
we temporarily add a dissipation term € L, as in the previous sections and will remove it after
obtaining a local well-posedness for the nonlinear Boltzmann equation (with € L) with the
strong singularity.

Recall the original Boltzmann equation with a strong singularity s € [1/2, 1):

Of+v-Vef = QA fou+ ) fli_y = folx.v), (7.1)

whose collision kernel satisfies

1
b(cosf) ~ ———, forfOnearOands € [1/2,1).

92+2s°
Fix s, € (0, 1/2) such that
25 —2s, < 1. (7.2)
For any n € (0, 1), let Q, be the approximate operator with the collision kernel
o0 b(cos 0)92+2s
pyrsT. < by(cos0) = 37551 (g 1 )P < b(cos ). (7.3)

Although the lower bound will not be used in the subsequent proof, we note that the coefficient
ag is independent of 7 since

1 1
>
(9 + n)25—25* — (7.[ + 1)2&—25* ’

The uniform upper bound in (7.3) is the key for uniform estimates in 1. Consider the regu-
larized equation

at_f;;+v'vxfn=€Lafr]+Qn(//~+f;;,M+fn), fn|t20=f0(xav)a (74)

forall6 € (0, r) and n € (0, 1).

@ Springer



38 Page 84 0f 98 R. Alonso et al.

where € € (0, 1) and L, is the same operator as in (3.2). First we note that due to the uniform
bounds in (7.3), the constant in the trilinear estimate is independent of 7. This is summarized
as

Lemma 7.1 Let b be the original collision kernel with s € [1/2, 1) and b, be the one defined
in (7.3). Then there exists C independent of n such that

‘/ 0,(f. 9)hdv
R3

=C (Ilf Il an) e Wesg, o W st (71.5)

(m—y /2T +y+2s v /242s+m
foranyo € [min{s — 1, —s}, s, m e R,y = 0and0 < s < 1.

As mentioned at the beginning of this section, our plan is to repeat the process of proving
the well-posedness of (5.7), with the goal to obtain a local well-posedness result for (7.4)
over a time interval uniform in 1. We show that the sequence of intermediate results from
Proposition 3.1 to Corollary 5.11 can be modified (with indispensable help from € L, ) in the
way that their coefficients are all independent of 1. The main idea is that in all these estimates,
we only rely on the upper bound of the collision kernel with no further structures required.
We start with the modified equation with the cutoff function in (4.5) (with its solution still
denoted as f):

U fo+v-Vefy=eLa(u+ fiy)+ Qu(u+ frx (W fi).w+ f)e folimg = folx. v).
(7.6)

Its linearized version is
O fn+v-Vify=eLa(u+ fp)+ On(p+ gX(<U>kO g+ fp)
=: Oy +gx, 1+ fr), (7.7)

with the initial f; ‘ —o = Jo(x, v). Choices of weights remain the same as in the previous
sections. We will show the details for the basic energy estimates for the linearized equation
to illustrate how to use (7.3) to derive uniform-in-n bounds. The rest of the steps are parallel
to those in Sects. 3—6 and their details will be either sketched or omitted. The regularization
€L, helps to simplify the estimates, since for each fixed €, the gain of velocity regularity
(and subsequently the hypoellipticity) now comes from € L, instead of Q.

Proposition 7.2 Suppose G = u + g > 0 and &g in the cutoff function is small enough such
that Gy = pu+ gx > 0 satisfies

itnf |Gy |1 = Do >0, sup(”GX |1+ 164 ”LlogL) < Eg < o0. (7.8)
X v tx 2
Suppose s € [1/2,1). Let F, = u + fy be a solution to Eq. (7.7). Then for any

max{3 + 2o, 84+ y} <l <ky—5—y, «a>y-+2s,

the solution f, satisfies

2 €[’ 4o
AT Caa

where Cy ¢ is independent of n but does depend on € and Cy is independent of both € and

n. Furthermore, forany 0 < T} < T, < T and any s’ < %, we have the regularisation in

2 2

[ |

< CpeCret (H(')[ Jo ‘

LYH) —

L + t) , (7.9)

X
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t,x as

./ ’
T

2vs'/2 2 2
(l_at)ﬁ/ fn H 5 df+/
Lx,u T

Y 2 2
(1= A0 f, HLE Udr < CeCreT (H(~>‘Z fo ot T) ,

©(7.10)
where the coefficient Cy  is independent of n and C is independent of €.
Proof By (3.7), the regularizing term € L, gives
2¢ € tra 4 |7
L [ etatr spcs 02 avar <=5 Jorre s, |
2
+Cee| )t £, | . G [ 1| .

Since €L, will provide the dominating term in both the weight and the regularity, we can
bound the collision term in a more direct way via the trilinear estimate in Lemma 7.1: for
£ < ko —5 — y, it holds that

/w fR Qi+ &x(v) ), i+ fi) f (v)* dvdx

2
¢ ety /24s
sc| ], +efwre g,
<C H(v)ef‘ +5H<v>‘+“f e wmes | a>y/2+s
=Gy n L%U 4 n L%HL! e n L%U, Y D

Combining the two estimates above and apply the Gronwall’s inequality gives (7.9).
Next, we apply the averaging lemma in Proposition 2.14 to obtain the regularisation in x.
In light of equation (7.7), if we invoke Proposition 2.14 with

=1, m=2 r=0 p=2, s <1/8,

thenforany0 <71 < T, < T,

T 2 >
T Ly R T

T
< £y I3, + € lor i ;¢ [ la-aps I3, ar

2
dr

2
Lx.v

(- A" f,

(1—a2) 2§, ‘

T -
+ C/T [y =AD" O+ gx. 1+ fy) |}i§_v dr.

1

By the trilinear estimate in Lemma 7.1, it follows that
[P =200 +8x. 1+ fi) | 2
< [ a = a0 QG +gx. f) + Qgx. ) | 12
+e [P A =20 La(u+ f) | 12
<C|f| 13,0, T CO+ECISL;,, +Ce
Applying (7.9) we get

2
dr

L2

X,v

T , 2 n /
/ A—a)2s | de +/ H(l — AR,
T, L2v T,

X,
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B e 2 12 7 12 B gt 2
<C [ (I Al +10- a0 fy 5 )+ c | Jer g, a
1 ’ ’ 1 ’

+C @3 £ T [12 +C @) Fo(T) [, +C (2 +83) (T2 = T)

< CeCreT (H(-)K fo

which is the desired inequality showing the spatial regularisation of f;,. O

—|—T—|—62T>, (7.11)

x,v

The basic L2-level-set estimate parallel to Proposition 3.3 is
Proposition 7.3 Suppose G = n + g > 0 and
8+y <l<ko—5—y, oa>y+2s.

Then the level-set function satisfies

L[ s exus naidy o avass [ [ etates 70, 0 dvax

2 2
(ﬁ) (f) ()
] L e ] V8 P
where the constants C¢, C are independent of .
Proof Recall the decomposition in (3.23):
/ / Oy +gx, M-i-f)f(é) ¢ dvdx
— [ [ es(urexs- )f“> W) dvax
/Tf 0y (u+sxnt ) 1) ) avar, (7.13)

where by the positivity of 1 4+ gx and the same upper bound for 7} in (3.24), we have

L Lo+ enes = 2) £, w0 dvax

Sf/// (M*+g*x*)f(z) (f(l) v > f(l) )b (cosO)|v — vy|¥ dix
T3 x RO xS2

//Qn w+gx, f (l)/ )f(z) ¢ dydx

T‘%

2

(5)
<
¢ <1 + Gup llex ”Le+ +25 mL2> H L.%H;u:

By Lemma 7.1, the coefficient C in the inequality above is independent of . By interpolation,

/ / Q" wex f_i)f(e) ()" dvdx<,H 0,
T3

2

L§H1
(7.14)

The second term on the right-hand side of 7.13 satisfies the same bound as for 7, in (3.23)
since only the upper bound of b, is needed in the estimates. Moreover, the regularizing term
€L, satisfies the same bound as in (3.22), which combined with (7.14) gives (7.3). ]

The counterpart of Proposition 3.7 states
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Proposition7.4 Let G = u+ g > 0and F = u + f satisfying equation (7.7). Denote
Op(+gx.m+f)=Qp(u+gx. n+ )+ eLa(uu+ f).
Then, for any T > 0 and

se1/2,1),ee€[0,1],]>0,84y <€ <ko—5—y,k > 2,
K>0, a>j+y+2s,

it follows that

T
Jo e
0o J13JR3

2
< CIEY2 100,01 +C e 7 ]

— A)(0,(G, F) )" £0,)| dvdrar

AT K ” © ’

2 171 ’
LXL.HV

(7.15)
where C, Cy are independent of 0. ldentical estimate holds for é;(u 4+ gx, — + h) with
fl(f:_ replaced by h(If)+

Proof As in the proof of Proposition 3.7, we only need to control Q in (3.40) with b replaced
by b,. By the same decomposition in (3.41) and a similar argument in Proposition 7.3, we

have
9 < /f// (s + gex)
T3 x RO xS2 ’
o L (WO W) — 10, Wi 0)%) by(eos Ol — wal? i
+/ / Qn(u+gx,%) ) £O, Wi dvdx
T JR3 (v)
+/ f 0, (1 + g, ) () £, W dv dx
sclr ], +ca+n|rl]
L H/+V/2+s L, Lj+y
(l) (0)
sclwnl ], +earo ],
Jjty
The estimate for T; in (3.40) remains the same. ]

Lemma 3.8 stays the same since it is independent of the collision kernel. Same with
Proposition 3.11. Using the energy bound in Proposition 7.2 which is similar to Corollary 3.2,
we obtain a similar bound for &) (with s = 1 and s’ < 1/8) as in Proposition 3.12:

Proposition 7.5 Let T > 0 be fixed. Suppose € € [0, 1] and s € [1/2, 1). Assume that the
given function G = u + g > 0. Suppose £ satisfies

max{8 +y,34+2a} <l <kp—5—vy

and assume that f is a solution of (7.7) which satisfies i + f > 0. Then for any s’ < 1/8,
there exist s” > 0 and p® := p°(L, y,s,s") > 1 such that if s” < s’ﬁ and1 < p < p°,
then we have

& < Ce®T  max ( H ‘

+Tf>, "=p/2 - p), (7.16)
ell/p.p'/p) L%, p=r b
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where C. is independent of 1. The same estimate holds for (— f )ﬁ_ and its associated &.

Since all the building blocks leading to Theorem 3.13 agree, we have a similar statement
for the a priori L°°-bound:

Theorem 7.6 (Linear case) Suppose G = 1 + g > 0. Let F = u + f,, = 0 be a solution to
Eq. (7.7) with s € [1/2, 1). Assume that £ satisfies

max{8+y,3+2a} <l <ko—5—y, oa>2+y+2s.

Assume that the initial data satisfies

H(v)‘Z+2 fo < 0. (7.17)

<00, @ fo

L2

o
X, Lx.v

Additionally, assume that the solution satisfies

Lo+t
sup [ (v) 0 £l < €1,
! |

where £ satisfies the bound in Proposition 3.11 (or (3.93)). Then it follows that

sp [ r | smacl2|wn| k]
1€[0,T] LT L2y
where
y Bt
. Jj N\
Kl = Ce®T max  max (H(v)‘qfo + TJ) . (7.18)
I<i<4 je{l/p.p'/p) L3,

Here C is independent of n and C is independent of both € and 1.

It is clear from Theorem 7.6 that for each € > 0, if we let T be small enough (with
smallness depending on €, §p only) and || (v)* fo H 12 ALeo small enough (with smallness

independent of both € and 1), then

< dp.

00
Lx,v

sup | ()’
tel0,T]

We can now combine the linear and nonlinear theory in Theorems 4.1 and 5.1 to obtain
the local well-posedness of (7.6) as follows.

Theorem 7.7 Suppose s € [1/2, 1) and let by, be the regularized collision kernel. Suppose

ko > max {€o + 1542y, Lo+ 10+ 20+ y, k —a + 2y + 25 + 9+ {o},
k>max{8+y,a}, o>2+4+y+2s,
where £ is the same weight in Theorem 4.1 (precise statement in (3.93)). Suppose €, 8o, fo
satisfy the assumptions in both part (a) and part (b) in Theorem 4.1. Then for each

such €, if T is small enough (which only depends on €) then (7.6) has a solution
feL&0,T); L%L,%(']IG x R3)). Moreover, f satisfies the bound

ko—to=T—y H < 5. 7.19
H(v) f L®((0,T)xT3xR3) — 0 ( )
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Proof The proof is the combination of the proofs of Theorems 4.1 and 5.1. When applying
the fixed-point argument as in (5.5), we note that the coefficients obtained will depend on 7.
This is the place that the regularization of b in (7.3) takes effect. Specifically, the counterpart
of (5.5) is

ff | On(gx () g) — hx () h). fi)(fe = fin) (v)* dxdv

e / ng( )0 @) = hx ()" ) H 2 Ml

y+2r*+k o

1= 1 g,

+25* +k—a
<c, (sup Wfallez ) lg = llzaz [ fe = Sl 2y
5 A A o

Y (fg = fn)

=—|w o T Cenlg =Rl

Thus the first time interval of existence obtained depends on both € and 1. However, since
the a priori estimates are independent of 7, such a solution can be extended to 7 independent
of n. O

Once the existence of f; is shown, we can pass to the limit and return to the original
operator Q (with ).

Theorem 7.8 Suppose s € [1/2, 1) and

ko > max {€p + 15+ 2y, €o+10+20 + vy, k —a +2y +25s + 9 + Lo},
k > max{8 + y, o}, o>2+4+y+2s,

where £ is the same weight in Theorem 4.1 (precise statement in (3.93)). Suppose €, 89, fo
satisfy the assumptions in both part (a) and part (b) in Theorem 4.1. Then for each such €,
if T is small enough (which only depend on €) then the equation

Wf+v-Vof =€Lalu+ )+ Qu+ fx(W o+ ). fl_g= folx.v)
(7.20)

has a solution f € L%,XL]%((O, T) x T3 x R3). Moreover, f satisfies the bound

[wro=to=7r 1| (7.21)

< 6.
L®((0,T)xT3xRR3)

Proof By Theorem 7.2 and Theorem 7.7, Eq. (7.6) has a solution f; satisfying

e

<d. | S ”Hf,/kalw <Cp<oo, s <1/8.

Given the uniform polynomial decay and a diagonal argument, we can extract a subsequence,
still denoted as f;, such that

fyn — f strongly in L2 ((0,T) x T? x RY).

1,x,v

Our goal is to show that

Oy (fyx (WX £, fi) = Q(fx (W) ), f) inD. (7.22)
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Using a test function ¢, we consider the difference

Ou(fus f) — O(f, )
= /]1‘§311%3/S2 bn(COSQ) (f,;*x,/,*f,; - fn,*Xn,*fn) v — v*|y¢(v) do dvy dv
—/ / / b(cosO) (fixif — fixsf) v —vsl" ¢ (v) do dv, dv
R3JR3 SZ
= / / / bn(COSQ) (fn,*Xn,*fr] - f*X*f) [v — vel” ((b(v/) - ¢(U)) do dv, dv
R3JR3JS?
+/ / / (b(cos ) — by(cos0)) fixs flv—vil?” (@ (V) — ¢ (v)) do dvydv
R3JR3JS?

éEl-‘rEz.

By Proposition 2.10 and the upper bound of b, in (7.3), E; is bounded as

|Eq| <

/ / / by (c088) (fywdn fo — Foxe f) 10 = 0al7 (6@ — () do dv, dv
R3JR3JS?

dv, dv

/s2 by(cosB) (p(v') — ¢(v)) do

S/ / |fﬂ,*Xn,*fn - f*X*f| v — vy |V
R3 JR3

=Clgllw2= / / |fn,*Xn,*fr; - f*X*f| v — U*|2+y dv, dv,
R3 JR3
where C is independent of 7. The integrand in the inequality above satisfies
| foosdnos fo = Foxs f1 10 = 0l < | fotne = foxte| 00747 [ fy] (0}
+ [y = FLP | fs] 07
< [ foor = fe @PH [ fy] ()7
+ [ fy = L1 | ] (07
Therefore,
IE 2, < Cldllwae | fo = f ”L%,L%w -0, n—0.

To estimate E5, note that by symmetry (or more precisely, anti-symmetry) and Taylor expan-
sion, E» satisfies

/ / / (b(cos ) — by(cos0)) fixs flv — vil” (¢ (V) — p(v)) do dvy dv
R3 JR3 S2

=

/1;3 /1;3 /SZ (b(cos@) — b,,(cos@)) Fexsflv —ve]Y (0 =) - Vyop (v) do duy dv

_|._

1/ / / (b(cos ) — by (c0s0)) fixsflv — vl (v =) ® (v — V) - V¢ (D) do dv, dv
2 R3 JR3 JS2
< / / / (1 —cosH) |b(cos€)—b,,(cos@)|f*x*f|v—v*|l+” [Vyd (v)| do dvy dv

R3 JR3 JS2

l in2 _ o 124V 924

+ sin® 0 |b(cos ) — by (cos )| fixs flv — vl ™7 |Vip ()| do dus dv,
2 Jr3 Jr3 Js2

where by (7.3), the integrands of the last two terms satisty the uniform bounds

(1 — cos ) [b(cos 0) — by (cosO)| fu flv — vl "7 [Vyo (v)]
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<20 Il (1 = cos)b(cos6) fu flv — vyl 7
and
sin® 0 ’b(cos 0) — by(cos 0)| Foflv — v 7Y ’V3¢(§)|
< 21¢ llwzoe sin® Ob(cos 0) fi flv — ve**7.
Since the right-hand sides of the inequalities above are integrable, we can apply the Lebesgue

Dominated Convergence Theorem and obtain that £, — 0 as n — 0. Hence (7.22) holds. O

Recall that the only place that the restriction of a weak singularity enters is when we apply
the fixed-point argument (see (5.5)) to obtain an approximate solution to Eq. (7.20). Once
such restriction is bypassed via Theorem 7.8 , the rest of the results from Proposition 5.2
to Theorem 6.4 all hold, since they are all proved for s € (0, 1). This leads us to the main
theorem of this paper.

Theorem 7.9 (Global Existence) Let s € (0, 1) and y € (0, 1]. Suppose 8 is a constant
small enough such that bounds in Theorem 5.9 and (6.15) are satisfied. Let £( be the same
weight in Theorem 4.1 and ko be a constant satisfying

ko > 5y 4+ 35+ S5y + 4s.

Let 85, defined in (6.17), be the constant measuring the smallness of the data. Suppose the
initial data fo has zero mass, momentum and energy and satisfies

[ s

<al et gy

< . (7.23)

LENLT, L3y

Then the Boltzmann equation (1.1) has a unique solution f € L*(0, co; LJZC L%o+€o+2(T3 X
R3)). Moreover; there exist \' > 0 such that

H < (S' 2 81)
v )
‘< > f loo(O,OCNT}XRE) / =

-\t
t,-, - <C e , t>0.
||f( ) ”Lil‘ﬁoﬂoﬂ = ”fO ||L~%L1%0+40+2 =

Finally, based on the global result and the exponential decay of the L?-norm in Theo-
rem 7.9, we can show an exponential decay in the L°°-norm of the solution.

Theorem 7.10 Suppose ko and the initial data fy satisfy the same conditions in Theorem 7.9.
Then there exists C,, no > 0 such that for any t > 1 the solution obtained in Theorem 7.9
satisfies

2m0/p _2my,
e P, (7.24)
L3

X,v

[ rao ] = e orn
where A is the same decay rate in Theorem 7.9.

Proof Forany K,t; > 0,let &£ » be the energy functional similar as in (3.54):

2 o0
L@+A As
1 o0 ) \2
s ([T la-a0 ()]
CO(Z] * K.+

O

2
€,(K. 11, 00) = sup GO axde
= o THY
1

p v
dr .
Ly,
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Note that by its definition £, is decreasing in #; and K. The global bounds of f developed
in Theorem 7.9 guarantee that £, (K, t1, oo) is well-defined. Moreover, for any 7 > 0 and
£p(0,T,00) = sup | (v)" f1t,-, ) |

L <ko+£o+2,
2 o0
+f
t>T Lz, T J13

(s

4 P
dr
LY,
2/p _2p
e

=c|wi | e ekt (7.25)

X,

2
O p | dxde

where 1’ is the decay rate in Theorem 7.9.

Our main goal is to remove the dependence on the weighted L°°-norm of fy in (5.33)
(with € = 0) so that the exponential decay in the weighted L2-norm of f can be transferred
to exponential decay in the L°°-norm. To this end, define the levels

My = Ko(1—-1/2%), k=0,1,2,---.

Setting fi = f If,fk) - and proceeding as in the proof of Theorem 3.13, we arrive at

Ep(Mi11,00) = C [0 i) |2 +C [ fitwn) |20,

4 okai+1) _
+C Z e Ep(My—1, 11, 00)P", (7.26)
i=1 0
fork =1, 2, .... The parameters a;, f; are the same as in Theorem 3.13. Fix T > 1 and let

Tk be the increasing time sequence
Ti:=T(1-1/2"Y,  k=0,1,2,---.
We further denote & as
& = Ep(My, T, 00).
Integrate (7.26) in t; € [Tx—1, T¢] to obtain that
& = Ep(Mg, Ty, 00)

Ty
< C(Ti - Tk_l)”(fT [ e |7, dn +/T
k—1 !

k—1

Tk

[ feten) |72 dn)

4 Hk(ai+1) eBi
2 &L
+C E el §

i=1

a; ’
Ky
where we have applied the monotonicity of &£,(:, -, -) in its first and second variables. By

similar estimates as in (3.92) with the same definitions for r,, &, we have
Tx Fi k(&x=2) oT=
2 ~ Ep(My, Ty—1, Ti) 2 &L
[ w2 a3, an < &2 S
T XU

k—1

<C ,
(M = My—)5=2 = 70 gE2

and by (3.60), it holds that

Tk 2 2 Tk 4 2
/ |02 fitr) |20 dny = / [ (fe@? |0 dn
Ti—1 ' Ti—1 -
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YR A [N

Ex—2p Ix
- 1 2
=Co(Tx = Tj—1) ¥ ——5—,—

K, "

Since we are interested in the long time behaviour we may take 7 > 1 to derive that an
analogous estimate to (3.112) with a;, B; defined in (3.96) holds:

4 sk(aj+1) oBi
2 &
G=CY —2 k=12, T

i=1
The key difference between (7.27) and (3.112) is that Ko in (7.27) is independent of fo.

Applying the De Giorgi iteration to (7.27) we conclude similarly as in (5.33) (with € = 0)
that

%

- 7.27
K (7.27)

Bi—1

sup H f+(l‘7 ) H < Ko := Ko(&) < Cp max 50ai , € <ko,
t>T L)?C.)v I<i=4

where & := £,(0, T /2, 00). Hence by the bound in (7.25), we have

2n0/p _2'mgp Bi —1

4 4 .
sup || (v t-, - H <C H v ‘ e 0, = min
sup | feae, o, sG] nl mo = min =

In particular, the above inequality holds for £ = ko, which is the desired bound in (7.24) for
the positive part of f. Analogous computation can be performed for the negative part of f
which finishes the bound in (7.24). ]

8 Proofs of Lemmas 2.1 and 2.2

In this appendix we show the proofs of Lemmas 2.1 and 2.2, starting with Lemma 2.1.
Proof of Lemma 2.1 For the proof it suffices to show, for u € L? (R,

[ (D)7 )¢ (D) u|

Lo =Cliulg, 8.1)

[(20)? ) (D)0 ) u|

<Cllullp. (8.2)

LY

To show (8.1), we use the expansion formula of pseudo-differential operators (Ex., [37,
Theorem 3.1]),

1
(D))" ()7 = @)U+ Y — ()@ UDIN + v, DY),

O<|a|<N

where p(§) (v, £) = 8¢ (—id,)? p(v, &) for the symbol p(v, €). If N > d + 1+ |€| + || then

N (v, €) E Wry@, E) (&)™ - belongs to the symbol class S d ' In fact, it follows from
[37, Theorem 3.1] that

1— N—-1
N, E) = N Z/ oy . 60,

la|=N
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dydn

Fra(v.€) = Os — / f eI + T +3) ) Gy

Using the elementary identities

e—iy-n _ ( ) —2m 1-A )m —iy- 77 e—iy-r] — <y)—2k a- An)ke—iy-n’
we have, for m, k € N sufficiently large,
"NV, §)

= [ ([ a=apt {m i+ e - 80"+ 9 )

dn
(2n)d)dy

m — —iy- m (o4 dy
=/{<1—Ay> (v+y) %)}(/e I = A )T (& + 7)) >}(2 )d)< o

= [{a-ayn ¢ g / adn oy
_/{(1 A" ((v+y) )(a>}(/m<<§){ }(zﬂ)dJF \n\z%){ }(27T)d)(y)2k

A _ m —L . diy
—/{(1 A"+ e (1 + 26 )

Since (£) and (£ + tn) are equivalent in [y, it follows that
|| < C "N

and moreover the same bound for |/,| holds if 2m > N — 6 + d. Using (v + y)_1 (y)_1 <
(v)_l, and taking k satisfying 2k > N + |£| + d, we see that 7y (v, &) belongs to the desired
symbol class. If we put K (v, z) = [ €“57y (v, £)dE /(2m)¢ then we have Fy (v, Dy)u(v) =

[ K, v—yu(y)dy and

(1 — Ap) Py (v, §)|dE < C(z) ™2

sup |K (v, 2)| < <z>*2d/sup
v

which concludes that 7y (v, D,) is L? bounded operator for p € [1, oo]. Next we consider the
the L? boundedness of terms (v)¢ ((v)_z)(a)((Dv)g)(“) (Dy)~? for 0 < || < N — 1. Since
the term for « = O is identity, its L” boundedness is trivial. Note that the multiplication
(v)* ((v)"z)(a) is L? bounded operator. If we put Qy (&) = ((5)9)("‘) (S)’g for  # 0,
then the proof of (8.1) is completed by the fact that the Fourier multiplier Q4 (D,) is L?
bounded. Indeed, one can see that K, (z) = f eivd 0y (&)dE/ 2m)4 e LY, more precisely,
Ko ()| < Clz)™ @V if |z] < 1 and |Kg(2)| < Cmlz| 72" if |z| > 1 for any m € N satisfying
2m > d. To obtain these estimates, take a cutoff function ¢(§) € C§° (RY) satisfying ¢ = 1
for |€] < 1 and ¢ = O for |§| > 2, and decompose

Ka(z>=/e'“ (E)Qa(é)(z E)d+|Z|—2mfeiz~§(_A§)m((1_ (s)>Qa<s>) 5 5)d

A
= Kl,ot(z) + KZ,ot(Z) s

for any A > 0. Then we have

K1a()] < c/ (€)1 de < C'Ad,
{lE]<2A}

Ka(2)] < Culz 2" f{ (s = G A
>
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because ¢(§/A) € S7 and Qu(§) € Slj(‘). Choosing A = |v|~!, we have the desired
estimate for K, when |z| < 1, and another estimate is obvious by considering the same
formula without the cutoff function ¢.

For the proof of (8.2) we use the expansion formula twice. First expansion is

(D)™ (W)™ = ()" Y =) D@D 4N D),
O<|a|<N !

where ry v (v, £) satisfies (v)* (€)' ri (v, &) € S0

This implies that the symbol of (Dv) (v) r, N(v D,) belongs to S_

if N is chosen sufficiently large.
d-= 1, and hence

one can show that (D,)? (v)* r1,n(v, Dy) is L? bounded, by the same way as before.
Since (Dv)e (v)‘Z (v)_l (Dv)_e = Id, it suffices to consider the L? boundedness of
(Dy)? (v)* ((v)_e)(a)((Dv)_e)(“) for o« # 0. Use the expansion formula again

1
D) (@) @ @)= 3 (@ @ @), (PP 4y 5w, D).
0<IpI<N

If N is large enough, thenr, 7 (v, D) ({Dy) ™)@ is L? bounded because its symbol belongs
to S;g_l. On the other hand, since ((v)Z ((v)’é)(a)>(ﬁ) is bounded function and since

(D)HPB (D)) @ is a Fourier multiplier with its symbol in S;g), we see their product
is L? bounded operator. Thus we obtain (8.2) . ]

Next we show the proof of Lemma 2.2.

Proof of Lemma 2.2 By one of the definitions of the fractional Laplacian, we have

f(v’) ~w2 o]
H(—AU)O‘/Z ((v) ||L2(]R'5 = /:/RG |3+2a dv' dv

<2C// _4|f(v’)—f(v)| v/
R6

|v _ v|3+2a

,2’2
e //Rﬁ |3+2a |f (0)|* dv'dv,

where the first term on the right-hand side is readily bounded by C || (—Av)"‘/ 2 f ||iz ®3)"
Hence we focus on the second term, which satisfies

2 _
/[1@6 v|3+2a . |f(v)| dU dv = // 4 |||11))| v||}_~|_21|x |f(U)|2 dv/dv

1 1 [v]? + |v/|? L
/]]1;6 (U/ (7 |1+2a|f(v)| dv'dv

</ i|f(v>|2</ L;dv) .
~ Jr3 (v)? R3 <v/>2 [v/ — vl +2

(8.3)

For any v € R3, make the separation of the domain as

R = (o' ||| > 2[v| or [v'] < |]/2} U {v/ | v]/2 < || < 2]} 2 21 U L.

@ Springer



38 Page 96 of 98 R. Alonso et al.

Then the v’-integration in (8.3) satisfies

/ 1 L / 1 L ,+/ 1 L
—_———— dv' = v v
Re (v)? [V — vl T2 o, ()2 v/ —v[1+2 (V)2 [V — o[l
1 1 C 1
< C/ ——dv + — — v
Q (v)? v+ ()2 Jj—vj<3) [V — o2
C
<C+-— ()7 < 2C < o0,
(v)

where C is independent of v. Hence by letting p € (2, 6) be the exponent in the Sobolev
embedding

I Norasy < € 1 =20 F | 2y

we can bound the term on the right-hand side of (8.3) as follows:

[, slror (/ L;dv) 0
R3 (v)z R (U/)Z v/ — v|1+2(¥

1 1 2/q )
<c [ qptrorase(f ome) 1 ey < lea s Iy

(8.4)
where ¢ = (p/2) = p/(p — 2) > 3/2 since p € (2, 6). We therefore get
[ =20 (07 1) gy < C A0 s, -
The lemma holds by a further integration in x. O

Acknowledgements R. Alonso gratefully acknowledges the support from Conselho Nacional de Desenvolvi-
mento Cientifico e Tecnoldgico - CNPq, grant Bolsa de Produtividade em Pesquisa (303325/2019-4). The
research of Y. Morimoto was supported by JSPS Kakenhi Grant No.17K05318. The research of W. Sun was
supported by the NSERC Discovery Grant R611626. T. Yang’s research was supported by a fellowship award
from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project no.
SRF2021-1S01).

Funding Open Access funding provided by the Qatar National Library.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Alexandre, R., Villani, C.: On the Boltzmann equation for long-range interactions. Commun. Pure Appl.
Math. 55(1), 30-70 (2002)

2. Alexandre, R., Desvillettes, L., Villani, C., Wennberg, B.: Entropy dissipation and long-range interactions.
Arch. Ration. Mech. Anal. 152(4), 327-355 (2000). https://doi.org/10.1007/s002050000083

3. Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.-J., Yang, T.: Regularizing effect and local existence for the
non-cutoff Boltzmann equation. Arch. Ration. Mech. Anal. 198, 39-123 (2010). https://doi.org/10.1007/
$00205-010-0290-1

@ Springer


http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s002050000083
https://doi.org/10.1007/s00205-010-0290-1
https://doi.org/10.1007/s00205-010-0290-1

L®°-Solutions of Non-cutoff Boltzmann Page 97 0f 98 38

13.
14.
15.

20.

21.

22.

23.

24.

25.

26.

217.

28.
29.

30.

31.

33.

Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.-J., Yang, T.: The Boltzmann equation without angular
cutoff in the whole space: qualitative properties of solutions. Arch. Ration. Mech. Anal. 202(2), 599-661
(2011)

Alexandre, R., Morimoto, Y., Ukai, S., Xu, C., Yang, T.: The Boltzmann equation without angular cutoff
in the whole space: II, global existence for hard potential. Anal. Appl. 9(2), 113-134 (2011)

Alexandre, R., Morimoto, Y., Ukai, S., Xu, C., Yang, T.: Global existence and full regularity of the
Boltzmann equation without angular cutoff. Commun. Math. Phys. 304(2), 513-581 (2011)

Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.-J., Yang, T.: The Boltzmann equation without angular
cutoff in the whole space I: global existence for soft potential. J. Funct. Anal. 262(3), 915-1010 (2012)
Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.-J., Yang, T.: Local existence with mild regularity for the
Boltzmann equation. Kinet. Relat. Models 6(4), 1011-1041 (2013)

Alonso, R.: Emergence of exponentially weighted L”-norms and Sobolev regularity for the Boltzmann
equation. Commun. Partial Differ. Equ. 44(5), 416446 (2019)

Alonso, R., Carneiro, E.: Estimates for the Boltzmann collision operator via radial symmetry and Fourier
transform. Adv. Math. 223(2), 511-528 (2010)

. Alonso, R., Sun, W.: The radiative transfer equation in the forward-peaked regime. Commun. Math. Phys.

338, 1233-1286 (2015)

Alonso, R., Morimoto, Y., Sun, W., Yang, T.: Non-cutoff Boltzmann equation with polynomial decay
perturbation. Rev. Mat. Iberoam. (2020). arXiv:1812.05299

Aronszajn, N., Smith, K.T.: Theory of Bessel potentials. I. Ann. Inst. Fourier 11, 386475 (1961)
Bouchut, F.: Hypoelliptic regularity in kinetic equations. J. Math. Pures Appl. 81, 1135-1159 (2002)
Caffarelli, L., Vasseur, A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic
equation. Ann. Math. 171(3), 1903-1930 (2010)

Carlen, E., Carvalho, M., Lu, X.: On strong convergence to equilibrium for the Boltzmann equation with
soft potentials. J. Stat. Phys. 135(4), 681-736 (2009). https://doi.org/10.1007/s10955-009-9741-1

De Giorgi, E.: Sulla differenziabilita e I’analiticita delle estremali degli integrali multipli regolari. Mem.
Accad. Sci. Torino. CI. Sci. Fis. Mat. Nat. 3(3), 25-43 (1957)

Desvillettes, L., Villani, C.: On the trend to global equilibrium for spatially inhomogeneous kinetic
systems: the Boltzmann equation. Invent. Math. 159(2), 245-316 (2005)

DiPerna, R.J., Lions, P.-L.: On the Cauchy problem for Boltzmann equations: global existence and weak
stability. Ann. Math. (2) 130(2), 321-366 (1989)

Duan, R., Sakamoto, S.: Solution to the Boltzmann equation in velocity-weighted Chemin—Lerner type
spaces. Kinet. Relat. Models 11(6), 1301-1331 (2018)

Duan, R., Liu, S., Xu, J.: Global well-posedness in spatially critical Besov space for the Boltzmann
equation. Arch. Ration. Mech. Anal. 220(2), 711-745 (2016)

Duan, R., Liu, S., Sakamoto, S., Strain, R.M.: Global mild solutions of the Landau and non-cutoff
Boltzmann equations. Commun. Pure Appl. Math. 74(4), 1-65 (2019)

Ellis, R., Pinsky, M.: The first and second fluid approximation to the linearized Boltzmann equation. J.
Math. Pures Appl. 54, 125-156 (1975)

Golse, F., Imbert, C., Mouhot, C., Vasseur, A.: Harnack inequality for kinetic Fokker—Planck equations
with rough coefficients and application to the Landau equation. Annali della Scuola Normale Superiore
di Pisa Classe di Scienze Scuola Normale Superiore XIX(1), 253-295 (2019). https://doi.org/10.2422/
2036-2145.201702-001

Grad, H.: Asymptotic theory of the Boltzmann Equation II. In: Laurmann, J.A. (ed.) Rarefied Gas Dynam-
ics, vol. 1, pp. 26-59. Academic Press, New York (1963)

Gressman, P.T., Strain, R.M.: Global classical solutions of the Boltzmann equation without angular cut-off.
J. Am. Math. Soc. 24(3), 771-847 (2011)

Gualdani, M.P., Mischler, S., Mouhot, C.: Factorization of non-symmetric operators and exponential
H-theorem. Mém. Soc. Math. Fr. (2010). https://doi.org/10.48550/arXiv.1006.5523

Guo, Y.: The Boltzmann equation in the whole space. Indiana Univ. Math. J. 53(4), 1081-1094 (2004)
Guo, Y.: Decay and continuity of the Boltzmann equation in bounded domains. Arch. Ration. Mech. Anal.
197(3), 713-809 (2010). https://doi.org/10.1007/s00205-009-0285-y

Guo, Y., Kim, C., Tonon, D., Trescases, A.: Regularity of the Boltzmann equation in convex domains.
Invent. Math. 207(1), 115-290 (2017). https://doi.org/10.1007/s00222-016-0670-8

Hérau, F., Tonon, D., Tristani, I.: Regularization estimates and cauchy theory for inhomogeneous Boltz-
mann equation for hard potentials without cut-off. Commun. Math. Phys. 377, 697-771 (2020)

Huo, Z.H., Morimoto, Y., Ukai, S., Yang, T.: Regularity of solutions for spatially homogeneous Boltzmann
equation without angular cutoff. Kinet. Relat. Models 1(3), 453-489 (2008)

Imbert, C., Mouhot, C.: Holder continuity of solutions to hypoelliptic equations with bounded measurable
coefficients (2015). https://hal.archives-ouvertes.fr/hal-01152145v5

@ Springer


http://arxiv.org/abs/1812.05299
https://doi.org/10.1007/s10955-009-9741-1
https://doi.org/10.2422/2036-2145.201702-001
https://doi.org/10.2422/2036-2145.201702-001
https://doi.org/10.48550/arXiv.1006.5523
https://doi.org/10.1007/s00205-009-0285-y
https://doi.org/10.1007/s00222-016-0670-8
https://hal.archives-ouvertes.fr/hal-01152145v5

Page 98 of 98 R. Alonso et al.

34.

35.

36.

37.
38.

39.

40.

41.

42.

43.

44.

45.

Imbert, C., Silvestre, L.: The weak Harnack inequality for the Boltzmann equation without cut-off. J. Eur.
Math. Soc. 22(2), 507-592 (2020)

Imbert, C., Silvestre, L.: Global regularity estimates for the Boltzmann equation without cut-off. J. Am.
Math. Soc. 35, 625-703 (2022)

Kim, J., Guo, Y., Hwang, H.J.: An L2 to L°° Framework for the Landau equation. Peking Math. J. (2020).
https://doi.org/10.1007/s42543-019-00018-x

Kumano-Go, H.: Pseudo-Differential Operators. MIT, Cambridge (1982)

Liu, T.-P., Yu, S.-H.: Boltzmann equation: micro-macro decompositions and positivity of shock profiles.
Commun. Math. Phys. 246(1), 133-179 (2004)

Liu, T.-P, Yang, T., Yu, S.-H.: Energy method for the Boltzmann equation. Physica D 188(3-4), 178-192
(2004)

Morimoto, Y., Sakamoto, S.: Global solutions in the critical Besov space for the non-cutoff Boltzmann
equation. J. Differ. Equ. 261(7), 4073-4134 (2016)

Silvestre, L.: A new regularization mechanism for the Boltzmann equation without cut-off. Commun.
Math. Phys. 348(1), 69-100 (2016)

Silvestre, L., Snelson, S.: Solutions to the non-cutoff Boltzmann equation uniformly near a Maxwellian.
Math. Eng. 5(2), 1-36 (2023)

Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical
Series, No. 30. Princeton University Press, Princeton (1970)

Ukai, S.: On the existence of global solutions of mixed problem for non-linear Boltzmann equation. Proc.
Jpn. Acad. 50, 179-184 (1974)

Ukai, S., Yang, T.: The Boltzmann equation in the space LZn L%O?: global and time-periodic solutions.

Anal. Appl. (Singap.) 4(3), 263-310 (2006). https://doi.org/10.1142/S02195305060007 84

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer


https://doi.org/10.1007/s42543-019-00018-x
https://doi.org/10.1142/S0219530506000784

	De Giorgi Argument for Weighted L2capLinfty Solutions to the Non-cutoff Boltzmann Equation
	Abstract
	1 Introduction
	1.1 Setup and Objective
	1.2 Significance and Main Result
	1.3 Notations
	1.4 Methodology and Organization

	2 Technical Toolbox
	2.1 Function Spaces
	2.2 Useful Facts About Polynomial Weights
	2.3 Interpolation Results
	2.4 Strong Averaging Lemma

	3 Linear Local Theory: A Priori Estimates
	3.1 Local in Time L2-Estimates
	3.2 L2-Estimates for Level Sets
	3.3 A Level Sets Estimate for the L1-Norm of the Collisional Operator
	3.4 Time–Space–Velocity Energy Functional

	4 Linear Local Well-Posedness
	5 Nonlinear Local Theory
	5.1 Local Existence to the Modified Boltzmann Equation (MBE)
	5.2 Linftyk0-Bound of Solutions to MBE
	5.2.1 Local in time L2-Estimates
	5.2.2 A priori L2-estimates for level sets
	5.2.3 Level Estimate for -f
	5.2.4 Level-Set Estimate for L1-Norm of the Collisional Operator: Quadratic Version
	5.2.5 Time–Space–Velocity Energy Functional: Quadratic Version
	5.2.6 Baseline Level mathcalE0 and Level Set Iteration: Quadratic Case


	6 Nonlinear Global Theory
	7 Strong Singularity
	8 Proofs of Lemmas 2.1 and 2.2
	Acknowledgements
	References




