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Abstract

Uncertainties about controls on tree mortality make forest responses to land-use and cli-

mate change difficult to predict. We tracked biomass of tree functional groups in tropical

forest inventories across Puerto Rico and the U.S. Virgin Islands, and with random forests

we ranked 86 potential predictors of small tree survival (young or mature stems 2.5–12.6

cm diameter at breast height). Forests span dry to cloud forests, range in age, geology

and past land use and experienced severe drought and storms. When excluding species

as a predictor, top predictors are tree crown ratio and height, two to three species traits

and stand to regional factors reflecting local disturbance and the system state (wide-

spread recovery, drought, hurricanes). Native species, and species with denser wood, tal-

ler maximum height, or medium typical height survive longer, but short trees and species

survive hurricanes better. Trees survive longer in older stands and with less disturbed

canopies, harsher geoclimates (dry, edaphically dry, e.g., serpentine substrates, and

highest-elevation cloud forest), or in intervals removed from hurricanes. Satellite image

phenology and bands, even from past decades, are top predictors, being sensitive to veg-

etation type and disturbance. Covariation between stand-level species traits and geocli-

mate, disturbance and neighboring species types may explain why most neighbor

variables, including introduced vs. native species, had low or no importance, despite uni-

variate correlations with survival. As forests recovered from a hurricane in 1998 and ear-

lier deforestation, small trees of introduced species, which on average have lighter wood,

died at twice the rate of natives. After hurricanes in 2017, the total biomass of trees �12.7

cm dbh of the introduced species Spathodea campanulata spiked, suggesting that more

frequent hurricanes might perpetuate this light-wooded species commonness. If hurri-

cane recovery favors light-wooded species while drought favors others, climate change
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influences on forest composition and ecosystem services may depend on the frequency

and severity of extreme climate events.

Introduction

The primary controls that determine the risk of tropical tree mortality are not well understood.

This knowledge gap hinders our ability to predict future forest composition, resilience and

consequences for carbon storage in response to ongoing changes in climate and land use. Cli-

mate change has increased tree mortality from heat, drought and increasingly dry air [1–12],

and from wind or rain storms, flooding, landslides and fire [1, 4, 5, 13–18]. Multiple distur-

bances including forest fragmentation can cause further damage and may synergistically ele-

vate tree mortality [2, 3, 18–22]. Tree mortality drives large changes in tropical forest carbon

storage [23–27]. Although large trees are known to play a disproportionate role in tropical car-

bon cycling [28], small trees can comprise large portions of tree carbon storage in younger or

dry forests [29]. Mortality rates are important to evaluating forest roles in Earth systems, cli-

mate change vulnerability, restoration success and sustainable management, and to under-

standing tree species coexistence [30–37]. A challenge, though, is that tree mortality

predictions are highly uncertain, in part because the type, severity and frequency of distur-

bance, and more stable features like gradients in long-term climate, topography and soils, can

all affect mortality [1, 8, 11, 34, 38–43].

Adding uncertainty to predicting tree mortality is that in many tropical regions hundreds

or more tree species coexist and vary in traits, habitat preferences and species interactions

[17, 44, 45]. Tree mortality rates are generally higher for more resource acquisitive species, or

for trees within a stand that are smaller or damaged [19, 25, 40, 43–53]. Examples are early suc-

cessional species, which tend to be shade intolerant and grow fast. However other factors may

be more important when considering drought, or for forests frequently disturbed by storms,

fire or browsing [10, 12, 41]. Neighboring species with different traits may differently affect

mortality, and these effects may differ with climate conditions or species pool [52, 54–56]. For

modeling carbon dynamics, functional groups of tree species can simplify this complexity

[40, 51]. Unclear, though, is what functional groups or related traits, and what landscape fac-

tors, are most important when modeling tree demography across tropical landscapes encom-

passing widely ranging environments and disturbance histories. Also unclear is what remote

sensing products can best support this large-scale modeling [34, 40]. Most knowledge of tropi-

cal tree mortality comes from intensely studied plots spanning either disturbance or climate

gradients. More studies of tree mortality are needed across complex tropical landscapes to

learn what remote sensing products, spatial data, model formulations, and functional group-

ings of species will improve tree mortality predictions [26, 28, 34], and what factors dominate

tree mortality across landscapes over time.

Considering the many questions about the main factors driving tree mortality across

diverse and complex tropical regions subject to varied disturbances, we address tropical small

tree mortality and regional trends in biomass and basal area of species functional groups of

potential neighbor trees, with a series of regional forest inventories from 2001–2019 across

Puerto Rico (PR) and the U.S. Virgin Islands (USVI). The region encompasses tropical dry to

cloud forests that vary in stand age, lithology and past land use. National forest inventories can

reveal what trends and drivers dominate tree demography across a region [57–60]. They cap-

ture the net outcome of climate, land use, soil and topography gradients that are layered onto

landscapes through a systematic sample of very large areas. Three major drivers of forest
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change, including land-use change, climate change and species introductions [13] are present

in the study area. Current forests underwent widespread pre-1950s deforestation and recent

severe drought and hurricanes; introduced species are common.

Our specific objectives are to 1) test potential individual, species trait, neighbor, stand and

landscape variables, including from satellite imagery, and compare them as predictors of small

tree survival (2.5–12.6 cm diameter at breast height, dbh) and 2) track average change in func-

tional groupings of potential neighbors. To simplify forest modeling and increase sample size,

forest models often bin species into functional groups [40, 51, 61, 62]. With this in mind, we

limit the survival analysis to predicting individual mortality, rather than individual by species

mortality, simultaneously analyzing individual, species-trait and landscape factors as predic-

tors. Though species identity explains much variation tree mortality rates [45], we omitted spe-

cies as a predictor. This step prevented the combination or interaction of species factors from

being selected over the generalization of their individual parts. Which combinations of species

traits and landscape factors can be used to accurately predict outcomes, when inventory data

encompass both extreme climate events and varied landscapes, remains unclear. Among the

landscape factors we test are widely available remote sensing metrics. Additionally, we test two

individual tree factors that are not typically available in inventory data: individual tree crown

ratio and height.

In all, we tested 86 possible individual, species trait, neighboring tree, site and regional pre-

dictors of small tree survival, including disturbance factors. Hypothetical relationships under-

lie all of the tested predictors (see Methods). We test overall relationships with Bonferroni-

corrected univariate tests of survival rates based on the predictors. We then compare predic-

tors of small tree survival with random forest (RF) classification models of survival and use

marginal plots [63] to help interpret patterns of survival relative to each variable while

accounting for interactions among variables. Limiting the survival analysis to small trees

allowed us to test how neighborhood functional groups and conspecific vs. heterospecific

neighboring small or large (�12.7 cm dbh) trees influence small tree survival. To quantify

trends in potential neighbors, we estimate average per hectare regional biomass of eight func-

tional groups of small and large trees for each successive inventory. Finally, we discuss connec-

tions among predictors of small tree survival, regional events and forest trends.

Methods

Study area

Puerto Rico and the USVI are Caribbean Islands with steep environmental gradients. Over

land areas of about 8,870 and 350 km2, respectively, annual rainfall ranges from 800–4500 mm

[64, 65]. Forests in the study area range from xeric to semideciduous tropical dry forest to

humid evergreen forest types. In addition to some coastal areas in the north and east, dry for-

ests dominate the side of Puerto Rico’s Cordillera Central that is leeward to trade winds.

Humid seasonal evergreen forest zones are the most extensive zones in Puerto Rico. Cloud for-

ests dominate the highest elevations on Puerto Rico’s major cordilleras, where the tallest

mountain reaches 1,340 m. Xeric to dry deciduous, semideciduous or coastal forest or wood-

land dominate lower elevations in the USVI, while seasonal evergreen forests dominate the

highest elevations, which reach 470 m on St. Thomas Island. While mangrove forests occur

around the islands, the inventory data include only a few mangrove plots, which we excluded

here.

Most forest was previously cultivated or grazed, except in the most remote and least arable

lands [66]. Forests in the study area underwent large-scale deforestation for agriculture that

lasted until the last century for most of the study area. For example, forests covered about 18%
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of mainland Puerto Rico around 1950 [67]. In the USVI, St. John had some forest by the late

1800s but was the most forested of those islands then [68]. In contrast, recent land-cover maps

based on satellite imagery [69] show that tree cover dominates two-thirds of the study area as

of the year 2020.

Maps of forest attributes that were developed from the forest inventory data described

below, and comparisons of those maps with a review of prior studies, show that the spatial pat-

terns of tree functional traits and diversity reflect this history [70]. They show that nitrogen-

fixing trees (all but one individual a legume), leaf traits, forest structure, and numbers of intro-

duced, native and endemic species are related to forest age and past land use [66, 70–73],

which in turn are related to topography, rainfall and geological substrate [66, 70, 72] (S1 File).

The driest forests, forests on fast-draining serpentine substrates and karst hilltops, and cloud

forests, have thicker and smaller leaves and more native and endemic species compared to

other volcanic substrates and alluvial soils (S1 File) [70, 74–76]. In places with more fertile

soils or that are most accessible, forests are younger, more deciduous, and have larger relative

basal areas of nitrogen-fixing trees and introduced species [66, 73]. Deciduousness and N-fix-

ing trees are also more common in drier zones [70].

Forest inventories

Successive inventories were conducted jointly by the United States Department of Agriculture

Forest Service (USDA FS) Southern Research Station, Forest Inventory and Analysis Program

and the USDA FS International Institute of Tropical Forestry on a five-year cycle across Puerto

Rico and the USVI. Each 5-yr cycle surveys a systematically distributed one-third of the Puerto

Rico plots during each of the first three years of a cycle. Plots on the outlying islands of Puerto

Rico, including Vieques, Culebra and Mona Island, and those on the USVI, are surveyed once

every five years during years 3–4 of each cycle, though surveys on Mona and the USVI were

not surveyed in the 2016–2019 cycle, and Mona was first surveyed in the year 2008. In all, the

inventories included 9,616 observations of small tree survival or mortality from one inventory

cycle to the next of 191 unique species. We spaced plots every 24 km2 on mainland Puerto

Rico and every 2–4 km2 on other islands. Large trees�12.7 cm dbh are surveyed on four circu-

lar 0.016 ha subplots with centers spaced 36.6 m apart. Small trees 2.5–12.6 cm dbh are sur-

veyed on 2.07-m radius circular microplots within each subplot. We only analyzed trees on

fully forested microplots or subplots, defined as having >10% tree cover or, in earlier invento-

ries, 10% of the density expected for a mature stand [77]. The inventories were conducted in

the years 2001–2004 (t1, three to six years after Hurricane Georges in 1998), 2006–2009 (t2),

2010–2014 (t3), 2016–2017 (t4a, during and after the severe 2015–2016 drought), and 2017–

2019 (t4b, after Hurricanes Irma and Maria). Changes to the roster of core inventory crew

members during that time included only one of three core members. There were 724 fully for-

ested subplots with observations of small tree survival or mortality from t1-t2, 869 from t2-t3,

342 from t3-t4a and 247 from t3-t4b. Resprouting downed stems are not counted as survivors.

Resprouts are counted as recruits. Because of the major drought and hurricanes, we analyzed

the intervals separately, and we analyzed an all-periods model.

Temporal trends in functional groups

We estimated average per hectare aboveground live biomass for each time period of eight

functional groups of tree species. The aim was to characterize overall trends through time in

small tree neighborhoods and selected forest functional groups. The summaries rely on

design-based estimation methods [78] that account for differences in plot spatial density,

though we limited the estimates to mainland Puerto Rico. Seven functional groups were based
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on combinations of three traits after dropping one rare combination. These traits included

species origin (Origin, I = Introduced, N = Native), Leaf Habit (E = Evergreen, D = Deciduous

or Facultatively Deciduous) and Nitrogen fixing status (N = N-fixer, 0N = non-N-fixer). An

example group is introduced evergreen non-N-fixing species (IE0N, excluding Spathodea cam-
panulata, Boraginaceae). Introduced evergreen N-fixers (IEN) were rare and dropped. The

eighth group was S. campanula, assigned its own functional group because it represents an

introduced fast-growing pioneer taking advantage of degraded forest ecosystems [79] and

competing with native vegetation. This niche has resulted in it either coexisting with or being

a threat to native species [80–85]. Consequently, it represents a conspicuous species to monitor

within various tropical insular landscapes, especially because its seedlings may have some

shade tolerance [80].

Small tree survival predictors

We tested 86 possible individual, species trait, neighboring tree, site, and regional predictors of

small tree survival, including disturbance factors and remote sensing products (Tables 1–3).

As described in the Introduction, we excluded species as a predictor to focus the analysis on

functional traits, neighbors, landscape factors and regional extreme events.

Individual tree size and shade environment. Individual tree measurements representing

tree size and light environment included interval beginning dbh (DIA_Beg), height (HT_Beg),

the percent of the tree stem supporting live foliage (compacted crown ratio, CR_Beg) and can-

opy position (CCLCD_Beg) (Table 1).

Species traits. A database of species functional groups and species stature, i.e., typical

mature height (Species_Ht) was produced from field guides, flora and other sources and

includes leaf thickness, leaf deciduousness, nitrogen-fixing (N-fixing) status and origin (intro-

duced or not) [70]. We added wood density and mycorrhizal association (https://doi.org/10.

2737/RDS-2023-0004). Wood density came from this study, a global dataset [94], or averages

of those sources. If not available from the former, we used two other datasets [95, 96]. Mycor-

rhizal associations are based on species, genus, or family and came from several sources

[97–104]. We also tested species maximum height (Ht_species_max), the maximum of the tal-

lest example of a species in the inventory data or tallest individual in the PRVI inventory.

Stand and neighborhood. We define the neighborhood functional groups by species

traits that prior studies show can affect seedling, sapling, or tree neighbors. The traits include

deciduousness [18, 28, 35], N-fixing status [29, 36–38], nativity [39] and whether the species is

conspecific or heterospecific [18, 40, 41]. Some of these traits can be empirically modeled at

the individual or stand level with available space borne remote sensing and, typically, other

spatial data [70, 105–107]. Stand-level variables from field data included stand size class, field-

noted disturbance type in the last five years, canopy cover in t4a and t4b, and variables describ-

ing neighboring trees (Table 2). These neighborhood variables included basal areas of 1) sur-

rounding conspecific stems and 2) surrounding heterospecific stems, each divided into small

trees vs. large trees, of the eight functional groups described above, in Table 2 and in the legend

for Fig 1. The field-determined disturbance type in the last five years included multiple distur-

bances, like wind or rain plus fire, wind or rain plus human disturbance and wind or rain plus

a landslide. Other indicators of stand-level disturbance severity are described below with Land-

scape predictors.

Landscape. Landscape variables represented climate, surficial geology, soil depth, water

table depth, topography, disturbance history and shade environment (Table 3). Long-term cli-

mate measures included 30-yr potential evapotranspiration to precipitation ratio for the year

(PET2Pannual) and the four driest months (PET2Pdry). Ongoing work is analyzing how
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climate indicators of drought and storm severity relate to mortality. Disturbance history,

shade environment and seasonality variables included remote sensing products that now or

likely soon will be available across the tropics that might improve spatially explicit modeling of

forest dynamics. They included tree canopy cover for periods when not available from field

data. They also included stand age since last disturbance and the red, shortwave infrared

(swir), near infrared to swir ratio (r45) and normalized difference vegetation index (ndvi =

(nir—red)/(nir + red)) from a time series of mostly Landsat satellite image composites from

1980, 1985, 1990, 1995 and contemporaneous to each period. Metrics of average greenness sea-

sonality (phenology), were produced from Landsat images dated in the years 2010–2014 with

Landsat image cloud-masking and reconstruction methods previously described [108]. We

included simple phenology metrics to minimize error from having few clear observations of a

pixel. The four metrics were minimum and maximum Enhanced Vegetation Index (EVI),

their difference (amplitude), and a measure integrating dry season length and intensity (inte-

gral of the dry season). We assumed greenness in 2010–2014 was least affected by the climate

disturbances in 1998 and 2015–2017. The recent and past image bands and metrics chosen can

help distinguish forest type and gauge recent or past disturbance intensity or stand structure,

based on previous studies of Caribbean forest [109–111].

We estimated stand age in early 2001 (age_2001) for mainland Puerto Rico plots with land-

cover maps from the years 1951–52, 1977–78, 1991–92 and 2000–03 [67] and photointerpreta-

tion of forest vs. non-forest in air photos from the years 1936–37. We orthorectified air photo

pairs from 1936–37 with an average of 27 manually verified reference points using ERDAS

Imagine AutoSync [112]. Average root mean square error for the orthorectifications was 6.5

Table 1. Individual, species trait or field-collected predictors and potential influence (PI) on survival.

Variable Name Scale Units Description PI +/-

CCLCD_Beg Individual Ordinal Canopy layer, as indicated by crown class code at interval beginning (1 = Open grown, 2 = Dominant,

3 = Codominant, 4 = Intermediate, 5 = Overtopped)

+ if code is

smaller

CR_Beg Individual Percent Compacted crown ratio. The percent of the tree bole supporting live, healthy foliage +/-

DIA_Beg Individual cm Diameter in the last inventory +

HT_Beg Individual m Height in the last inventory +

Deciduous Species Nominal Leaf habit / deciduousness: E = Evergreen, D = Deciduous, DE = Deciduous or Evergreen +/-

Leaf_Thickness Species Nominal Leaf thickness class: Chartaceous, Chartaceous to Subcoriaceous, Subcoriaceous, Coriaceous, Succulent + if thicker

Myco_group Species Nominal Mycorrhizal association group–arbuscular mycorrhizal (AM), ectomycorrhizal (EM), nonmycorrhizal

(NM), No data, AM+EM, or AM+NM

+/- (- if AM)

N-fixer Species Binary Nitrogen-fixing status: yes = nitrogen fixer, no = non-nitrogen fixer + if yes

Origin Species Binary Origin: I = Introduced, N = Native + if Native

Species_Ht Species m Tree species typical height from field guides and flora +/-

Species_Ht_Max Species m Maximum of Species_Ht or tallest individual in the PRVI inventory +/-

Wood_Density Species unitless Wood density from new field data, averages of new with online data, or online data averages (g dry mass/

cm3 dry: see text)

+

Canopy Cover Subplot Percent Tree canopy cover from field ocular method for t3, t4a and t4b and circa the year 2000 from remote sensing

for t1 and t2

+

Disturbance Subplot Nominal Disturbance type in the last five years +/-

Stand size Subplot Ordinal Large, medium, small +/-

t Inventory Nominal Inventory period end (t2: 2006–2010, t3: 2011–2014, t4a: 2016–2017 post-drought/pre-hurricanes Maria/

Irma, t4b: 2017–2019 post-hurricanes Maria/Irma)

+/-

Individual and subplot-level variables were from the forest inventory data (canopy cover in t2-t3 is from remote sensing). Species-level traits (https://doi.org/10.2737/

RDS-2023-0004) compiled or measured for this or a prior study [70]. PI +/- = Overall potential influence on survival is positive (+), negative (-), or dependent on time

and place (+/-).

https://doi.org/10.1371/journal.pone.0280322.t001
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m. For other islands we modeled stand age in 2001 with a discriminant function model of age

class in mainland Puerto Rico as predicted by year 2000–03 satellite imagery and forest cover

(in 2000–03) in 90-, 270-, and 1,050-m windows around each training point, as surrounding

forest cover is a top predictor of forest age [68] (a DOI link to https://www.fs.usda.gov/rds/

archive/ will be placed here). Stand age (age) came from age in the year 2001 and whether a

Table 2. Functional groups of potential neighbor predictor variables and influence on survival.

Functional Group a-c (Figs 1

and 11)

Neighbor variable Name (Fig

2)

Neighbor

conspecificity

Size Species

Originb
N-

fixing

Leaf

Habitc
Potential Influence (PI)

Typed
PI

+/-

ID0N conspLg_Tr1ID0Nba conspecific large I No D N, S -

IDN conspLg_Tr1IDNba conspecific large I Yes D N, S, Nutr -

IE0N conspLg_Tr1IE0Nba conspecific large I No D N, S -

ND0N conspLg_Tr1ND0Nba conspecific large N No E N, S -

NDN conspLg_Tr1NDNba conspecific large N Yes D N, S, Nutr -

NE0N conspLg_Tr1NE0Nba conspecific large N No D N, S -

NEN conspLg_Tr1NENba conspecific large N Yes E N, S, Nutr -

SPCA conspLg_Tr1SPCAba conspecific small I No E N, S -

ID0N consp_SmTr1ID0Nba conspecific small I No D N, S -

IDN consp_SmTr1IDNba conspecific small I Yes D N, S, Nutr -

IE0N consp_SmTr1IE0Nba conspecific small I No D N, S -

ND0N consp_SmTr1ND0Nba conspecific small N No E N, S -

NDN consp_SmTr1NDNba conspecific small N Yes D N, S, Nutr -

NE0N consp_SmTr1NE0Nba conspecific small N No D N, S -

NEN consp_SmTr1NENba conspecific small N Yes E N, S, Nutr -

SPCA consp_SmTr1SPCAba conspecific large I No E N, S -

ID0N hetspLg_Tr1ID0Nba heterospecific large I No D N, S +/-

IDN hetspLg_Tr1IDNba heterospecific large I Yes D N, S, Nutr +/-

IE0N hetspLg_Tr1IE0Nba heterospecific large I No D N, S +/-

ND0N hetspLg_Tr1IENba heterospecific large I Yes E N, S, Nutr +/-

NDN hetspLg_Tr1ND0Nba heterospecific large N No E N, S +/-

NE0N hetspLg_Tr1NDNba heterospecific large N Yes D N, S, Nutr +/-

NEN hetspLg_Tr1NE0Nba heterospecific large N No D N, S +/-

SPCA hetspLg_Tr1NENba heterospecific large N Yes E N, S, Nutr +/-

ID0N hetspLg_Tr1SPCAba heterospecific large I No E N, S +/-

ID0N hetsp_SmTr1ID0Nba heterospecific small I No D N, S +/-

IDN hetsp_SmTr1IDNba heterospecific small I Yes D N, S, Nutr +/-

IE0N hetsp_SmTr1IE0Nba heterospecific small I No D N, S +/-

ND0N hetsp_SmTr1ND0Nba heterospecific small N No E N, S +/-

NDN hetsp_SmTr1NDNba heterospecific small N Yes D N, S, Nutr +/-

NE0N hetsp_SmTr1NE0Nba heterospecific small N No D N, S +/-

NEN hetsp_SmTr1NENba heterospecific small N Yes E N, S, Nutr +/-

SPCA hetsp_SmTr1SPCAba heterospecific small I No E N, S +/-

aIntroduced evergreen nitrogen-fixing species were rare.
bI = Introduced species, N = Native species
cE = Evergreen species, D = Deciduous, Nearly deciduous or facultatively deciduous species.
dN = Neighbor contagion, immunity, competition, etc., S = Shade environment, Nutr = Nutrient availability
e+ = Hypothetical positive influence on individual survival, - = Hypothetical negative influence, +/- = Hypothetical negative/positive influence on species that are shade-

intolerant/shade-tolerant.

https://doi.org/10.1371/journal.pone.0280322.t002
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plot was forested in 2001 to 2019. We also included a variable from [67] indicating whether a

stand was shade coffee in 1977–78 (coffee_77).

Table 3. Potential spatial predictor variables may relate to shade, moisture, nutrients, or disturbance.

Variable Units Descriptiona Source PI

+/-b

age Years Stand age since disturbance This study +

age_2001 Years Stand age in 2001 since disturbance This study +

amplitude10_14 Unitless Landsat phenology maximum minus minimum Enhanced Vegetation Index (EVI) for 2010–2014 This study +/-

cloudfor Binary 1 = cloud forest zone,0 = not cloud forest zone [86, 87] +/-

coffee77 Binary Whether a subplot was coffee in 1977 or not [67] -

curvature Radians/

distance

Topographic curvature(<0 = concave, 0 = flat, 0 = convex) [88] +/-

depth2restrictive cm Depth to restrictive layer [89] +

depth2water_table cm Depth to water table [89] +

eastness Unitless Topographic eastness facing west/east (-1/+1) [88] +/-

elevation m Topographic elevation—lower values are drier [88] +/-

geoclimate Nominal Geoclimatic zone (potential evapotranspiration to precipitation ratio <1 = humid or >1 = dry),

three-class geology below, and cloud forest from [86]

[64, 70, 86, 87,

90, 91]

+/-

geology_3class Nominal Surficial geology generalized to 3 classes: karst, serpentine, or other (extrusive volcanic + sedimentary

+ alluvial)

[70, 90, 91] +/-

integrdryseas10_14 EVI�day Landsat phenology dry season integral, 2010–2014 This study +/-

life zone Nominal Holdridge life zone [92] +/-

island_group Nominal PR = mainland Puerto Rico; MO = Mona; VC = Vieques and Culebra; VI = US Virgin Islands - -

maximum.

EVI10_14

Unitless Landsat phenology Maximum EVI for 2010–2014 This study +/-

minimum.

EVI10_14

Unitless Landsat phenology Minimum EVI for 2010–2014 This study +/-

ndvi DN Landsat ETM+/OLI ndvi [93] +/-

ndvi_1980 DN Landsat MSS ndvi circa 1980 [70] +

ndvi_1985 DN Landsat MSS ndvi circa 1985 [70] +

ndvi_1990 DN Landsat TM ndvi circa 1990 [70] +

northness Unitless Topographic Northness, facing north/south (-1/+1) [88] +

pan_1995 DN SPOT Panchromatic composite circa 1995 [70] -

PET2Driest Unitless Potential evapotranspiration to precipitation ratio of the driest four months from long-term climate [64] +/-

PET2Pannual Unitless Annual potential evapotranspiration to precipitation ratio from long-term climate [64] +/-

r45 DN Landsat ETM+/OLI, near infrared:shortwave infrared ratio [93] +

r45_1990 DN Landsat TM, rescaled near infrared:shortwave infrared ratio circa 1990 [70] +

radiation Unitless Topographic radiation index [88] +

red DN Red band from Landsat ETM+/OLI [93] -

red_1980 DN Landsat MSS red band circa 1980 [70] -

red_1985 DN Landsat MSS red band circa 1985 [70] -

red_1990 DN Landsat TM red band circa 1990 [70] -

serpentine Binary Surficial geology is serpentine or not [35, 49, 50] +

slope Degrees Topographic slope in degrees [88] +/-

swir1 DN Landsat ETM+/OLI rescaled ShortWave InfraRed [93] -

swir1_1990 DN Landsat TM ShortWave InfraRed circa 1990 [70] -

aMSS = Multispectral Scanner, TM = Thematic Mapper, ETM+ = Enhanced TM, OLI = Operational Land Imager, EVI = Enhanced Vegetation Index,

ndvi = normalized difference vegetation index.
b+/- = Overall potential influence on survival is positive (+), negative (-), or dependent on time and place (+/-).

https://doi.org/10.1371/journal.pone.0280322.t003
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Univariate statistics

We summarized the univariate impact of each predictor variable on small tree survival by cal-

culating the effect size and testing for differences in the predictor variable between survivors

and mortality. For numeric variables, we conducted a non-parametric Mann-Whitney U test,

testing the hypothesis that for two randomly selected observations from the survivors and

mortality, the probability that the numeric variable is greater in survivors than in mortality is

equal to the probability that the numeric variable is greater in mortality than in survivors

[113]. The effect size for numeric variables was calculated as the Cohen’s d statistic [114], the

standardized difference between two means, d ¼ j ð�x1 � �x2Þ

s j where �x1 is the sample mean of the

numeric variable for non-survivors, �x2 is the sample mean of the numeric variable for survi-

vors, and s is the pooled standard deviation, s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 � 1Þs2

1
þðn2� 1Þs2

2

n1þn2 � 2

q

. For categorical variables, we

tested the null hypothesis that the survival proportions of each level of the categorical variable

Fig 1. Trends in aboveground live biomass of tree functional groups. Aboveground live biomass (kg dry weight per

ha of forest) of eight tree functional groups of large (�12.7 cm dbh) and small (2.5–12.6 cm dbh) trees. Functional

groups are by Origin (I = Introduced, N = Native), Leaf Habit (E = Evergreen, D = Deciduous or Facultatively

Deciduous) and Nitrogen fixing status (N = N-fixer, 0N = non-N-fixer). Combined abbreviations are:

ID0N = Introduced Deciduous non-N-fixers, IDN = Introduced Deciduous N-fixers, IE0N = Introduced Evergreen

non-N-Fixers, SPCA = Spathodea campanulata (assigned its own group; it is an Introduced Deciduous non-N-fixer),

ND0N = Native Deciduous non-N-fixers, NDN = Native Deciduous N-fixers, NE0N = Native Evergreen non-

N-Fixers, NEN = Native Evergreen N-fixers. Introduced Evergreen N-fixers were rare. Surveys began in t1 (2001–

2004); t2 ended in 2006–2009; t3 ended in 2011–2014; t4a ended in 2016 to September 2017, before Hurricane Maria;

t4b ended in October 2017 to 2019.

https://doi.org/10.1371/journal.pone.0280322.g001

PLOS ONE Tropical forest small tree survival

PLOS ONE | https://doi.org/10.1371/journal.pone.0280322 March 15, 2023 9 / 38

https://doi.org/10.1371/journal.pone.0280322.g001
https://doi.org/10.1371/journal.pone.0280322


were equal [115]. The effect size for categorical variables was represented by the Cohen’s h sta-

tistic using the minimum and maximum survival proportions (p1, p2) among the levels of the

variable, h = |2arcsin
p

(p1) -2arcsin
p

(p2) |. Effect sizes are considered small if the statistic is

less than 0.2, medium if between 0.2 and 0.8, and large if greater than 0.8 [50]. To account for

multiple comparisons, we adjusted the p-values from the statistical tests within each time-

period using the Bonferroni correction.

We used a one-way ANOVA to test for differences in mean wood density, mean species

height, and mean species maximum height between geoclimate and neighbor groups. Pairwise

comparisons were performed using Tukey’s Honest Significant Difference tests to obtain sig-

nificantly different groupings within each response.

Variable reduction and model fitting

We first determined which variables were stronger predictors of small tree survival with a ran-

dom forest variable selection wrapper, VSURF [116], from the statistical software package R

[117]. VSURF is a machine-learning algorithm based on fitting a series of random forests,

which are non-parametric, have few assumptions, can accommodate correlated variable inputs

and have high predictive accuracy [118]. It returns two subsets of variables: the interpretation

set and a smaller, prediction set. The algorithm begins with ‘thresholding’ variables, sorting

them by mean variable importance and omitting the weakest ones (i.e., the ones with variable

importance measures below a threshold). The remaining variables are used in a set of nested

models, where the OOB (out-of-bag) error rate is computed for each model by comparing the

model with only the most important variables with a model with all of the variables included

from the thresholding step. The variables included in the smallest model with an OOB error

less than the minimal OOB error augmented by its standard deviation are chosen as the ‘inter-

pretation’ set of variables. Then a stepwise approach is taken from this set of ordered variables,

where a variable is added if the error decrease is larger than the threshold. The set of variables

from the last model are chosen as the ‘prediction’ set of variables. Thus, after a screening of

variables (‘thresholding’ step), the algorithm does a stepwise backward elimination (‘interpre-

tation’ step) and then a forward selection procedure (‘prediction’ step).

We retained the variables from the interpretation step of VSURF for each period for poten-

tial selection in fitting a final random forest model, fit using the randomForestSRC package

[119]. Permuted variable importance scores were computed for each variable that was included

in the final models by randomly permuting values of the variable and measuring the resulting

difference in classification accuracy. Minimal depth importance scores were calculated by

measuring how far down each tree a variable was used for splitting, where variables that tend

to be split first (higher in the tree) are believed to be more important. We ranked each variable

based on the two variable importance measures and plotted the one-to-one relationship.

To evaluate the predictive accuracy for each final random forest model, we split the data

60/40 into two parts for training and testing and present the confusion matrix for the out-

of-sample (testing) data. We also report a set of goodness-of-fit statistics calculated from the

testing data using the caret package [120], including accuracy and it’s 95% confidence inter-

val, Cohen’s Kappa [121], and the no information rate (NIR). Accuracy is the proportion of

observations that were correctly classified as survived/died, and the NIR is the largest class

percentage in the data and represents the possibility of correct classification by chance

alone. Kappa is a common classification measure for quantifying agreement between pre-

dictions and observations much like accuracy, but also takes into account class imbalance

with values near zero indicating agreement equivalent to chance and values near one indi-

cating almost perfect agreement [121–123]. The p-value for a one-sided test of accuracy
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being greater than the NIR is also reported (i.e., testing whether the model performs any

better than randomly guessing).

Marginal plots

To explore the directions and forms of relationships between survival and predictor variables

while considering predictor interactions, we used plots of marginal variable dependence [63].

They plot random forest-predicted survival probability for each observation against one pre-

dictor variable, showing uncertainty related to all observed combinations of other variables.

They provide a way to show marginal dependence for variables in non-parametric models. We

used a Loess smoother for all of the continuous predictors to graph the average probability of

survival for each value of the predictor.

Results

Regional trends in functional groups

Within 2 yr after Hurricanes Irma and Maria in 2017 (t4b), average regional per hectare bio-

mass of large trees of the introduced S. campanulata (SPCA) increased by almost 50% on

mainland Puerto Rico (Fig 1). Introduced non-N-fixing evergreen (IE0N) species also

increased. Before then, from 2006–09 to 2016–17, large tree biomass of these groups declined

or changed little. Large S. campanulata also increased from 2001–04 to 2006–09, the interval

after Hurricane Georges in 1998. Small trees of native N-fixing evergreen species (NEN)

declined after the drought in 2015–16 (t4a) but increased after the hurricanes. Biomass of both

large and small native evergreen non-N-fixing species (NE0N) increased from 2001–04 to

2016–17, before the recent hurricanes, but dropped afterwards. Regional shifts in per hectare

basal areas paralleled those for biomass.

Univariate differences in survival rates

Overall survival rates were significantly lower in the intervals associated with hurricanes: one

of these, t2, began in t1 in the years 2001–2004 after Hurricane Georges in 1998, and the other

spanned Hurricanes Maria and Irma in 2017 (t4b end) (variable t in Fig 2 and Fig 1 in S2 File).

As for spatial variables (Fig 2 in S2 File), across all periods survival rates were highest for older

forests, forests on serpentine substrate, drier forests, and forests at higher elevation, on steeper

slopes, or facing north. Stands that were coffee cultivation in 1977 had overall lower survival.

The most common species in the data, with 1120 observations, is Leucaena leucocephala, fol-

lowed by Guarea guidonia with 483 observations. Over all periods, most small trees survived

(76%).

Of individual and species trait variables, the odds of a non-N-fixing individual surviving

(3.8) were almost twice the odds of surviving for a N-fixing individual (2.0). Similarly, the

odds of a native individual surviving (4.2) are over twice as high as the odds of an introduced

individual surviving (1.9). Significantly lower survival rates also occurred for species with

arbuscular mycorrhizal associations, thinner leaves, deciduous leaves, less dense wood, or

shorter maximum heights (Fig 2, Fig 1 in S2 File). Facultatively deciduous species are signifi-

cantly more likely to survive than evergreen ones. Categorical variables tend to have larger

effect sizes than continuous ones. Effect sizes for leaf thickness, mycorrhizal association, dis-

turbance type and canopy position are largest, followed by geoclimate and geology (Figs 2 and

3). The variable with the largest effect size and a significant univariate test was leaf thickness in

the 2011–2014 period. For all years combined, canopy position, mycorrhizal group, leaf thick-

ness and disturbance type significantly differed between survivors and mortality and had an
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effect size larger than 0.5. For the 2006–2010 period, mycorrhizal group, leaf thickness, distur-

bance type and geoclimate met those criteria. In the 2011–2014 period canopy position, decid-

uousness, mycorrhizal group, leaf thickness and disturbance type had significant differences

with an effect size greater than 0.5. For the drought period, the variables mycorrhizal group,

crown ratio, leaf thickness, disturbance type, geoclimate, and geology met the criteria. For the

post-Maria/Irma period, geoclimate did.

Many neighbor variables differed significantly between survivors and mortality (Fig 3).

Those which also have effect sizes >0.2 included small introduced deciduous N-fixing (IDN)

trees, which correlated negatively with conspecific response tree survival; small, introduced

evergreen non-N-fixing (IE0N) trees, which correlated negatively with heterospecific response

trees; and small native evergreen non-N-fixing (NE0N) trees, which correlated positively with

heterospecific response trees. Due to many zeroes and no variation within certain periods, we

did not test neighbor variables for introduced N-fixing evergreens.

Landscape variables with effect sizes >0.2 and significant differences between survivors and

mortality included stand age, canopy cover, water table depth and some satellite image bands

or metrics (Fig 3, Figs 1, 2 in S2 File). The swir band from 15–25 yr previous most often met

those criteria. During the interval spanning the drought (i.e., t4a end), satellite image greenness

variables indicating evergreen forest zones have large negative effect sizes, while large effect

sizes with positive relationships with survival occur for crown ratio and drier long-term cli-

mate (larger PET2P).

Variable selection

Individual, species, stand and spatial variables had the most selection agreement across periods

with the variable reduction step VSURF, and neighbor variables were least likely to be selected.

Fig 2. Univariate effect sizes for significant discrete variables. Class means for the data from all periods combined

are shown in Fig 1 in S2 File. Dashed lines indicate categories of effect sizes. Effect sizes are considered small if<0.2,

medium if between 0.2 and 0.8, and large if>0.8.

https://doi.org/10.1371/journal.pone.0280322.g002
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Two individual and one species variable were selected across all periods: individual tree height

(Ht_Beg), individual crown ratio (CR_Beg) and maximum species height (Species_Ht_Max).

Wood density (Wood_Density) was selected in all but t4a, ending 2016–2017 and spanning the

drought, while canopy layer (crown class code, CCLCD_Beg), tree canopy cover (CANOPY_-

COVER), individual diameter (DIA_Beg), species height (Species_Ht), and whether a species was

native or introduced (Origin) were selected in 3 out of 5 periods. Of the spatial variables, elevation

was the only variable selected in all 5 periods, but many spatial variables were selected in at least 2

periods. Only the shortwave infrared band from 1990 (swir1_1990), minimum and maximum

EVI (min/max EVI10_14), soil depth to water table (depth2water_table), soil depth to restrictive

layer (depth2restrictive), and stand age in 2001 (age_2001) were not selected in any periods.

Final random forest models

The RF models for all years and for each interval have accuracies of 0.77–0.83 and are signifi-

cantly more accurate than the NIR values of 0.71–0.79 for the all-periods, t1 and t2 models (p-

values all<0.001), but not for the last two time periods (p-values of 0.19 for pre-Maria and

0.08 for post-Maria) (Table 4). Crown ratio, individual tree height, and a disturbance factor

are top variables in random forest models.

In the all-periods model, variable importance rankings closely agreed. The most import var-

iables according to both permuted importance and minimal depth were crown ratio, species

origin and disturbance type in the last five years (DISTURBANCE), followed by individual

height, species height and canopy cover (ordered from individual to species to landscape pre-

dictors) (Fig 3 in S2 File). Both measures also ranked the Landsat red band from 1985

(red_1985) relatively highly. Disturbance types included wind or rain, landslides, fire, grazing,

flooding, unknown, human disturbance not otherwise defined (and excluding harvest), or

multiple disturbances (e.g., wind_rain_fire) in the last five years.

Most important in 2006–2010 by both permuted importance and minimal depth was dis-

turbance type in the last five years (Fig 4 in S2 File). Both rankings also highly rated wood den-

sity, northness, a topographic radiation index (rad_index_dem), red_1985, and vegetation

greenness amplitude (amplitude_EVI10_14). In the period ending in 2011–2014 (pre-

drought), the most important variables by both rankings included crown ratio, individual

height, species height, origin, wood density, species maximum height, age and potential evapo-

transpiration to precipitation ratio of the four driest months (PET2Pdriest) (Fig 5 in S2 File).

Fig 3. Univariate effect sizes for significant continuous variables. Green are positive relationships; purple are

negative relationships. Class means for spatial variables for the data from all periods combined are shown in Fig 2 in S2

File. Dashed lines indicate categories of effect sizes. Effect sizes are considered small if<0.2, medium if between 0.2

and 0.8, and large if>0.8.

https://doi.org/10.1371/journal.pone.0280322.g003

Table 4. Accuracy measures from out-of-sample test data for final random forest models.

All years 2006–2010 2011–2014 2016–2017 2017–2019

Accuracy 0.82 0.83 0.83 0.81 0.77

Balanced accuracy 0.67 0.74 0.65 0.65 0.65

Sensitivity 0.94 0.95 0.95 0.92 0.90

Specificity 0.40 0.52 0.36 0.38 0.40

Kappa 0.41 0.53 0.37 0.34 0.34

NIR 0.77 0.71 0.79 0.79 0.74

p-value Accuracy>NIR 0.00 0.00 0.00 0.19 0.08

https://doi.org/10.1371/journal.pone.0280322.t004
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The surveys in 2016–2017 (t4a) and 2017–2019 (t4b), at the end of the drought and after

the hurricanes, respectively, had fewer samples, most from mainland Puerto Rico. For the sur-

vey spanning the drought, crown ratio and PET2Pdriest were most important by both minimal

depth and permuted importance (Fig 6 in S2 File). Stand size, PET2Pannual the infrared to

shortwave infrared ratio from the 1990 Landsat composite (r45_1990) and eastness were also

among the most important variables. Post-Maria/Irma, in 2017–2019, crown ratio, elevation,

conspecific small trees of native evergreen non-N-fixing species (consp_SmTr1NE0Nba), can-

opy cover, and wood density were the most important variables in both rankings (Fig 7 in

S2 File).

Marginal plots of survival probability

Marginal plots depict changes in survival probabilities as predictor variables change while

accounting for all other observed variable combinations. Most marginal plots agree with uni-

variate tests, particularly for the top predictors as ranked by minimal depth or permuted

importance (Figs 1–10 in S3 File). At the same time, they show important patterns. Evaluating

individual tree variables (Fig 4), they show small tree survival peaking concavely at crown

ratios of 25 to 60%. Survival increases asymptotically to an average individual height of ~5 m.

However, shorter individuals survived best during the hurricanes in 2017. When diameter was

selected, marginal plots suggest a slightly increasing, slightly concave relationship with sur-

vival. Crown ratio and tree height most often ranked highly in models (Figs 3–7 in S2 File).

Marginal plots for continuous species traits, when viewed across intervals (Fig 5), show sur-

vival increasing with wood density. Taller maximum species height corresponds to increasing

survival, but not during the hurricanes in 2017. Then, shorter species survive better. Species

with moderately tall maximum height survive better in t2. Species with intermediate typical

height survive longer. Univariate tests and marginal plots also indicate that native species sur-

vive at higher rates than introduced ones (Fig 2, Figs 2–4 and 9, 10 in S3 File).

Fig 4. Marginal plots through time for individual tree crown ratio, height and diameter.

https://doi.org/10.1371/journal.pone.0280322.g004
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Marginal plots for disturbance types depict mortality rates as lowest with no disturbance in

the last five years for the all periods model and highest for multiple recent disturbances (e.g.,
wind_rain_fire), fire, human causes, unknown causes, or grazing (Figs 1, 2 and 9, 10 in S3 File).

Survival probabilities in marginal plots changed as expected with important satellite image

variables (Fig 6). Indicators of more developed forest canopy correspond to higher survival for

the bulk of observations, while indicators of disturbance intensity or recency correspond to

less survival. Meanwhile some indicators point to higher survival in some dry deciduous

stands. For example, for interval t2 that began after the hurricane in late 1998, the survival

probabilities trend upward with the Landsat near infrared to shortwave infrared ratio (r45). In

2011–2014, survival increased with stand age. In the drought interval, survival increased with

r45_1990 and declined with swir1 (for the latter, see Figs 5, 6 in S3 File). For the interval span-

ning the hurricanes in 2017, less canopy cover corresponded to higher mortality. For the bulk

of observations in the all-periods, t2 and t3 models, survival declined with red_1985. At the

same time, convex curves show high survival in some dry deciduous stands, which correspond

to high at the largest differences between maximum and minimum greenness (amplitu-

deEVI10_14). We note that the marginal plot for canopy cover across all intervals points to a

small peak in survival just before canopy closure begins at about 25% canopy cover (Figs 9, 10

in S3 File).

Marginal plots for relationships with topographic variables (Fig 7 and Fig 11 in S3 File),

suggest that north-facing slopes and topographic positions with higher radiation, higher eleva-

tion and steeper slopes had higher survival over all years, but not during the interval spanning

Hurricanes Maria and Irma. Then, survival was lowest at coastal elevations, peaked at about

100 m asl, declined for mid elevations and increased for higher-elevation cloud forests, above

about 750 m asl. As for climate and geoclimate, marginal plots show increasing survival with

drier climate (Fig 8), and for serpentine or karst substrates as compared with alluvial or other

volcanic substrates (Fig 9). The increases in survival with drier climate with were steeper dur-

ing the interval spanning the drought.

Fig 5. Marginal plots through time for wood density, maximum species height and typical species height.

https://doi.org/10.1371/journal.pone.0280322.g005
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Discussion

Trends in neighbor functional groups and implications

The higher overall island-wide mortality rates in intervals associated with hurricanes agrees

with studies of submontane and montane forests in Puerto Rico and Jamaica, respectively

[53, 119]. They also help explain the short-term net increases in island-wide biomass of tall or

light-wooded species groups (Fig 1). Both tall stature and light wood are associated with fast

growth [121], which permits species to quickly fill canopy gaps created by tree damage or

Fig 6. Marginal plots through time for metrics related to canopy development or deciduousness. The top row

shows r45 for t2, age for t3, r45_1990 for t4a and tree canopy cover for t4b. The middle row shows the red band from

Landsat Multispectral Scanner imagery dated in 1985 (red_1985). The bottom row shows greenness amplitude, derived

from images dated from 2011–2014, and tree canopy cover. Tree canopy cover in 2006–2010 is modeled from remote

sensing data but was field-determined for the interval ending in 2017–2019.

https://doi.org/10.1371/journal.pone.0280322.g006

Fig 7. Marginal plots of elevation and slope through time, which had high rank for the interval ending in 2017–

2019 (t4b) but lower rank otherwise.

https://doi.org/10.1371/journal.pone.0280322.g007
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mortality from hurricanes. The island-wide increases in the biomass of fast-growing species

also add perspective to previous findings that S. campanulata and other fast-growing species

do not survive hurricanes as well [124, 125]. The groups with biomass increases included large

trees of the light-wooded and tall S. campanulata (SPCA) and small trees of native N-fixing

evergreen species, which on average are also tall (Fig 10), even though, as expected from past

work [126], denser-wooded species were more likely to survive (Fig 5). S. campanulata bio-

mass also increased island-wide after Hurricane Georges (Fig 1). Its biomass trended down-

ward otherwise. In contrast, the biomass of native non-N-fixing evergreen species trended

upward island-wide from 2001 until before the latest hurricanes.

Tree mortality and stem turnover drive losses of aboveground live biomass in tropical for-

ests [23, 127]. Modeling in French Guiana suggests that long-term increases in forest distur-

bance could reduce forest ecosystem services by reducing forest height, biomass, and leaf area

[128]. Findings in Amazonia that large-scale disturbances like storm events affect species com-

position suggest that more intense events could affect tropical forest resilience to extreme cli-

mate [16]. At the same time, in Amazonian forests drought may favor species with denser

wood, which grow more slowly [8]. The Puerto Rico-wide biomass trends here are consistent

Fig 8. Marginal plots through time of long-term potential evapotranspiration to precipitation ratio for the year

(PET2Pannual) and the driest quarter (PET2P driest). This index is inversely related to aridity.

https://doi.org/10.1371/journal.pone.0280322.g008

Fig 9. Marginal plots of geological substrate and geoclimate zones through time. Class names are in see Table 3.

https://doi.org/10.1371/journal.pone.0280322.g009
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Fig 10. Mean wood density, maximum species height and typical species height of species in different

neighborhood functional groups in the inventory data from the years 2011–2014. Functional groups are listed in

Table 2.

https://doi.org/10.1371/journal.pone.0280322.g010
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with an outlook where stronger or more frequent hurricanes will favor fast-growing species

early during hurricane recovery, some with lighter wood that store less carbon per unit of bio-

mass and survive at lower rates. But they also show the decline in fast-growing species during

later intervals while small trees of denser-wooded trees survive hurricanes better. In sum,

drought and hurricanes might favor species with different traits in the short term. The future

frequency of extreme events is projected to increase [129, 130] but is uncertain, so the out-

comes of climate change for forest composition, carbon dynamics and ecosystem services

remain highly uncertain.

Overview of the multiscale factors important to tree survival rates

The RF models illustrate how predictors of small tree survival span scales of space and time, as

they include individual tree, species trait, stand disturbance and environmental variables, and

the predictors, or their relationships with survival, can change somewhat through time. At the

individual scale, taller trees with larger crown ratios of 25–60% survive better (Fig 4). At the

species scale, native species and species with denser wood, taller maximum heights, or inter-

mediate typical heights survive better (Fig 5, Figs 2–4 and 9, 10 in S3 File), but severe events

may change these patterns. At site and landscape scales and over time, disturbance-related var-

iables, including disturbance type (Fig 5 and Figs 1, 2 and 9, 10 in S3 File), and variables indi-

cating an older or less damaged canopy (Fig 6) led to higher survival rates. Otherwise, all else

equal, trees survive longer in environments with slower growing conditions (drier or edaphi-

cally dry, or cloud forest later in recovery) (Figs 8, 9 and Fig 12 in S3 File), which agrees with

studies showing drier or edaphically drier tropical forests have lower mortality rates [8, 11, 38].

And as we discuss below, covariation between species traits and landscape factors likely also

affects which combinations of species traits and landscape factors are most important for pre-

dicting survival.

Changes in importance of driving variables through time

The changes in variable importance linked to mortality seem to reflect regional disturbances,

with earlier intervals (t2, t3) reflecting recovery from past large-scale deforestation and a hurri-

cane in 1998, with continued effects of that hurricane (a recovery phase). A regional drought

phase (t4a) followed, and then the data span a severe hurricane phase (t4b). Topographic vari-

ables are an example. Elevation and slope were top predictors for the interval spanning hurri-

canes in 2017 (t4b) (Fig 7 in S2 File). They show low survival for coastal and moderate

elevation forests (Fig 7), agreeing with work showing the extensive damage in those areas

across mainland Puerto Rico [14, 15, 131]. Canopy cover was also important then, with low

canopy cover corresponding to low survival (Fig 6), reflecting greater hurricane damage. Sur-

vival increased with eastness (t4b), offset Hurricane Maria’s southeast approach (Fig 11 in S3

File). In t2, survival increased with northness, offset from the generally eastward path of Hurri-

cane Georges, and with radiation (Fig 11 in S3 File and Fig 7), agreeing with review findings

that tropical forest recovery benefits from moderately increased solar radiation [132]. During

extreme drought, marginal plots depict steeper increases in survival with drier climate than

during other intervals (Fig 8). Also during drought survival increased slightly at high values for

eastness, facing trade winds (Fig 11 in S3 File).

Trait importance or influence also varies slightly through time. The direction of the rela-

tionship between survival and height, including both individual and species maximum height,

changed in the hurricane interval (Figs 4 and 5). Then, species with shorter maximum height

and shorter individuals survived better. During other times, shorter individuals survived at

lower rates, and species with shorter maximum height survived slightly less or similarly to
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taller species. Note that species typical height is shorter for the average dry forest species on

any substrate, and species maximum height is shorter for both dry forests on any substrate and

for humid forests on serpentine substrate (Fig 11). Past work suggests that dry forests in the

region may benefit from hurricane related rainfall [15, 133]. In addition, leaf thickness, species

origin and mycorrhizal group appeared in RF models for earlier, recovery periods but not dur-

ing intervals spanning extreme drought or severe hurricanes (Figs 3–7 in S2 File).

Denser wood and serpentine geology or geoclimate consistently predicted longer survival,

and marginal plots for these variables and crown ratio are fairly consistent (Figs 4, 5 and 9).

The link between denser wood and higher survival was expected and resulted even though the

wood density estimates were from different sources or few samples. Wood density is correlated

with a growth-survival trade-off, in which light-wooded species grow faster in high resource

environments but die at higher rates [49, 134–136]. Wood density can vary within species and

individual trees, and wood density estimates from a few small core samples are likely imprecise

[137–140]. Considering the consistency of this variable for modeling tree survival, more and

better estimates of the wood density of tropical tree species are warranted.

Species trait-to-landscape growth-survival trade-off

Most of the species’ traits and landscape factors associated with higher survival are known to

be associated with slower growth or reduced mortality rates and vice versa. Factors affecting

tropical tree growth rates also operate over many scales [136]. Species-level average diameter

growth may not always predict species mortality rates [41]. However, together the results in

this study portray a species trait-to-landscape, multiscale trade-off between traits and places

associated with a tendency for faster growth vs. those linked to higher survival. Serpentine or

dry forest species have significantly denser wood and are shorter (Fig 11), indicating slower

growth rates. In marginal plots, RF models predict higher individual survival on edaphically

dry karst or serpentine geology and in drier conditions (Figs 8 and 9). Differences in biomass

among forest age classes by geoclimate in Puerto Rico generally suggest slower growth [66, 141].

Results here also predict higher survival with stands that are less disturbed or less recently dis-

turbed and have a better-developed canopy. A mature or, less disturbed canopy implies shadier

conditions for small trees compared with recently disturbed or deforested conditions, and growth

would be slower, as indicated by the bulk of observations in top-ranked remote sensing metrics

(Fig 6).

A shallower water table corresponded to higher mortality in univariate tests (Fig 2 in

S2 File). This finding agrees with results from Amazonian forests, where shallow water table

forests have higher mortality (except with mild drought) [11]. There, lower forest productivity

and biomass are associated with an excess or deficit of water availability, as determined by the

combination of climate and edaphic conditions [42], also suggesting a landscape-level trade-

off between higher survival and lower growth with harsher growing conditions. Depth to

water table did not appear in RF models, and the frequency of observations in shallow water

table forests is comparatively low. However, raw data suggest the possibility that mortality in

shallow water table forests (depth to water table<50 cm) was relatively lower in the drought

interval than other intervals (Fig 10 in S2 File).

Drier conditions correspond to higher survival rates according to marginal plots of poten-

tial evaporation to precipitation ratios (Fig 6, S3 File). But other work shows that severe

drought may escalate mortality rates in seasonally dry forests more than in humid forests

[4, 10, 38, 142]. During the drought period in this study, moist and submontane wet forests on

alluvial and extrusive volcanic substrates had the highest mortality rates, as in other intervals.

They dominate the central part of the island, where the drought was most severe. Further,
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much of the dry forest on mainland Puerto Rico occurs on fast-draining karst or serpentine

substrates and in old stands, suggesting that the trees in these dry forest zones are particularly

drought-tolerant [143]. To better characterize Caribbean dry forest resilience to drought,

future research could incorporate drought severity into analyses of tree survial.

Fig 11. Mean wood density, maximum species height and typical species height of species in different geoclimatic

vegetation zones (see Table 3) from the years 2011–2014 (cloudfor_other is cloud forest, dry_karst is dry forest on

limestone substrate, dry_other is dry forest on other substrates, dry_serp is dry forest on serpentine substrate,

humid_karst is moist to wet forest on limestone substrate, humid_other is humid forest on other substrates,

humid_serp is moist to wet forest on serpentine substrates).

https://doi.org/10.1371/journal.pone.0280322.g011
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Tree height and crown ratio

With tree height and crown ratio being important in RF models, crown ratio being at the top

of model trees (smallest minimal depth), and canopy position and crown ratio having large

effect sizes, results strongly support tree demography models driven primarily by light avail-

ability and stand disturbance [61, 144–147], as disturbance-related variables are also impor-

tant. Results also support recent interest in calibrating or validating forest demography models

with lidar metrics of canopy structure [6, 34]. Lidar profiles foliage volume. Crown ratio indi-

cates tree vigor, growth potential and light environment and together with height is a foliage

profile. While survival increases overall with increasing crown ratio, marginal plots suggest

that small tree survival peaks at crown ratios of 25 to 60% in a concave curve (Fig 4). Tree

diameter is more commonly available from inventory data. As a result, most demography

studies use one of the following to less directly index tree light environment: tree diameters of

the response tree and surrounding trees [17, 39, 52, 58, 62], metrics of light exposure or growth

scaled from diameters to heights and sometimes calibrated with lidar [44, 144, 148–150], or

previous diameter growth [44, 45, 50, 151, 152]. Tree diameter may gauge tree size better than

height alone for large trees and appears with lower rank in some models. It has a power law

relationship with crown size, while height increases asymptotically with tree diameter [147,

153, 154]. But for small trees, these results suggest that canopy profile measurements like

crown ratio might improve mortality models. A question related to the crown ratio measure-

ments we test here is the extent to which they represent storm-related tree damage that leads

to mortality. The consideration is important, because lagged mortality from damage to tree

crowns, trunks or leaves, from a variety of agents, is an important risk factor for mortality [19].

Tree species stature, wood density and species origin

The RF models support wood density and tree species stature as important demographic indi-

cators [43, 52, 134, 136, 155], as they are the most important species traits other than species

origin. Differing here from past work is that these inventory data span dry to cloud forests,

deep alluvial to shallow karst or serpentine soil substrates and a range of land-use histories,

regional events and introduced species, all within the same species pool (excepting introduced

species). Insofar as wood density and species stature both rank highly, the RF models are also

consistent with the concept [131, 134] that species stature has importance to survival that dif-

fers from a trade-off with traits characteristic of faster growth. That work used both a growth-

survival trade-off and a trade-off between tall stature and high recruitment to represent tree

demography [131, 134]. If the tendency in these results for survival to increase with wood den-

sity (Fig 5) is reflecting a growth-survival trade-off, the high rank of species height in some of

the models may reflect some independent importance of species height to survival even across

this varied landscape. Caveats to this interpretation are that RF models can select correlated

variables (see Caveats section below), the only demographic trait we analyze is small tree sur-

vival, and wood density is not selected in the drought interval. Smaller sample size may explain

that difference, or wood density may not predict drought-related mortality. It did not predict

tree survival during the drought event in 2015 in Costa Rican seasonally dry forests, though

specific hydraulic traits did [10].

Introduced species origin, being highly ranked in RF models for all periods, t2 and t3,

points to lower overall survival in univariate tests and marginal plots (Figs 2–4 and 9, 10 in S3

File). The average introduced species has lighter wood than the average native species (Fig 8 in

S2 File). The two most common neighbor groups of introduced species are the single-species

group S. campanulata (SPCA) and introduced N-fixing legumes (IDN species). The low wood

density and tall stature of SPCA (Fig 10), both indicate fast growth, and this species survival
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rate is lower than average (63–68%) except in t3 when survival was near average at 75%. Fast

growth also likely contributes to its spike in biomass after the hurricanes in 2017 despite only

63% of small individuals surviving. Common IDN species include Prosopis pallida, Albizia
Lebbeck, A. procera, Erythrina berteroana, E. poeppigiana and Leucaena leucocephala. The

average IDN species has short maximum height (Fig 10) and low survival, of 57–68%, despite

moderate wood density but (Fig 10), except during the drought when 78% survived. Some

IDN species can have high recruitment rates, like P. pallida and L. leucocephala [11, 156, 157].

What these species and SPCA all have in common is that they are considered shade-intolerant

pioneers [158].

Mycorrhizal groups and N-fixing status

Mycorrhizal associations are not often considered in tree survival studies. In this study, trees

hosting arbuscular mycorrhizae have higher mortality rates in univariate tests, while strictly

ectomycorrhizal and nonmycorrhizal species have the lowest mortality rates. Despite high

effect size, mycorrhizal association, together with leaf thickness, was only selected in the model

from t2. In marginal plots, nonmycorrhizal (NM) and NM or ectomycorrhizal (EM) species

(“NM + EM”) are most distinct. Other factors are apparently more predictive, with the largest

group, that forming arbuscular mycorrhizal associations (AM), including a wide range of spe-

cies. All but one of the strictly ectomycorrhizal stems are native species. They are more likely

to have coriaceous or subcoriaceous leaves, and 60% of the stems are found in dry forests,

cloud forests or on serpentine substrate, where growing conditions are harsher, hard-leaved

evergreen species are more common and forests are older (Figs 1, 2 in S1 File). Ectomycorrhi-

zal associations and thicker leaves are common among “resource conservative” species [159,

160] that we expect to survive longer. Still, the strictly ectomycorrhizal species in the inventory

also encompass different groups. Outside of places with harsher growing conditions, twenty-

five percent of the strictly ectomycorrhizal stems are Andira inermis, a widespread N-fixing

legume. It is a bat-dispersed, deciduous canopy tree of lowland humid Neotropical forests with

intermediate wood density and an average survival rate (77%). It is common in mid-succes-

sional former pastures in Puerto Rico in lowland areas [161]. In African dry forest, deciduous

ectomycorrhizal legumes similarly functionally group with tall-statured tree species with inter-

mediate mortality and growth rates [52].

The species groups used to test neighbor effects illustrate the wide range of traits of N-fixing

species. The N-fixing neighbor groups include the shortest (IDN), tallest typical height (NEN)

and densest-wood (NDN) neighbor groups (Fig 10). Like mycorrhizal associations, N-fixing

status likely encompasses too broad of a range of species to be a top predictor in RF models in

this diverse landscape, even though N-fixing species had lower survival rates.

Neighborhood species composition

In univariate results, survival generally declines with surrounding basal area of introduced spe-

cies but increases with surrounding natives, whether conspecific or heterospecific. Despite

many significant univariate correlations between survival and nearby conspecifics or hetero-

specifics (Fig 3), though, few neighbor variables were in the RF models. Shade intolerance and

self-thinning can explain many of the negative correlations between survival and conspecifics,

often called conspecific negative density dependence (CNDD), for seedlings or small trees in

other tropical forests [47, 162–166] and may help explain this result.

That succession and shade tolerance explain much CNDD may be true here for introduced

deciduous N-fixing legumes (IDN), which as mentioned are mainly shade-intolerant pioneers.

They had the largest CNDD effect sizes (Fig 3), but conspecific neighbor variables were not in
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RF models. Though some late successional species here are N-fixing, basal area or abundance

of N-fixers declines overall with stand age in Puerto Rico forests and in many other succes-

sional tropical forests [70, 73, 167] (Fig 1 in S1 File). As specialists in early succession in tem-

perate forests, mortality of N-fixers exceeds that of other species in Eastern US forests as they

age [59].

One high-ranked neighbor variable was small conspecific native non-N-fixing evergreens

(consp_SmTrNE0N) in the marginally significant RF model spanning the hurricanes in 2017

(t4b). This species group is prominent in older stands across the study region (Figs 1, 2 in

S1 File) [70]. The negative arm in the convex marginal plot for this variable (Fig 9 in S2 File) is

consistent with explanations for CNDD (self-thinning or negative species-specific contagion).

Alternatively, lower survival at higher basal areas of small NE0N conspecifics could represent

both a disturbance and habitat gradient of increasing NE0N mortality and basal areas with

increasing elevation and hurricane damage. We know from past work that relative basal areas

of native, evergreen, and non-N-fixing species are higher at higher elevations (Figs 1–5 in

S1 File). The positive arm in the marginal plot represents high survival rates for two species in

old but small-statured stands on tall karst hilltops with shallow soils, characteristic of the

higher survival rates in these habitats.

A low-ranked neighbor variable in the RF models was small S. campanulata trees. This spe-

cies survival is high when basal area of small conspecifics is high in the all-periods univariate

test, but the effect size is small. Simple association of S. campanulata with high small conspe-

cific basal area in disturbed areas might explain the pattern, as the high survivorship in mar-

ginal plots for this variable corresponds to low tree canopy cover. S. campanulata, with a wood

density similar to balsa (Ochroma pyramidale) and high growth rates, spiked after the hurri-

canes in 2017 (Fig 1). It also resprouts strongly after hurricanes. Seedlings of native species can

colonize underneath this species [168]. Still, as mentioned, seedlings of S. campanulata can be

relatively shade tolerant [80]. It dominates stands across karst lands of Northwest Puerto Rico

and some parts of Central Puerto Rico [70].

Landsat phenology, multidecadal imagery and disturbance

Multiple disturbances can increase tree mortality in both additive and synergistic ways [18–21,

110]. We tested field-determined disturbance type in the last five years including multiple dis-

turbances, and field or remotely sensed indicators of disturbance and its severity from the last

five years and from before the year 2000. We did not test successive field-noted disturbances.

However, we note that during hurricanes, both wind and heavy rain are associated with high

tree mortality and may reduce tree stability in tropical forests. Fire may also reduce tree stabil-

ity [21]. In Caribbean dry forests, fire can increase steeply after hurricanes [110]. We also did

not test forest fragmentation indices as survival predictors, because most plots are connected

in a few large patches. But fragmentation can increase both tropical forest fire frequency and

tree mortality and damage from wind [20]. Further, fragmentation plus fire magnify tree dam-

age and mortality from either disturbance [18]. Consequently, future research could consider

testing as survival predictors successive field-noted disturbances, remote sensing indicators

from previous inventory intervals, drought and storm severity and perhaps indicators of past

fragmentation.

Image bands, indices and phenology metrics were among the top-ranked predictors in all

models. We attribute their frequent selection to their sensitivity to disturbance severity and

vegetation type at high spatial resolution. Marginal plots of remote sensing metrics point to

longer survival with less disturbance, or more time since disturbance, according to expected
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relationships. At the same time, the metrics are sensitive to higher survival rates for some drier

forests, especially during drought.

Remote sensing disturbance metrics ranked in the top nine variables by minimum depth or

permuted importance (Fig 6 and S3 File). Marginal plots show increasing survival with increas-

ing near infrared:shortwave infrared (nir:swir1, i.e., r45) ratios after Hurricane Georges (t2) and

for r45 from 1990 for the drought (t4a). They show reduced survival at the brightest swir1 values

in t4a. These trends likely reflect recent or past disturbance severity or type. The shortwave

infrared (swir) bands are important to detecting partial forest disturbance [169]. Spectral data

from long image time series can predict current tropical forest structure better than stand age

alone [110, 170–173]. Band indices contrasting near-infrared with swir bands are often more

sensitive than other band combinations to tropical forest disturbance, structure, successional

stage, canopy openness, or selective logging [158, 160–162]. Unvegetated, unsaturated soils or

burned areas reduce r45 as they are bright in swir bands; tree shadows from larger trees darken

swir bands, increasing r45. Vegetation greenness increases nir bands, increasing r45.

Disturbance history may also explain declining survival for the bulk of observations with

brighter MSS red band values from 1985 for the all-periods, t2 and t3 models (Figs 1–4 in

S3 File and Fig 6). The Landsat red band may be preferred for detecting tropical dry forest dis-

turbance [174]. It is also important to detecting humid forest disturbance in older, Landsat

multispectral (MSS) data, as they have no swir bands [175]. Vegetation darkens reflectance in

visible bands like the red band, wavelengths that vegetation absorbs, as does tree shadow. Con-

sequently, brighter red band reflectance corresponds to shorter, sparser, or less developed for-

est canopies or increased disturbance.

High-ranked image metrics likely also reflect survival differences related to vegetation type. Veg-

etation types change over distances shorter than the grid size of climate maps. Finer-scale edaphic,

topographic, or atmospheric differences change species composition. We know that the 30-m cells

of multiseason Landsat imagery greatly improve distinction of deciduous and semi-deciduous

Caribbean vegetation types, even when climate maps are included as predictors [109], and that

Caribbean vegetation phenology [176] and physiognamy [177] can vary among geological sub-

strates. High spatial resolution may account for survival peaks where satellite image bands or phe-

nology metrics imply sparser, shorter, or more deciduous canopies, in drier conditions. The

increases in survival at the largest values in greenness amplitudes in t2, t3 and t4b (Fig 6), and for

swir1 during the hurricane interval (t4b) (Fig 8 in S3 File), are highly dense and deciduous dry forest

observations, and sparse coastal dry forest observations, respectively. The largest greenness ampli-

tudes are from Vieques, where there are extensive areas dominated by deciduous species, as illus-

trated in a map of deciduous and N-fixing deciduous species across the region (Figs 1, 2 in S1 File).

The satellite image composites have residual noise from differences in image dates among

pixels, like atmospheric differences. Compositing methods reduce this noise but are imperfect.

In addition, uncertainty in the phenology metrics rises with cloud frequency and across imag-

ing paths. Before the year 2013, the number of clear observations from Landsat was limited in

Puerto Rico, even after combining five years of images [108]. Using greenness maxima and

minima and their difference reduces this uncertainty. However, acquisitions of high- and

medium-resolution optical imagery are now more frequent. Given these uncertainties, more

research is needed to evaluate the consistency of relationships between phenology metrics and

forest dynamics across complex tropical landscapes.

Caveats

It should be noted that the univariate tests between numeric and categorical predictors are not

comparable because different variable types necessarily required different statistical tests.
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Moreover, in large samples it is relatively easy to find statistical significance, but that does not

always equate to a meaningful difference. Thus, we chose to include effect size calculations as

well as the results of the statistical tests to find biological or ‘practical’ significance. We note

the tests and calculations we performed assume independence among observations, which

may not be met spatially for individuals within the same plots. By analyzing the data across

and within periods we ensured temporal independence as no individuals were sampled twice

within the same period, and effects of repeated measures in the all-years analyses were likely

trivial. Nevertheless, we admit spatial variation was not accounted for in our analyses which

may lead to bias in some cases. However, the potential bias due to the correlated nature of our

predictor variables was assumed to be greater risk and thus a machine-learning approach was

more appropriate. Furthermore, using a machine-learning method allowed for interaction

effects and non-linear relationships to drive the model without the need for any specific a pri-

ori assumptions for model formulation.

Although the random forest models perform better than using the class proportions, Kappa

values were not large showing fair to moderate agreement at most between model predictions

and observed survival outcomes. Machine-learning algorithms such as random forests are

increasingly being used for large datasets with correlated variables due to their lack of stringent

parametric assumptions. Random forests have been shown to have high accuracy and can han-

dle interactions between predictor variables that are unknown a priori. However, the reliability

of several possible variable importance measures produced by this algorithm continues to be

evaluated [178–182]. For example, random forest variable importance may tend to inflate the

importance of continuous variables that have more unique values [183] and may introduce

bias with correlated predictor variables [180]. Nonetheless, machine-learning algorithms such

as random forests prove to be a valuable tool for finding potential patterns of important vari-

ables among many possible predictors in large datasets.

Conclusions

Top predictors of tropical small tree survival in these data, when excluding species as a predic-

tor, are typically tree crown ratio and height, a stand or landscape variable related to distur-

bance or regrowth, and two to three each of species traits and other landscape factors. This

result applied across tropical dry to cloud forests ranging widely in age, disturbance history,

geology and topography. Other things equal, small tree survival rates are highest in older or

least-disturbed forests. Survival increased fairly consistently with wood density, and it was the

trait most often ranked highly.

Covariation between species traits and stand or landscape factors may affect which variables

are most important when predicting survival. Wood density and survival are high, species are

shorter, and stand-level growth is slower in harsher environments including dry forest on any

substrate and humid forest on edaphically dry and nutrient poor serpentine substrate.

The importance of some factors, and the forms of some variable relationships with survival,

can change somewhat through time, reflecting the regional system state of widespread recov-

ery, drought or disturbance. For example, radiation index was important in intervals charac-

terized by forest recovery. Elevation and slope were important with recent hurricanes. Some

changes suggest resistance to drought or storms for landscape conditions where trees survive

longer. The tendency for longer survival in drier conditions was accentuated during drought.

During hurricanes, short individuals and species survived at higher rates though they survived

at lower or similar rates otherwise.

The covariation between species traits, survival and landscape factors, including those

related to disturbance, suggests a multiscale, species trait-to-landscape trade-off between traits
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and places with higher base mortality rates vs. those where species are adapted to slow-growing

conditions and survive longer. Neighborhood composition or conspecificity seems to have low

or no importance, whether neighbors are introduced or native species. Univariate correlations

between survival and neighborhood composition seem related to disturbance, succession, and

other habitat factors, including in the one case of an important neighbor variable. An example

being high mortality in stands of some pioneer species with high conspecific basal areas.

Variables from satellite imagery can be important to predicting tree survival beyond distur-

bance timing. Satellite image spectra, including from past decades, phenology metrics, and

potentially canopy cover, can help gauge disturbance intensity and vegetation type and have

higher spatial resolution than climate maps, improving their ability to detect forests in dry to

moist zones that are edaphically dry or moist.

With tree crown ratio and height being the strongest individual predictors of small tree sur-

vival, remotely sensed canopy height profiles might help predict small tree mortality in stands

with uniform structure. With species height and wood density being two of the three most

important species traits, they may well reflect different gradients in life history strategies. In

these island forests, whether a species is native is also a strong predictor. Introduced species

died at twice the rate of natives and on-average have lighter wood. After two severe storms in

2017, however, a light-wooded introduced species spiked. Light-wooded species are favored

during forest recovery from hurricanes, while drought may favor thicker-leaved or other spe-

cies types. If these events favor different traits, climate change influences on forest composi-

tion, carbon dynamics and other ecosystem services remains highly uncertain and may

depend on the frequency and severity of extreme events.
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27. San-José M, Werden L, Peterson CJ, Oviedo-Brenes F, Zahawi RA. Large tree mortality leads to

major aboveground biomass decline in a tropical forest reserve. Oecologia. 2021 [cited 25 Oct 2021].

https://doi.org/10.1007/s00442-021-05048-w PMID: 34613464

28. Gora EM, Esquivel-Muelbert A. Implications of size-dependent tree mortality for tropical forest carbon

dynamics. Nature Plants. 2021; 7: 384–391. https://doi.org/10.1038/s41477-021-00879-0 PMID:

33782580

PLOS ONE Tropical forest small tree survival

PLOS ONE | https://doi.org/10.1371/journal.pone.0280322 March 15, 2023 30 / 38

https://doi.org/10.1111/gcb.15037
http://www.ncbi.nlm.nih.gov/pubmed/32053250
https://doi.org/10.1111/nph.17914
http://www.ncbi.nlm.nih.gov/pubmed/35037253
https://doi.org/10.1111/gcb.16017
https://doi.org/10.1111/gcb.16017
http://www.ncbi.nlm.nih.gov/pubmed/34854168
https://www.fs.usda.gov/treesearch/pubs/49987
https://doi.org/10.1016/j.rse.2020.111940
https://doi.org/10.1371/journal.pone.0103711
http://www.ncbi.nlm.nih.gov/pubmed/25099118
https://doi.org/10.1890/03-4031
https://doi.org/10.1890/03-4031
https://doi.org/10.1111/1365-2745.13076
https://doi.org/10.1111/nph.17832
http://www.ncbi.nlm.nih.gov/pubmed/34716605
https://doi.org/10.1111/j.1442-9993.2008.01895.x
https://doi.org/10.1016/j.foreco.2015.07.014
https://doi.org/10.1016/j.foreco.2015.07.014
https://doi.org/10.5194/bg-2021-102
https://doi.org/10.5194/bg-7-3027-2010
https://doi.org/10.1111/nph.15027
https://doi.org/10.1111/nph.15027
http://www.ncbi.nlm.nih.gov/pubmed/29451313
https://doi.org/10.1111/jvs.12811
https://doi.org/10.1111/jvs.12811
https://doi.org/10.1002/ecs2.2616
http://www.ncbi.nlm.nih.gov/pubmed/34853712
https://doi.org/10.1007/s00442-021-05048-w
http://www.ncbi.nlm.nih.gov/pubmed/34613464
https://doi.org/10.1038/s41477-021-00879-0
http://www.ncbi.nlm.nih.gov/pubmed/33782580
https://doi.org/10.1371/journal.pone.0280322


29. Brandeis TJ. Effects of Model Choice and Forest Structure on Inventory-Based Estimations of Puerto

Rican Forest Biomass.: 19.

30. Dauber E, Fredericksen TS, Peña M. Sustainability of timber harvesting in Bolivian tropical forests.

Forest Ecology and Management. 2005; 214: 294–304. https://doi.org/10.1016/j.foreco.2005.04.019

31. Free CM, Matthew Landis R, Grogan J, Schulze MD, Lentini M, Dünisch O. Management implications

of long-term tree growth and mortality rates: A modeling study of big-leaf mahogany (Swietenia macro-

phylla) in the Brazilian Amazon. Forest Ecology and Management. 2014; 330: 46–54. https://doi.org/

10.1016/j.foreco.2014.05.057

32. Brinck K, Fischer R, Groeneveld J, Lehmann S, Dantas De Paula M, Pütz S, et al. High resolution anal-
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